BEN-GURION UNIVERSITY OF THE NEGEV

FACULTY OF ENGINEERING SCIENCES
DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Learning motion primitive parameters for a Medjool date thinning robot

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
M.Sc DEGREE

By: Or Bar-Shira

September 2019

BEN-GURION UNIVERSITY OF THE NEGEV

FACULTY OF ENGINEERING SCIENCES
DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Learning motion primitive parameters for a Medjool date thinning robot
THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

M.Sc DEGREE

By: Or Bar-Shira

Supervised by: Prof. Sigal Berman

Author: Or Bar-Shira____: E _____ v Date: 28/09/2019
S,g!fém
Supervisor: Sigal Berman .~ Date: 28/09/2019
R)~ *\L‘ /;llé'
Chairman of Graduate Studies Committee:..........ovveeeeennnn.... Date:.. 28/9/2019

September 2019

Abstract

Fruitlets thinning is an important task of Medjool date cultivation. Efficient and timely fruitlets
thinning is essential for attaining high quality yields. Currently, fruitlets thinning requires
precision, is time critical, and is labor intensive. The estimated time required to thin a single mature
tree is 3.5 hours and more than a million hours of labor are currently required to thin all the Medjool
trees in Israel. Automation of thinning is essential to enable fruitlets thinning of larger plots using
reduced manpower during the thinning season.

Motion control during thinning is challenging as careful into-the-canopy motion is required.
Furthermore, the environment is dynamic, therefore run time trajectory adaptation is also essential.
We present a development of a motion planning and control method for a robotic system for
Medjool date thinning. The method is based on dynamic movement primitives (DMPs). DMPs are
a set of nonlinear equations used for encoding motion policies, based on dynamical systems which
have parameters whose values can be tuned to facilitate performance of new tasks. The DMP
parameters determine the precision of the generated movement and their values are influenced by
the task, the robot, and the environment. DMP parameters can be divided into three categories:
shape parameters (defining motion trajectory), meta parameters (determining the DMPs frame of
operation, e.g., goal point), and external parameters (determining external, high level,
environmental constraints that affect DMP operation, e.g., motion start time).

We present a framework for predictable DMP parameter adaptation, based on forming a
mapping from parameters representing task requirements to meta parameters. The mapping
facilitates generalization and precision when generating a new movement, both are essential
qualities for thinning. Furthermore, the mapping is formed a-priori, hence it ensures predictable
and robust task performance during run time. Since the mapping is a multi-input-multi-output
learning problem, it can be modeled using a deep neural network, in which the task parameters
form the input layer and the meta parameters are the output layer. Network training was expedited
by analyzing the parameter space using principal component analysis and locally linear
embedding.

To attain good accuracy, the deep neural network requires a large dataset. Lack of agricultural
annotated datasets is considered among the main reasons for lower performance of advanced

machine learning algorithms in agriculture and among the main bottlenecks for introducing

robotics in agriculture. As establishing a dataset of physical measurements is challenging, a
method for constructing annotated dataset that is based on artificial data was developed. A
validated, stochastic model of a Medjool date fruit bunch was created and visualized in 3D using
python OpenGL. The fruit bunch is modeled as an assembly of geometric shapes, each shape has
a unique distribution fitted to it.

The ability to generate an accurate movement utilizing the adapted DMP method was tested in
a preliminary experiment in a simulation of a ball throwing task, where the task parameter is the
ball’s landing point on the floor. Two simulation models, ballistic and adapted, are presented.
Furthermore, the deployment of the deep neural network is compared with that of kernel
regression. The parameter space analysis indicated that the complexity of both, ballistic and
adapted, models was moderate with stronger constrains in the adapted model. The results showed
that for large datasets both mapping methods attained low movement error (beneath 12% distance
and 2° angle). A second experiment examined the competence of the deep neural network to learn
the task and meta parameter mapping for the Medjool thinning task based on datasets generated
from the fruit bunch model. The parameter space analysis indicated that the problem complexity
was high. After training, the network achieved very low error of 2.6%. The results are promising,

and the method and tools developed are ready for an upcoming field test.

Keywords: Dynamic movement primitives (DMP), robotics in agriculture, deep neural networks,

artificial data.

Acknowledgements

I would like to express my deep gratitude to Professor Sigal Berman, my supervisor, for her patient
guidance, enthusiastic encouragement and useful critique. Her experience, professionalism, and
willingness to help assisted me in guidance and in finding the best methods to perform this study;
| take pride in acknowledging the experts who were involved in the forming and validation of the
fruit bunch model for this research project: Prof. Avital Bechar, Dr. Yuval Cohen, and Mr.
Avraham Sadowsky. Without their participation and input, the building and validation of the model
could not have been successfully conducted; | would also wish to thank my lab colleagues, Mr.

Yosef Cohen and Mrs. Tal Shushan for their wonderful collaboration.

This research is supported by the Israeli ministry of agriculture and the Israeli Date Grower's board

in The Plant Council.

Vi

Table of Contents

(@8 T o) 1 I [(0o [Tod o] OSSR 11
1.1 BACKGIOUNG ...ttt 11

1.2 Objectives and CONEIDULIONccoiiiiiiiiieieee e 11

1.3 Research scope and lMItationS...........c.cooeiiiiiiiiieice e 12

L4 OULIINE. .ottt 13
Chapter 2: LITEIrAtUIE FTEVIBWc.oiuiiuiiieiiieiieeete sttt sttt sttt b i 14
2.1 OVBIVIEBW ...ttt bbbttt bbbt bt ettt ettt nne s 14

2.2 Fruitlets thinning of Medjool dates............cccvveiiiieiieie e 14

2.2.1 1V LT [ToTo] I Fo L =TSSR 14

2.2.2 The importance of Medjool dates to the Israeli marketccccoveenenee. 16

223 TRINNING ¢ttt eneas 16

2.3 POlICY repreSENtation........c.ccvciiiii it 17

2.3.1 MOVEMENE PIIMITIVES ...t 17

2.3.2 Dynamic movement PrimitiVES.........ccccveieeieiie e 18

2.3.3 Generalizing DMP to new tasks with meta parameters adaptation............... 22

2.4 Deep NEUNAl NEIWOTKScouiiiiiiiiiieieiese et 23

24.1 OVEIVIBW ...ttt bbb bbbttt bbb 23

24.2 Data acquisition for training deep neural NEtWOrkSccccceveviiencneninne. 24

2.4.3 Adapting motion parameters with deep neural networks............c.ccocvevninnns 25

Chapter 3: Constructing a synthetic annotated dataset of Medjool date fruit bunches................. 26
Bl OVBIVIBW ...ttt bbbttt bbbt bbbt bbb nre s 26

3.2 TREMOUEL ... 26

3.2.1 Forming the MOodeloo oo 26

vii

3.2.2 The Stochastic MOdel..........ccooiiiiie s 27

3.23 Visualization of the modelccooiiiiiii e 28

3.24 The length of the remaining SPIKelets.........cccooeviiie i 30

3.3 Validation of the Model ..o 30
Chapter 4: Learning Motion PAramMEtEISc.ooeiiririiririeieieiee ettt 33
4.1 Complexity analysis of task and meta parameter manifold structure..................... 33

4.2 Learning task and meta parameter MapPiNgccceoeeerererireeieeriene e 33
CNapLer 5 EXPEIIMENTS. ...ttt bbbttt nb e bbb b 36
5.1 OVBIVIEBW ...tttk b bbbttt ettt ettt nne s 36

5.11 Robotic soft ball throwing..........ccccooiiiiiiii 36

51.2 Medjool thINNING........cov i e 37

5.2 Data aCqUISITION ...c..oitieiieiecie sttt sreere e 38

521 Robotic soft ball throwing...........c.ccoveviiiiiiiccce e, 38

522 Medjool thiNNING........cocvieiee e 39

5.3 Examining data COMPIEXILYcceiviiieiieiie i 39

5.4 Defining network structure and devising a mappingcccccevvevveveeresieeseeseeenenns 40

0.5 IMIBASUIES ...ttt bbb 40
CNAPLET B RESUILS ...ttt bbbttt sb e bbb nne s 42
6.1 Robotic Soft ball thrOWINGccoviiiiii e 42

6.2 MedjOO! thINNING. ..ot 45
Chapter 7: DiscusSion and FUTUIE WOTK.........ccoriiiiiiiiiiiisieee e 47
7.1 SYNNEIC ALASELcuveeieiieieieeee bbb 47

7.2 Learning MOtION PArAMETETSoiviiiirierierierieeieeee e sie s 48

7.3 Mediation between simulation and physical environment..........c.c.ccocvevevvereennn 49

R B O B C S ..ttt ettt ettt e e s e nnnnnnnnnnnn 50

Appendix [: Medjool date fruit bunch model ..o 55
Appendix II: COUE UESCIIPLIONeivieiieeie ettt e s teeaesneesreeneanee e 57

Appendix III: DNNs training and testing results for the robotic soft ball throwing experiment.. 61

List of tables

Table 1: Medjool date fruit bunch model parameter distributionsccccceveviere i e, 28
Table 2: Medjool date fruit bunch full model parameter distributions.............ccccceoviiiiinnnnnn. 55
Table 3: Libraries used in the ‘Fruit bunch dataset generation’ code.........ccoovvviiiiiiiiieiiiiieniiinnnns 57
Table 4: Main methods in the ‘Fruit bunch dataset generation” code..........cccevvvvrivereiieieerennenn 57
Table 5: Libraries used in the ‘complexity analysis’ cOdecccoovvviiiiiniiiiiiiciiiee e 58
Table 6: Flow of the ‘complexity analysis’ COA@........ccouiriiiiiiiiieiii e 59
Table 7: Libraries used in the 'DNN: train and test' COUEcovreriiiiiieiisieeee e 59
Table 8: Flow of the 'DNN: train and teSt' COUEcviiviieiiiiiiiereee e 60
Table 9: DNNSs training and testing results for the robotic ball throwing experiment 61

List of figures

Figure 1: Schematic diagram of the date palm ... 15
Figure 2: Medjool date fruit bunch (early thinning period)...........ccccoovveiiiiiiiieie e 15
Figure 3: Schematic working calendar for Medjool orchards in southern Israel...............cc......... 15
Figure 4: Thinning of a Medjool date fruit BUNCH ... 17
Figure 5: Dynamic movement primitive flowchart (DMP and TDMP)cccccoevvevieveiiecieens 22
Figure 6: A sketch of a Medjool date fruit bunch (word and python OepnGL).cccccccvrurnnee 27
Figure 7: Medjool date fruit bunches (synthetic and physical image)..........c.ccoovvviiniiiiinnnnne 31
Figure 8: Marked Medjool date fruit bunch from the 1%t epoch-1t whorlccccceveieveviverenne. 32
Figure 9: Dynamic movement primitive adapted flowchart.............c.ccocoiiiiiniiiiici e 35

Figure 10: Task and meta parameters illustration (robotic soft ball throwing experiment and
Medjool thinNING EXPEITMENT)eoiiiiiece e saee s 38
Figure 11: Parameter space analysis for the robotic soft ball throwing experiment; Cumulative
variance of the principle components (ballistic model and adapted model)...........cccccovvvvrineennen. 42
Figure 12: Parameter space analysis for the robotic soft ball throwing experiment; Weights of the
parameters in the principle components (ballistic model and adapted model)..........c.cccccovevvenens 43
Figure 13: Parameter space analysis for the robotic soft ball throwing experiment; 3-dimantional
visualization of both PCA and LLE (ballistic model and adapted model)ccccoecvvvvevveriennnne. 43
Figure 14: Movement error as a function of dataset size (ballistic model and adapted model) ... 44
Figure 15: Parameter space analysis for the Medjool thinning experiment...........cccoccoeevieiennns 46

file:///C:/Users/owner/Desktop/BGU/fifth_year/thesis/written%20work/IE_Thesis_Medjool%20Or_28Sept2019.docx%23_Toc20581162
file:///C:/Users/owner/Desktop/BGU/fifth_year/thesis/written%20work/IE_Thesis_Medjool%20Or_28Sept2019.docx%23_Toc20581164
file:///C:/Users/owner/Desktop/BGU/fifth_year/thesis/written%20work/IE_Thesis_Medjool%20Or_28Sept2019.docx%23_Toc20581166
file:///C:/Users/owner/Desktop/BGU/fifth_year/thesis/written%20work/IE_Thesis_Medjool%20Or_28Sept2019.docx%23_Toc20581172

List of abbreviations and nomenclature

Al Artificial Intelligence

AS [°] Spikelets minimal bounding box angle
DMP Dynamic Movement Primitives

DNN Deep Neural Networks

FL Fruitlets Load

H [cm] Gripper end point height

HBM Hierarchical Bayesian Models

L [cm] Spikelets remaining length

LLE Locally Linear Embedding

LS [cm] Spikelets minimal bounding box length
MLP Multilayer Perceptron

PA Precision Agriculture

PC Principal Component

PCA Principal Component Analysis

r[cm] Ball landing radius

R[cm] Gripper end point radius

RL Reinforcement Learning

TDMP Tight Dynamic Movement Primitives
WS [cm] Spikelets minimal bounding box width
X x coordinate of a point

y y coordinate of a point

z coordinate of a point
a] Ball landing horizontal angle
B [°] Gripper end point horizontal angle

T [sec] Motion duration

11

Chapter 1: Introduction

1.1 Background

Precision agriculture (PA) is an accurate agriculture that is based on a decision support system that
take into consideration observations, measurements, and statistical analysis in order to optimize
cost and value (Zhang, Wang, & Wang, 2002). The interest in application of autonomous robotics
to precision agriculture is growing notably due to the need to keep up with the increasing demand
for productivity and quality of food production whilst decreasing the resources required, reducing
chemical treatments, and promoting sustainability (Bac, et al., 2014; Potena, Nardi, & Pretto,
2016). Yet, the introduction of robotics in agriculture is challenging. This is mainly due to the
unstructured and dynamic environment that impair the robot’s ability to adapt to changes, a
mandatory requirement for integration of robots in agricultural enviroments (Arkin, 1998; Zhou &
Zhang, 2019). Another elment considered among the main bottlenecks for introducing robotics in
agriculture is the performance of artificial intelligence (Al) algorithms. In recent years grate efforts
are dedicated to adding a degree of Al to the robot operating mechanism and thus enable increased
selectivity, precision, and robustness. However, there is a great absence of detailed and large
annotated agricultural datasets that current state-of-the-art Al methods require, data that is

infeasible to obtain manually (Barth, et al., 2018).
1.2 Objectives and contribution

This research contributes to the combination of the worlds of Al and robots in agriculture. The
research is conducted in the domain of Medjool date fruitlets thinning. Manual methods for
fruitlets thinning that are common nowadays are not here to stay. Other methods such as
autonomous or semi-autonomous systems can be much more efficient. Previous studies
implemented precision agriculture methods to improve the process of growing dates. Their focus
varied from the level of a single tree, to a grove, and more widely on a regional level (Cohen,
2014). Yet, no work was done on the use of precision agriculture for fruitlets thinning of dates and
more specifically on automation of fruitlets thinning with robots. Automated thinning can be
conducted by shortening the fruit bunch. Both, the deciding where to cut and the appropriate cut

without damaging other plant parts are complex. Advanced decision making is required, along

12

with inside-the-canopy motion which entails a dynamic control accounting for interaction with the
environment.

Our first objective was to develop a movement algorithm for a robotic arm, suited for dynamic
environment, that relies on a deep neural network for decision making. Our second objective was
to develop a method for generating artificial datasets to train the deep neural network needed for
motion planning thus enabling the generation of the movement albite the absence of real data.

A 3-dimensional model of a Medjool date fruit bunch and its visualization were built and were
validated by two physiologists, experts in Medjool date cultivation. Two experiments with two
different tasks were conducted: robotic soft ball throwing and Medjool thinning. The robotic soft
ball experiment tested the feasibility of the proposed movement algorithm and compared the
performance of the deep neural with that of kernel regression. The Medjool thinning experiment
examined the ability of the network to train on the artificial data generated from the fruit bunch
model and to perform new tasks.

Two papers were submitted and are pending response. The first paper was submitted to IEEE
Robotics and Automation Letters (RA-L) and ICRA (Q1), the second was submitted to Robotics
and Autonomous Systems (Q2). Preliminary work was published in abstracts presented in the 21
National Conference on Industrial Engineering and Management, XXXVIII CIOSTA & CIGR V

International Conference, and the 6™ Israeli Conference on Robotics.
1.3 Research scope and limitations

This work is part of multi-disciplinary project that is funded by the Israeli ministry of agriculture.
A prototype consisting a thinning tool and a sensing system that are placed on a robotic arm is
developed. The sensing system comprises a camera and a sonar sensor. The prototype will be
mounted on an altitude tool, the robotic arm will approach a fruit bunch, the perception apparatus
will estimate the properties of the fruit bunch, based on this a decision-making process will
determine the level of thinning required, and the mechanical thinning system will perform the
thinning.

The mission of the Ben-Gurion group is to develop and adapt algorithms for planning the
movement of the robotic arm in space to control the sensing and thinning. the current study
presents the movement algorithm developed for the robotic arm which is based on dynamic

movement primitives (DMPs) and on adaptation of the DMP goal during run time using a mapping

13

based on a deep neural network. Furthermore, it presents a development of a stochastic model of
the Medjool's fruit bunch for generating datasets that enable training the network.

This work does not include the processing of the sonar and image input. The image processing
was performed by Mrs. Tal Shushan, a M.Sc. student in the Department of Industrial Engineering
and Management at Ben-Gurion University of the Negev under the supervision of Prof. Sigal
Berman. The final algorithm was not field tested yet as the prototype is not yet completed.
Furthermore, the prototype needs to be tested in a limited period during thinning season (the
upcoming 2020 thinning season is in April 2020).

In the robotic soft ball throwing experiment, the current study presents the use of a deep neural
network to learn a mapping between task and meta parameters. The two simulation models that
were built for generating the datasets for this experiment and the use of kernel regression to learn
a mapping were performed by Mr. Yosef Cohen, a Ph.D. student in the Department of Industrial
Engineering and Management at Ben-Gurion University of the Negev under the supervision of

Prof. Sigal Berman.
1.4 Outline

This thesis is arranged as follows: Chapter 2 provides a literature review on the method used to
create the robot control policy and learning algorithm, prior studies, and essential concepts related
to the work. Chapter 3 describes a mathematical model of a fruit bunch that was devised and its
utilization for generating annotated datasets. Chapter 4 details the methodology for learning
motion parameters developed for this thesis. Chapter 5 describes two experiments held, chapter 6

describes the results of the experiments, discussion and future work are provided in chapter 7.

14

Chapter 2: Literature review

2.1 Overview

The current chapter reviews the concepts and methods relevant for developing a dynamic
movement algorithm for a robotic arm for fruitlets thinning of Medjool date. For promoting
understanding of the required automation section 2.2 describes Medjool dates, the Israeli Medjool
market, and the importance and difficulties of the fruitlets thinning operation. Since this work deals
with adaptation of dynamic movement primitives (DMPs) section 2.3 reviews movement primitive
representations in robotics. In addition, it describes methods for improving the ability of DMP
adaptation to new tasks using parameters. The main contribution of this work is in the use of deep
neural networks (DNNSs) in an agricultural environment and in the context of tuning DMP
parameters therefore section 2.4 reviews DNNSs, the difficulty in establishing training databases,

and specifically the use of DNNSs for adapting motion parameters.

2.2 Fruitlets thinning of Medjool dates
2.2.1 Medjool dates

Medjool dates are considered premium dates (Bar-Shira, et al., 2019). Originated from Morocco,
the cultivar was first introduced to Israel at the 1950s and mostly during the early 1970s (Cohen
& Glasner, 2015). The medjool dates grow upon fruit bunches (Figure 1). The Medjool date fruit
bunches grow in whorls within the date crown that reaches tens of meters in height (Chao &
Krueger, 2007). Farmers usually allocate the fruit bunches to three typical whorls (Top, Middle,
Bottom) according to their location in the crown. Each fruit bunch is made up of a fruit bunch
rachis, spikelets, and fruitlets (Figure 2). The rachis grows in an upward direction, titled with
respect to the palm trunk. During the season, as the fruitlets become larger, the tilt increases due
to their weight. The spikelets grow in a helical arrangement from the top part of the rachis, they
are allocated by farmers to clusters (similar to whorls for fruit bunches). The fruitlets (small fruits)
develop from flowers along the spikelets in a process termed fruit-set (Cohen & Glasner, 2015;
Bar-Shira, et al., 2019).

Medjool dates cultivation can be divided into six main periods (Figure 3). The annual cycle
starts with the removal of spines from bases of all leaves developed during the previous year.

During flowering, between February and April, farmers collect pollen from male trees and

15

pollinate female flowers, leading to the process of fruit-set. Fruitlets thinning is performed in April
and May. At the end of this period, fruit bunches are supported on leaves, fastened, and covered

with bags. During August—October, fruit harvesting takes place (Cohen & Glasner, 2015).

Crown
of leaves

Fruit
bunch

.\ Intersection line
4 between rachis

)
)
)
)
)
)
)

Figure 1: Schematic diagram of the date palm (adapted Figure 2: Medjool date fruit bunch (early thinning
from Chao & Krueger, 2007). period) (Bar-Shira, et al., 2019).

Jo [eA(;wa}{
uonjeurjjod
puE Uorjoa[[0o
SPpInL]
surua)sey young
a8e1oA00 young
sunsoareq

1 N |

Dec Feb | Mar

‘Nov Jan Apr | May | Jun Sep |Oct

Jul | Aug

Month

Figure 3: Schematic working calendar for Medjool orchards in southern Israel. Arrowheads represent tasks
enquiring physical climbing to the crown of the tree (Cohen & Glasner, 2015).

16

2.2.2 The importance of Medjool dates to the Israeli market

Dates are the main plantation crops in the arid regions of Israel, from the Sea of Galilee, along the
Jordan Valley to the southern Arava. In the southern parts of Israel, the date industry is the major
and sometimes the only horticulture industry and its importance to the economy of these regions
is immense (Cohen & Glasner, 2015). The Medjool is the main date-palm cultivar in Israel, where
about 75% of all planted trees are Medjool (Hausler, Fridkin, & Kachel, 2017). In addition to their
importance for the livelihood of the residents of southern Israel, Medjool dates are of great value
to the Israeli economy. In the past decade dates have become one of the highest value products
that Israel export, most of them are exported to the European markets. In 2015, the volume of
exported dates was estimated at 44% of the dates production and the export value of the industry
was estimated at 400 million NIS. The Israeli Medjool has a market share of between 65% to 75%
of the amount of Medjool exported worldwide, positioning Israel as one of the major exporters of
Medjool in the international markets (Hausler, Fridkin, & Kachel, 2017). The main limitation
slowing down market expansion is that Mejdool date production is labor intensive. The most

manual intensive task in the production cycle is thinning (Bar-Shira, et al., 2019).
2.2.3 Thinning

Thinning is a term used in agriculture which mean the removal of some parts of the plant in order
to make it less dense and obtain better growth of the parts that remain (Lewis, 2001). It has been
shown that fruitlets thinning of date palms lead to an improvement of the yield and fruit quality
(Moustafa, 1998). Yet, it is considered the most labor intensive period in the cultivation of Medjool
dates since it varies from one palm tree to another and it is performed manually. The optimal
thinning requires consecutively removing two out of three fruitlets along each spikelet, enabling
the development of 1/3 of the fruitlets equally spread upon the spikelets. This procedure is not
performed in Israel since it is extremely time consuming (Cohen & Glasner, 2015). In practice,
manual thinning is performed by removing the inner (higher) spikelet cluster of the fruit bunch
and shortening the remaining spikelets (Figure 4). This simplifies the thinning operation, yet it can
still take up to 3.5 hours to thin a single mature (Bar-Shira, et al., 2019). Furthermore, thinning
must be done within a four week period, starting 4-5 weeks after pollination. Yet, many farmers
with large orchards start their thinning early since fruitlets thinning is time consuming. An early
start may lead to over-thinning or to a requirement to perform another thinning operation to adjust

17

the fruitlet load (Cohen & Glasner, 2015). Automation of the thinning operation is imperative for
enabling fruitlets thinning of larger plots with reduced manpower within the desired time frame.
Still, due to task complexity, there are currently no commercially available thinning autonomous
robot systems (Bar-Shira, et al., 2019). Furthermore, the annual crop expected in 10 years from
the currently planted trees is expected to reach more than 50,000 tons. This addition of about 40%
of the crop will require an additional 80,000 days of work of thinning, this is without considering
the added crop expected from new planting during the period (The plant council, 2019). These

forecasts accentuate the necessity of automation.

Figure 4: Thinning of a Medjool date fruit bunch. The worker bundles the spikelets with one hand and shortens the
spikelets near the bundling point using pruning shears (News from the grove, 2011).

2.3 Policy representation

2.3.1 Movement primitives

Humans perform complex motor tasks in uncertain and changing environments with little apparent
effort. They can generalize and therefore adapt to new tasks based on their motor abilities (Mdlling,
et al., 2013). Human movements seem to be composed of movement primitives. Once learned,
they allow humans to quickly adapt their movements to variations of the situation without the need
of re-learning the complete movement (Kober, et al., 2012). For example, the overall shape of table
tennis forehands is very similar when the swing is adapted to varied trajectories of the incoming

ball and different targets on the opponent’s court. To accomplish such behavior, the human player

18

has learned by trial and error how the global parameters of a generic forehand need to be adapted
due to changes in the situation (Kober, et al., 2012; Mulling, et al., 2013). Understanding how this
motor competence may be represented and implemented in robots is of great value.

In robotics, the ability to generate a variety of complex movements cannot be attained by
simply storing all movements and recalling them when needed. This approach would be inadequate
because the number of possibilities is immense. To achieve its full competence, the motor system
must be capable of generalizing beyond the movements that it has experienced in the past. It is
possible to do so with movement primitives. Every movement, discrete or rhythmic, can be
represented through a sequence (repeated sequence) of a finite number of movement primitives
(Mussa-lvaldi, 1999). To deal with complex movement, one can build a library of movements
primitives out of which complex movement can be composed by sequencing. For example, the
library may contain a grasping, placing, and releasing movements. Each of these movements is a
different movement primitive and is labeled accordingly. For moving an object on a table, a
grasping-placing-releasing sequence is required, and the corresponding primitives are recalled
from the library (Pastor, et al., 2009).

The movement algorithm developed in this work is based upon dynamic movement primitives

(DMPs), a commonly used form of movement primitives (Cohen, Bar-Shira, & Berman, 2019).
2.3.2 Dynamic movement primitives

The problem of learning a mapping between world state and actions lies at the heart of many
robotics applications. This mapping, also called a policy, enables a robot to select an action based
upon its current world state (Argall, et al., 2009). The goal of motor control and motor learning
can generally be formalized in terms of finding a task-specific control policy:

u=rmn(xta (@)
that maps the continuous state vector x of a control system and its environment, possibly in a time
t dependent way, to a continuous control vector u. The parameter vector a denotes the problem
specific adjustable parameters in the policy m. A control policy is supposed to take the motor
system from an arbitrary start point to the desired behavior. The desired behavior might be simply
reaching a goal point or a cyclic movement, like walking, swimming, chewing, etc. Both cases can
be thought of as attractor dynamics, i.e., either a point attractor or a limit cycle attractor.

Systems with attractor dynamics can generally be written as a differential equation:

19

x = fxta))
which is almost identical to Equation 1, except that the left-hand-side denotes a change-of-state,
not a motor command. Such a kinematic formulation is suitable for motor control if this dynamic
system is conceived as a kinematic policy that creates kinematic target values (e.g., positions,
velocities, accelerations), which subsequently are converted to motor commands by an appropriate
controller (Schaal, et al., 2005; Pastor, et al., 2013). It had become a common practice to model
natural phenomena with systems of coupled nonlinear differential equations that exhibit rich
abilities for forming coordinated patterns without the need to explicitly plan or supervise the details
of such pattern formation (ljspeert, et al., 2013).

DMP framework was originally proposed in 2001 (ljspeert, Nakanishi, & Schaal, 2001) and
was further extended throughout the years (Schaal, Mohajerian, & ljspeert, 2007; Hoffmann, et
al., 2009; ljspeert, et al., 2013). DMP is a set of nonlinear equations used for encoding motion
policies. DMP equations enable to transform well-understood simple attractor systems with the
help of a learnable forcing function term into a desired attractor system. First, a model of a goal-
oriented baseline locomotion (i.e. movement primitive) is required. After this baseline model has
been accomplished, it can be used to account for more complex phenomena with the help of the
coupling dynamics of nonlinear systems and adjusting the DMP parameters (ljspeert, et al., 2013).

Example for the DMPs equations is listed below. First is the transformation system,
instantiated by the second order dynamics:

ty=a,(B,(g-y)—y)+f(x) @)
where g is a known goal state, a, and 3, are time constants, 7 is a temporal scaling factor that
control the duration of the movement, f is a forcing term, and y, y,y correspond to the desired
position, velocity, and acceleration generated.

The name of the equation is due to its ability to transforms the simple dynamics of the unforced
system into a desired nonlinear behavior. Without the function f, Equation 3 is nothing but a linear
spring-damper, and, after some reformulation, the time constants a, and 8, have an interpretation
in terms of spring stiffness and damping. For appropriate parameter settings and f = 0, these
equations form a globally stable linear dynamic system with g as a unique point attractor, which
means that for any start position the system would reach g, just like a stretched spring, upon release,
will return to its equilibrium point. However, setting f to be a nonlinear function will allow

trajectories that are almost arbitrarily complex on the way to the goal g.

20

Next, there is the canonical system:

X = —a,X 4)
where a, is a constant. From any initial conditions, the canonical system can be guaranteed to
converge monotonically to zero. This monotonic convergence of x becomes a substitute for time,
x can thus be conceived as a phase variable, where x = 1 would indicate the start of time evolution
and x close to 0 means that the goal g has been achieved. The name of the equation is because it
models the generic behavior of the model equations, a point attractor in this case (for a limit cycle
attractor, the canonical system needs to be represented in a different way).

The forcing term £ is given in Equation 5:

_ N ieowi
f) = S X9~ Yo) (5)

With N exponential basis functions y; (x),
1

P;(x) = exp (- = (x — ¢)?) (6)
where o2 and c; are constants that determine, respectively, the width and centers of the basis
functions, w; are the weights of the basis functions that can be adjusted using learning algorithms
in order to produce complex trajectories before reaching g, and y, is the intial state y, = y(t =
0). The phase x appears also multiplicative in Equation 5 such that the influence of f vanishes at
the end of the movement when x has converged to zero (ljspeert, et al., 2013; Pastor, et al., 2013).
The parameters of a DMP can be divided into three categories: shape parameters, meta
parameters, and external parameters. The Shape parameters (w;) define the spatio-temporal shape
of the movement. The meta parameters are the values that adapt the movement behavior, e.g., the
start and goal positions (y, and g), movement duration () etc. The external parameters determine
external, high level, environmental issues that affect DMP operation, e.g., when to start motion
with respect to additional task constraints (Kober, Oztop, & Peters, 2011; Kober, et al., 2012).
DMPs have important advantages for planning and controlling a movement. (1) DMP
equations do not encode a single, specific desired trajectory but rather a whole attractor landscape.
This provides the ability to smoothly recover from perturbations, which is an important property
when moving in a dynamic environment. (2) Avoiding the explicit time dependency simplifies the
ability of coupling with other dynamical systems. (3) DMP equations allow fast learning of a
trajectory with a relatively low number of parameters. The number of basis functions (hence of
parameters) can be adjusted depending on the desired accuracy of the fit, with more functions

21

allowing the representation of finer details of movement. Furthermore, these parameters can be
obtained efficiently. (4) The ease of modification is also ensured by having the goal state of the
movement explicitly encoded into the system. (5) The representation of y, g, x, and 7 in the DMP
equations result in an invariant policy under transformations of the initial position, the goal, the
amplitude, and the duration (ljspeert, Nakanishi, & Schaal, 2002; Kober, Oztop, & Peters, 2011).

In the DMP formulation the shape parameters are calculated a-priori and retained for motion
generation during run time (Figure 5). This limits the ability of each DMP to represent the
characteristics of the original trajectory to relatively simple trajectories, i.e., trajectories with
limited changes in curvature and jerk, since big changes, e.g. starching the learned trajectory,
decrease the accuracy of the generated movement. As a result, the movement primitives coded by
DMPs are relatively simple, thus a large set of DMPs is required for representing complex
trajectories (Cohen & Berman, 2013). The method called Tight dynamic movement primitives
(TDMP) addresses this weakness.

2.3.2.1 Tight dynamic movement primitives

TDMP is an adaptation to the DMPs. In the TDMP formulation, the stored movement parameters
are the coordinates of the typical motion trajectory. The coordinates of the path are linearly
transformed during run time based on the required meta parameters, and the suitable shape
parameters are calculated from the transformed trajectory using linear regression analysis (Figure
5). TDMP requires less primitives, with respect to DMP, to compose a complex trajectory and it
is independent from specific coordinates. Furthermore, it allows a more accurate fit to the shape
of the trajectory (Cohen & Berman, 2013).

22

[\ [\ E
=I=
Record Compute o % E
: eclare 5)
frajectory m—p| controller [e——y E}”
& new target
parameters E
t
compute f =
f :) | : 5
Transf g
Declare ransIorm Compute '«% o
Record trajectory Caleulate | = §,
. — new [) controller || —
trajectory & path a
target parameters S
compute f E

Figure 5: Dynamic movement primitive flowchart (learning and motion generation process). Top: DMP, Bottom:
TDMP (adapted from Cohen & Berman, 2013).

2.3.3 Generalizing DMP to new tasks with meta parameters adaptation

The movement executed with DMP can be adapted both spatially and temporally without changing
the overall shape of the motion. However, with current techniques, in many cases, the robot needs
to learn a new elementary movement even if a parametrized motor plan exists that covers a related
situation. The cost of experience is high as sample generation is time consuming and often requires
human interaction (e.g., in cartpole, for placing the pole back on the robot’s hand) or supervision
(e.g., for safety during the execution of the trial). Given that the behavior will not drastically
change between related situations, it would be better to generalize the learned behavior to the
modified task. Generalizing a teacher’s demonstration or a previously learned policy to new
situations may reduce both the complexity of the task and the number of required samples (Kober,
Oztop, & Peters, 2011; Kober, et al., 2012).

Several methods have been suggested for handling a change in task requirements during run
time. These include: augmentation of the traditional DMP approach with a memory of sensory

events that occurred during the learning of the movement primitive and using the additional

23

information to create a task policy with corrective commends in run time (Pastor, et al., 2013), and
creating a task policy that is composed of several movement primitives weighted by their ability
to generate successful movements in the given task context (Milling, et al., 2013). Such
adjustments are bounded to a small region about the original parameter values.

To increase the ability to generalize the movement primitive to a larger continuum of tasks,
one can exploit the influence that the DMPs parameters have on the movement. Previous studies
showed that adapting the meta parameters can help achieve generalization of the movement
behavior (Kober, Oztop, & Peters, 2011; Kober, Wilhelm, Oztop, & Peters, 2012).

Previous work was done on adapting meta parameters with reinforcement learning (RL). Some
researchers developed methods of learning meta parameters for given shape parameters (Kober,
Oztop, & Peters, 2011). Others have integrated learning meta and shape parameters (Tamosiunaite,
etal., 2011; Stulp & Schaal, 2011). While RL indeed facilitates acquiring new skills, it has several
limitations. The continuous parameter space along with the high dimensionality of typical robotic
manipulator motor-learning problems, might lead to dimensionality reduction that severely limits
the dynamic capabilities of the robot. This may be unacceptable for many tasks (Kober, Bagnell,
& Peters, 2013).

A different body of research, of constructing data-driven models, seeks to generalize available
data, forming concise representations that capture salient motion characteristics. Researchers
suggest using hierarchical Bayesian models (HBMs) for estimating both meta and shape
parameters for probabilistic movement primitives (Rueckert, et al., 2015). Probabilistic movement
primitives facilitate encoding optimal behaviors in stochastic systems, yet they are less appropriate
when deterministic system behavior is required.

The current work is a part of an effort for forming a nonlinear and deterministic mapping from
task requirements to DMP meta parameters. The mapping is based on a representation of the task

and meta parameter manifold (Lee, 2010) with a deep neural network.
2.4 Deep neural networks

2.4.1 Overview

Deep neural networks are computational models that can acquire and maintain knowledge. They
can be defined as a set of processing units, represented by artificial neurons, interlinked by a lot of

interconnections, implemented by vectors and matrices of weights. One of the most relevant

24

features of neural networks is their capability of learning from the presentation of samples and
generalize solutions, to wit, the network can produce an output which is close to the expected
output of any given input values. There are different architectures of DNNs. One of the most
versatile architectures is the multilayer perceptron (MLP) network that belong to the multiple layer
feedforward architecture (the information always flows in a single direction), whose training is
performed with a supervised process. In supervised learning each training sample is composed of
the input attributes and their corresponding outputs. It is from this information that the network
will formulate hypothesis about the system being learned. MLP networks are commonly utilized
for function approximation (Da Silva, et al., 2017), as required for forming a mapping between

task requirements to DMP meta parameters.
2.4.2 Data acquisition for training deep neural networks

DNNs are known for their abilities to solve complex real-world problems (Chiroma, et al., 2018).
Yet, they are notoriously known for requiring large training datasets for attaining an accurate
representation. Nowadays, with the support from developing computational power, big data
analysis using neural networks has achieved great success. large volume of big data provides
tremendous training samples which enable the training of neural networks with large number of
parameters (Zhang, Guo, & Wang, 2017).

The cost of generating labeled data for training DNN is often an obstacle. Acquiring big
amount of data is especially challenging when entering a new field where there are no previous
datasets (Ganin, et al., 2016). Establishing dataset for the current problem was an immense
challenge as the thinning epoch is short and in this short time the structure of the fruit bunch
changes significantly. Furthermore, the data acquisition is complex since an altitude tool is needed
in order to reach the fruit bunches within the date crown, along with security arrangements,
professional accompaniment, and time. To overcome this challenge, the power of the simulation
was exploited. Computer simulations are computer-generated, dynamic models of the real world
and its processes (Smetana & Bell, 2012) that enables creation of myriad realistic artificial data
that facilitate increased performance of the DNN that comes with large datasets (Barth, et al.,
2018), thus, improved ability to-generalize to unseen data is attained (Varga & Bunke, 2003;
Jaderberg, et al., 2014).

25

2.4.3 Adapting motion parameters with deep neural networks

For a given robotic system, environment, and task, there are n task parameters that represent the
task requirements, &, ..., 6, m meta parameters, y, ..., ¥m, and p shape parameters, w, ..., w,. The
task and meta parameters are related through a manifold @(6y, ..., 85, 1, ---» Vim) €mbedded in the
parameter space. Neural networks are suited for efficiently representing manifold structures (Bastri
& Jacobs, 2017) and thus for forming a mapping between the task and meta parameters. The
hierarchical, layered structure of deep neural networks facilitates capturing complex data
structures where the outputs of such networks are continuous piecewise linear functions of the
inputs (Basri & Jacobs, 2017). The neural network can take as input the vector of task parameters
and supply as output the vector of suitable meta parameters.

Neural networks have hyperparameters whose values can be tuned to improve performance. These
include: the number of hidden layers, the number of neurons in each layer, the batch size (the
number of input samples processed before updating model parameters), the learning epochs (the
number of times that the learning algorithm will undergo the entire training dataset), the loss
function (the function used to calculate the gap between the correct scores and the scores computed
by the neural network based on its current weights), and the optimizer (the gradient descent
optimization algorithm). Furthermore, different optimizers have different parameters whose values
can be tuned as well (Ruder, 2016; Sze, Chen, Yang, & Emer, 2017). Hyperparameters have great
impact on the performance of the model, effecting both learning run time and final accuracy
attained. Accordingly, a variety of hyperparameter optimization methods were developed
(Bergstra & Bengio, 2012; Hoos, Ca, & Leyton-Brown, 2014; Xu, 2015). Based on an analysis of
the parameter manifold we performed a grid-search (Bergstra & Bengio, 2012) for central

hyperparameters determining network structure.

26

Chapter 3: Constructing a synthetic annotated

dataset of Medjool date fruit bunches

3.1 Overview

To cope with the absence of annotated data of Medjool date images, a stochastic model that
captures the geometry of a fruit bunch was devised and a 3-dimensional visualization was
composed based on the model. Medjool date experts were part of the model derivation and took
part in its structure validation. The model enabled generation of datasets required for training and

testing the neural network.
3.2 The model

3.2.1 Forming the model

The structure of the fruit bunch was captured with an assembly of geometrical shapes. The rachis
has elongated elliptical shape that narrows towards it end. The spikelets have elongated shape and
can be modeled by constructing a geometric spatial curve. The fruitlets have an oval shape and are
relatively small with respect to the spikelet length, therefore can be modeled with a stereotypic
oval shape. Accordingly, the fruit bunch was modeled with the following geometrical shapes: the
rachis is represented as an elliptical cylinder that a cone is placed on top of it, the spikelets are
Bezier curves (Singh, 1995), and the fruitlets are spheres.

During the formation of the model, we consulted with two physiologists, experts in Medjool
date cultivation. They expressed their professional opinions, advised, and referenced to literature
when needed. The professional accompaniment was mostly done in the form of face-to-face
meetings, a total of 8 meetings were held. Correspondence by email existed when necessary. The
model development considered the environment in which the system will operate (in order to
enable the system to achieve good performance in a physical environment, the training of the DNN
must be on a realistic data) and the end-user (much emphasis was placed on creating a visualization
that the end-user, i.e. the farmer, can relate too. by building a model that the end-user can relate
to, we are increasing his willingness to use to final product). The forming of the model began with
investigating a sample of Medjool date fruit bunches and the fruit bunch parts refined with the help
of the physiologists. A preliminary sketch containing the main components was drawn and a

27

visualization was performed in python OpenGL (Shreiner, et al., 2013) (Figure 6). During the
establishment of the model we discovered a great variety between fruit bunches from different
whorls and from different points of time throughout the thinning period. As a result, the
distributions of the model’s parameters were fitted depending on the whorl and the thinning period
(the thinning period was divided to 3 epochs: early, medium, and late). A total of 9 combinations

were developed in parallel.

T S — —

Figure 6: A sketch of a Medjool date fruit bunch (Left: word, Right: python OepnGL).

3.2.2 The stochastic model

Eighteen parameters were defined in the model to capture the geometry of the fruit bunch. The
parameters represent main features of the fruit bunch without dependency on the whorl and
thinning epoch. The parameters define the rachis (width, depth, length, bending, and orientation),
the spikelets (quantity, dispersion, and size), and fruitlets (quantity, dispersion, size, and the natural
fallout probability). A probability function was defined for each of the parameters and distribution
parameters were fitted for the three thinning epochs and the three whorls (9 sets of probability
parameters). The parameters, the distributions, and the distribution parameter values were
established based on interviews with plant experts and farmers, visual comparison of the synthetic
images with images of physical fruit bunches, and graphical considerations.

Table 1 present the Medjool date fruit bunch model parameter distributions. Distribution
parameters given in parentheses for the 1% epoch-1% whorl. The full model is detailed in Appendix
L.

28

Table 1: Medjool date fruit bunch model parameter distributions. Distribution parameters given in
parentheses for the 1 epoch-1°%t whorl.

Index Parameter Probability function?
P1 Rachis width [cm] U(a,b),(2,3)
P2 Rachis depth [cm] U(a,b) * (p1), (0-56,0.76)
X (p1)
P3 Viewed section of rachis [cm] Constant, 20
P4 Hidden rachis length [cm] Triang(a,b,c),20,25,30)
Ps Angle between rachis to tree trunk [°] U(a, b),(0,10)
Ps Number of spikelets Triang(a, b, c), (80,85,100)
p7 Number of spikelets clusters Constant, 3
. . Bottom cluster: 0 X (p,)
05 Distance of spl_kelets clusters from top of Middle cluster: 0.4 X (p,)
presented rachis
Top cluster: 0.6 X (py)
. . . . Bottom cluster: 0.5 X (pg)
0s Dispersion of spikelet quantity between the Middle cluster: 0.3 x (pg)
clusters
Top cluster: 0.2 X (pg)
P10 Spikelet length [cm] Triang(a,b,c),(75,80,100)
P11 Spikelet radius [cm] U(a,b), (2,2.5)
Clamps width (i.e. the largest distance between .
P12 two spikelets) [cm] Triang(a,b,c), (25,27,35)
Number of fruitlets per spikelet (on bottom
b
P13 cluster) U(a, b), (60,70)
Distance from the spikelet base to the first .
P14 fruitlet [cm] Triang(a,b,c), (20,27,45)
P15 Fruitlet radius [cm] Triang(a,b,c),(1,1.2,1.5)
. . . 1
P16° Distance between two adjacent fruitlets [cm] Exp (i)' (1.3)
P17 Natural fallout probability [%] Berr(p), 16
P1s Bending of the fruit bunch [%] Constant, 0

U(a, b) — uniform distribution; Triang(a, b, ¢) — triangular distribution; Berr(p) — Bernoulli distribution; Exp(%) — exponential

distribution. (b) These parameters were used for testing the outcome of the generation process detailed blow.

3.2.3 Visualization of the model

The visualization was developed with python 3.7. The libraries used and the main methods are
detailed in Appendix II. The spikelet clusters are modeled as ellipses along the cone, parallel to its
base. They are located at three heights according to parameter ps. The spikelets are drawn in 3°

intervals around each cluster, where each spikelet has an appearance probability that is calculated

29

according to parameters ps and po. Parameters pio, p12 and pis are used to define the four Bezier
points defining the cubic Bezier curve for each spikelet,

-1 3-3 11V
3—-6 3 0||V4
-3 3 0 0|V,
1 0 0 01LV;5

Where Vo, V1, V2, and V3 are Bezier points in the 3-dimensional space V; = [V;,, Vi,,V;.]. The

B(t) = [t3t? t 1] ,0<t<1)

curve starts at Vo, that lies on the circumference of the cluster, and ends at Vs. V1 and V> are the
Bezier control points. For all spikelets, Vs, i.e., the height of Vs, is defined by,

Viy = (p3 + P10) X P1s (8)

This causes the spikelets in the higher (inner) clusters, i.e. the middle and top clusters, to be shorter
than the spikelets in the lower (outer) cluster and achieves the typical overall shape of the cluster
which bears resemblance to that of a broom.

For spikelets in the lower cluster of fruit bunches from the 1% epoch, the x and z coordinates
of V3 are depended on the parameter p12 and on Vo, (j=X, z) such that the point V3 lies at the same
angle as Vo and in a radius that equals 0.5 x p,, (for spikelets found in the higher clusters, the
point V3 is adjusted in a similar way with a smaller radius). For Berr(0.7) of the spikelets, the
two control points, V1 and V>, are defined by constant values with addition of white noise that was
set empirically. Hence, their curvature is typical for the whorl-epoch combination and is
constrained within the overall structure defined by the model. For the remaining spikelets, V1,yand
V2, has a considerably larger noise value to capture natural disorder found in the field.

For spikelets in all clusters of fruit bunches from the 2" epoch and the 3" epoch, V1 is depended
on Vo such that the point V1 lies at the same angle as Vo, and at a higher height which was
empirically set. The x and z coordinates of V3 and V2 lie at a 90° interval. V2, i.e., the height of
V2, is defined by,

Voy = (p3 + P10))

For Berr(0.7) of the spikelets, V1ij, V2; ,and V3;j (j=X, z) are defined by constant values with
addition of white noise that was set empirically. Hence, their curvature is typical for the whorl-
epoch combination and is constrained within the overall structure defined by the model. For the
remaining spikelets, those coordinates have a considerably larger noise value to capture natural

disorder found in the field.

30

The fruitlets are drawn in spiral about the Bezier curve. The first fruitlet is drawn at the first
point whose distance from the starting point is larger than parameter p14. From that point and until
the end of the curve, fruitlets are drawn at each curve point with probability according to parameter
p17. For the 1% whorl-1% epoch each Bezier curve consists of 250 points, such that the number of
fruitlets per spikelet (p13) and the distance between fruitlets (p1e) fit the model.

Figure 7 presents examples for two pairs of physical and synthetic fruit bunches from different

whorl-epoch combinations.
3.2.4 The length of the remaining spikelets

Nowadays, the length of the spikelets after thinning is determined based on the time of thinning,
the fruit bunch’s whorl, and by the farmer long term yield policy which may be influenced by
various parameters including the fruitlet load, the expected natural fruitlet fallout, or the girth of
the rachis. In order to mimic such a decision-making process a DNN is trained for each
combination of whorl and epoch (a total of 9 networks). For training of the DNN, the ground truth
needs to be known as it is a supervised learning algorithm (Da Silva, et al., 2017). Since the
thinning method implemented in the work is shortening of the fruit bunch, the DNNs output is the
remaining length of the spikelets after the thinning. The spikelets remaining length was quantified
with respect to the thinning epoch, the whorl, and thinning technique implemented in the current
work (e.g., for fruit bunches from the 1% epoch-1% whorl, based on a goal of 400-500 fruits at
harvest, the remaining spikelet length for each fruit bunch was set as the average distance from the
base of the spikelets in the lower (outer) cluster to their 12" fruitlet).

3.3 Validation of the model

The final tuning and validation of the model were made for fruit bunches from the 1% whorl-1%
epoch. A dataset of ten fruit bunches was generated. The database contained two images of each
object, with one of the images showing the cutting location of the fruit bunch. Additionally,
properties of each fruit bunch (the fruitlets load and the number of the remaining fruitlets after
thinning) were detailed in an accompanying file (Figure 8). Both physiologists were asked to
review and validate the dataset visually and numerically. The dataset was approved and datasets

for training and testing the neural network were generated.

31

Figure 7: Medjool date fruit bunches (Left: synthetic, Right: physical image). Top: 1% epoch-1% whorl; Bottom: 3™
epoch-2" whorl (Bar-Shira, et al., 2019).

32

Figure 8: Marked Medjool date fruit bunch from the 1t epoch-1%t whorl. Fruitlets load: 3290; Fruitlets after thinning:
804.

33

Chapter 4: Learning motion parameters

4.1 Complexity analysis of task and meta parameter manifold structure

Examining the complexity of the interactions between the task and meta parameters is important
for understanding the manifold structure through which these parameters are connected. We
performed complexity analysis using two methods, principal component analysis (PCA) and
locally linear embedding (LLE). PCA is a classical method often used for dimensionality
reduction. Based on the dataset it determines a coordinate system which is a linear transformation
of the original data features comprising the data’s principal components (PCs), i.e., the axes onto
which the retained variance under projection is maximal. PCA enables representation of dominant
patterns in the data by plotting the primary principal component (this relies on the assumption that
the directions of maximum variance express most of the information in the data) (Wold, Esbensen,
& Geladi, 1987). LLE (Roweis & Saul, 2000) computes low-dimensional, locally linear,
neighborhood-preserving embedding of high-dimensional inputs. The method is based on simple
geometric intuitions: if data is sampled from a smooth manifold, then neighbors of each point
remain nearby and are similarly co-located in the low-dimensional space. In LLE, each point in
the dataset is linearly embedded into a locally linear patch of the manifold. Then low-dimensional
data is constructed such that the locally linear relations of the original data are preserved (Wang,
2012). The downside of using LLE is that, unlike for PCA analysis, the relationship between the
output and input parameters is not readily available for analysis. Both concepts facilitate
visualization of the parameter response surface in low dimensional space (PCA for data which
contain a linear or near linear structure and LLE for non-linear data structures) (Liu, Weissenfeld,
& Ostermann, 2006).

4.2 Learning task and meta parameter mapping

The suggested workflow has additional steps during learning in order to learn the task and meta
parameter manifold and again during runtime in order to obtain the meta parameters with the
learned mapping. The workflow consists of the following steps (Figure 9): data containing tuples
of related task and meta parameters is established in simulation, a complexity analysis is performed
to acquire intuition regarding the task and meta parameter manifold structure and the manifold is

learned. Then, as the TDMP require, the movement primitive trajectory is recorded prior to

34

receiving a new task where the features of the trajectory are points in the 3-dimensional space
along the fitted curve that reflect spatial information, i.e., the shape of the movement. When
receiving a new task, the task parameters are determined, they are given as an input to the learned
mapping, and the suited meta parameters are obtained. Next, the movement primitive trajectory is
adapted according to the new parameters, the control (i.e. shape) parameters are computed
analytically, and the movement is generated.

The task and meta parameter mapping for adapting the DMP parameters during run-time, is
learned a-priori (Figure 9). It possible to learn the manifold with different methods. Two methods,
deep neural networks and kernel regression were tested in our group (Cohen, Bar-Shira, & Berman,
2019). In the current work we elaborate on using a deep neural network for learning this mapping.
The neural network was constructed considering the complexity of the structure of the task and

meta parameter manifold.

35

— i‘ """""""" —: —
1]
Record i Dataset i
— 1 PP]
trajectory I acquisition i
| :
— I- ------ I ———————
* . =i
I | Complexity |
Declare new i omplexity]

. 1
target i analysis i
| :
I I _______
r——————-{ ______ R T ——————— _l
i i i Learn i
! Obtain meta | ' taskemeta !
: P — ! ;
i parameters | I parameter :
1 i i manifold !

L 1 -

Transform
- trajectory&
compute f

v

Compute

controller

parameters

v

Calculate path

V¥ generation

Figure 9: Dynamic movement primitive adapted flowchart. New steps are surrounded by a dashed box.

36

Chapter 5. Experiments

5.1 Overview

Two experiments with two different tasks were held for examining the adapted DMP methodology:
robotic soft ball throwing and Medjool thinning. In the robotic soft ball throwing experiment, the
mapping between task requirements to meta parameters was learned on a synthesized data. In the
Medjool thinning experiment the mapping was learned based on the Medjool date fruit bunch
model. The ball throwing experiment is a simpler task and it was conducted as a first toy example
for initial tests of the methodology. The Medjool date thinning task is more complicated and is an

example of a practical task for which the methodology is suited.
5.1.1 Robotic soft ball throwing

A ballistic movement of a robotic soft ball throwing task was chosen since while the motion
trajectory can be readily defined for the throwing motion, the task dynamics for a soft ball contain
non-linear components. Thus, setting the exact parameters for the trajectory is not non-trivial. For
robot soft ball throwing, the task requirement is to throw a ball to a specific goal positioned on a
plain (i.e. the floor). The task parameters, describing the required landing point on the floor, are
the radius r and the horizontal angle o (Figure 10). The meta parameters, describing the endpoint
of the robotic throwing motion, are the horizontal angle B, height h, radius R, and the motion
duration t (Figure 10). The velocity profile of the robot is trapezoid (maximal acceleration, zeros
acceleration, and maximal deceleration). To achieve the required task the ball is released not at the
end of the motion, but rather when the robot is moving at its maximal velocity, directly before it
starts decelerating.

Two models were considered for the ball throwing task, a ballistic model and an adapted
model. The ballistic model was based on standard ballistic motion equations. The adapted model
was developed in order to make the simulation more realistic and account for some of the
limitations of the physical robot. The adapted model reflects the fact that it is harder for the robot
to develop high velocities throwing the ball sideways (larger absolute values) using the current
motion profile and that it is also harder to develop high velocities for small throwing radiuses

(smaller R values). The full workflow was examined for both models.

37

In the robotic soft ball throwing, the ability of the DNN to learn the task and meta parameter
manifold and thus achieve an accurate movement was compared with that of kernel regression.
Kernel regression is also suitable for learning efficient manifold representations, yet it has different
strengths compering to the DNN (Cohen, Bar-Shira, & Berman, 2019). The two learning methods

are examined in light of different sizes of training datasets.
5.1.2 Medjool thinning

The Medjool date thinning experiment conducted to test the competence of the DNN to learn the
mapping between task requirements to meta parameters for 1% epoch-1% whorl fruit bunches based
on the Medjool date fruit bunch model. The task parameters were defined based on farmer account
regrading critical parameters for the decision on the spikelets cutting length and based on
measurable parameters. These include the fruitlets load (FL) and the parameters of the minimal
bounding box surrounding the spikelets (length (LS), width (WS), and angle (AS)) (Figure 10).
The meta parameter is the spikelets remaining length, L, i.e., the path length for advancing in
direction AS in the frontal plane (with respect to the camera viewpoint) along the spikelets, from
the intersection point between the rachis and the spikelets (Figure 10). For the Medjool thinning
experiment, the following steps were performed: Datasets acquisition, complexity analysis,

learning task and meta parameter manifold, and obtaining the meta parameter for new tasks.

38

Figure 10: Task and meta parameters illustration. Left: robotic soft ball throwing experiment. The task parameters are
the landing point on the floor defined by the radius r and the horizontal angle o. The meta parameters are motion
endpoint defined by the horizontal angle B, height h, and radius R (and motion duration t) (Cohen, Bar-Shira, &
Berman, 2019); Right: Medjool thinning experiment. The task parameters are the fruit bunch defined by the length
LS, width WS, and angle AS of the minimal bounding box surrounding the spikelets (and the fruit load FL). The meta
parameter is the spikelets remaining length L (adapted from Bar-Shira, et al., 2019).

5.2 Data acquisition

5.2.1 Robotic soft ball throwing

Datasets containing tuples of related task and meta parameters were created using two simulation
models in Matlab 2015a to account for a 6 degrees of freedom HP6 manipulator (Yaskawa,
Motoman, Japan). The simulations differed based on the dynamic model used for computing the
ball’s trajectory (ballistic model and adapted model). For both models the meta parameter values
were randomly sampled from a uniform distribution within the following intervals: p=[-45°,45°],
h=[40mm, 140mm], R=[500mm,700mm]. Given the meta parameters and typical trajectory (A
typical trajectory suitable for throwing the ball was programmed and tested in the physical
environment and then transformed to the coordinates of the simulated environment), shape
parameters were calculated using TDMP. Then the resulting task parameters were calculated by
using the DMP controller in simulation (ballistic or adapted). The landing point was determined

based on the dynamic equations of the ball’s trajectory after it was released by the robot.

39

Different datasets were constructed for different analyses. For all datasets, the robot started at
an initial configuration in which the end effector was low and close to the robot’s base. Motion
duration was set to a constant value of t=5 since preliminary analysis with the physical robot
showed that this is an appropriate value for a duration of a successful shot.

Datasets of different sizes were constructed. 8, 27, 64, 125, 216, 343, 512, 729, and 1000
parameters tuples training sets and 125 parameters tuples test set for each simulation model

(ballistic model and adapted model).
5.2.2 Medjool thinning

A training set of 800 tuples and a test set of 200 tuples of related task and meta parameters were
constructed. For generating the datasets, fruit bunches from the 1% epoch-1% whorl were sampled
from the model. Each fruit bunch was sampled with different seed to create datasets with
independent samples. Each sample of a fruit bunch was automatically visualized, and a screen
shoot was saved along with the fruit bunch parameters (e.g. the fruitlets load and the spikelets
remaining length). The length, width, and angle of the minimum bounding box surrounding the
spikelets were computed based on image analysis. The final datasets hold the following
parameters: [FS + 10%, LS, WS, AS, L] where the 10 percent error in the fruitlets load is to account

for the sonar error.
5.3 Examining data complexity

The relationship between the parameters was examined using both PCA and LLE methods, and a
mapping was devised using a neural network. First the PCA was computed and the weights of each
parameter in the top principal components were examined. The required dimensionality reduction
was set, based on the number of principal components required for explaining 95% of the variance,
and the LLE was computed.

The PCA weights influenced the effort to minimize the error of each meta parameter when
learning the structure of the neural network. In case of multiple meta parameters, a meta parameter
that had larger weights in the top principle components was marked as more important hence the
error threshold guiding the training was lower. Problem complexity was assessed by examining
the variance explained by the PCA components and the layout of the top components of both PCA
and LLE in 3-dimensional figures. When the accumulation of 95% of the variance required more

components, the problem space is more complex. When the PCA and LLE parameter dispersion

40

is less uniform problem complexity is higher. Higher problem complexity requires either deeper
networks, more neurons in each hidden layer, or both. The code was developed with python in

google colaboratory. The libraries used and the flow of the code are detailed in Appendix II.
5.4 Defining network structure and devising a mapping

In both experiments, the number of neurons in the input layer was equal to the number of task
parameters and the number of neurons in the output layer was equal to the number of meta
parameters. MLP networks were used. The networks consist with a ReLU activation function,
mean absolute error loss function, and Adam optimizer (Glorot, Bordes, & Bengio, 2011; Ruder,
2016). The batch size and the number of epochs were empirically set to 32 and 1000 respectively.
A grid-search was performed to adjust the number of hidden layers, the number of neurons in each
layer, and the learning rate for the optimizer. Based on the analysis of the parameter space we
established the boundaries of the grid-search (Bergstra & Bengio, 2012) for adjusting the number
of hidden layers and the number of neurons in each layer. Early stopping technique was applied,
according to which, the training stops when the performance of the model on the validation set did
not improve following subsequent number of epochs (Prechelt, 1998). The final model for a given
dataset was devised with the combination of hyperparameters values that minimized the mean

absolute error (MAE) between the estimated and truth values, on the validation set,
1 ~
MAEy:;Z?=1|Yt — el 9)
Where y is a meta parameter, n is the number of samples, y; is the truth value, ¥, is the estimated
value.

The code was developed with python in google colaboratory. The libraries used and the flow of
the code are detailed in Appendix II.

5.5 Measures

We examined the estimation error of the meta parameters in both experiments. The estimation
error of the meta parameters is directly computed from the output of the DNN (i.e., the learned
mapping) and the corresponding ground truth values. The error in meta parameter estimation and
its relationship to the task parameter estimation error is important for evaluation of the estimation
method used for mapping. For the robotic soft ball throwing experiment, we additionally tested

the movement error (i.e., the distance between the landing point of the ball to the task requirement),

41

which characterizes the overall performance of the method. For estimating the movement error an
additional step was executed to compute the landing point of the ball based on the estimated meta
parameters.

For distance estimation (robotic soft ball throwing: h (robot endpoint height), R (robot endpoint
radius), r (ball landing point radius). Medjool thinning: L (length of the remaining spikelets)), the
error was calculated as the mean scaled absolute error (MSAE) between the estimated and truth

values,

MSAE,= i, 2 (10)

Where y is one of the parameters (h, R, r, L), n is the number of samples, y, is the truth value, y,

is the estimated value.

For the angle measures (robotic soft ball throwing: p (endpoint horizontal angle) and a (ball
landing point horizontal angle)), the error was calculated as the mean absolute error (MAE)
between the estimated and truth values (Equation 9), Where y is one of the parameters (B, a), n is

the number of samples, y;, is the truth value, y, is the estimated value.

42

Chapter 6: Results

6.1 Robotic soft ball throwing

In both the ballistic and the adapted model, the top 3 of 5 PCA components explain more than 95%
of the variance (Figure 11). Accordingly, the complexity of both models is moderate. The
dispersion of the first 3 PCA components was similar and nearly uniform in both models (Figure
13) but the dispersion of the first 3 LLE components differed, showing different concentration
along different axes, suggesting stronger internal constraints among the parameters of the adapted
model (Figure 13).

Examining the PCA components shows a clear separation between the parameters (Figure 12).
The angles (a, B) have very high weights in the 1% component, the distances (r, R) in the 2"
component, and the height (h) in the 3" component. This implies separation between distances and
angles, and a weak relationship between the values of height and the values of other parameters.

The data complexity analysis implied that the complexity of the problem was moderate, thus
the following values were chosen for the hyperparameters grid-search: the number of hidden layers
was [3, 5, 7, 8] and the number of neurons was [10, 20, 32, 64]. The results of training and testing
of the DNN are detailed in Appendix III. For both models in all datasets that contain above 64

tuples, the meta parameter h had a consistently higher error than the other two parameters.

1.0 1.0
0.9 1 © 0.9
& 3
= c
© 0.8 A c 0.8
S s
> >
o 0.7 1 = 0.7
v ©
£ c
= £
5 0.6 _g 0.6 -
x x
w i
0.5 0.5 1
0.4 0.4 -
1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th
Components Components

Figure 11: Parameter space analysis for the robotic soft ball throwing experiment; Cumulative variance of the principle
components. Left: ballistic model; Right: adapted model (Cohen, Bar-Shira, & Berman, 2019).

43

R ‘k R ‘-
y |\ @
h ax a h L
o t
g A Al € a O
(] [}
beta - beta -
E U1 AR y |\ E Plww w
— —
O [
o o
alpha - A & “k‘ alpha A ==
s A A rloan A Y
F N Al hdl W
1st 2nd 3rd 4th Sth st 2nd 3rd 4th Sth
Components Components

Figure 12: Parameter space analysis for the robotic soft ball throwing experiment; Weights of the parameters in the
principle components. Left: ballistic model; Right: adapted model (Cohen, Bar-Shira, & Berman, 2019).

0.05 0.05
0.00 0.00
LLE3 LLE3
—-0.05 —-0.05
—-0.10 —-0.10
—-0.15 —-0.15
-0.10
—0.05 —0.05
0.00 0.00
0.05 0.05
LLE1 0:10 LLE1 0:10

Figure 13: Parameter space analysis for the robotic soft ball throwing experiment; 3-dimantional visualization of the
top 3 components (Top: PCA, Bottom: LLE). Left: ballistic model; Right: adapted model (Cohen, Bar-Shira, &
Berman, 2019).

44

The landing point of the ball was computed based on the estimated meta parameters. For both the
ballistic and adapted models and for both estimation methods tested (kernel regression and neural
networks) both the distance and angle errors were smaller as dataset size increased (Figure 14).
For kernel regression, the reduction in estimation error becomes very small when increasing
dataset size beyond 30 tuples for the ballistic model or 64 tuples for the adapted model. For neural
network, the reduction in estimation error becomes very small when increasing dataset size beyond
500 tuples for both the ballistic model and the adapted model. Beyond this value (500 tuples), the
error converges in both methods to values of 3% at a distance (r) and 1° at angle (a) in the ballistic

model and to values of 12% at a distance and 2° at the angle in the adapted model.

10 10
——KR ——KR

NN NN

o mean absolute error [°]

o mean absolute error [°]
~

| i S PN S S ———

0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Data base size Data base size

20 80
- ——KR <)] —o—KR
X &
.) NN
2 NN £ 60 \
= 15]
[)] B \
£ 5
E 24
0 10 (3]
o o
o QL
o ©
3 b
2 s e
© Q o = o
e]

0 200 400 600 800 1000

0 200 400 600 800 1000

) Data base size
Data hase size

Figure 14: Movement error as a function of dataset size (Top: ball landing horizontal angle «, Bottom: ball landing
radius r). Left: ballistic model; Right: adapted model (Cohen, Bar-Shira, & Berman, 2019).

45

6.2 Medjool thinning

PCA results showed that in order to attain above 90% of the variance all 5 components are needed
and the amount of the variance explained by each PCA components is similar (Figure 15). This
indicates that the complexity of the problem is relatively high. The dispersion of the first 3 PCA
displays a concentration of observation that is forming a sphere-like shape and as the distance from
the center of the sphere increase the dense of the observations lessen (Figure 15). The dispersion
of the first 3 LLE components also displayed a concentration of observations but, unlike the PCA,
when distancing from the dense area, different behavior along the different axes is observed
(Figure 15).

Examining the PCA components (Figure 15) shows that the meta parameter L appears in
different combination along with all task parameters. This implies a strong connection between
the parameters.

The data complexity analysis implied that the complexity of the problem was high, thus the
following values were chosen for the hyperparameters grid-search: the number of hidden layers
was [9, 17, 21, 33] and the number of neurons was [16, 32, 64, 128].

When training the deep neural network, the combination of hyperparameters that minimized the
error on the validation set was of 21 hidden layers and 128 neurons per layer. The learned mapping
was tested on new task requirements and the final estimation error for the remaining length of the

spikelets was 2.6%.

46

A 1.0 A B
L - 7'\
0.9 -
(9]
o A A
5 . 3
§ 0.7 o
u A A
WS -
2 061 = A An
c fa
= 5
g 057 < s A A A
S A A
0.4 -
0.3 FL 1 ‘A‘ i ‘A‘
1st 2nd 3rd ath 5th 1st 2nd 3rd ath 5th
Components Components

0.2

0.0

PC3 LLE3

-0.2

-0.3
-0.1
0.1 -0.15

LLE1 0.3

Figure 15: Parameter space analysis for the Medjool thinning experiment; A. Cumulative variance of the principle
components. B. Weights of the parameters in the principle components. C. 3-dimantional visualization of the top 3
principle components. D. 3-dimantional visualization of the top 3 LLE components (Bar-Shira, et al., 2019).

47

Chapter 7: Discussion and future work

The research examines establishing DMP parameter values based on a mapping between task
parameters and meta parameters that relies on a deep neural and a method for generating synthetic

datasets to train the deep neural network.
7.1 Synthetic dataset

The integration of the stochastic fruit bunch model facilitates generation of multiple fruit bunch
samples. In the last thinning season, a dataset of more than 100 physical fruit bunches was
constructed. While great effort was exerted in attaining the dataset it will not be enough on its own
to train the DNN. In a real environment, the cost of generating a training set with large data is
expensive (long epochs, expansive equipment). Building a simulation model that takes into
consideration as many physical elements as possible in order to generate a training set relaxes the
difficulty of acquiring data, thus enabling the neural network to train on a large dataset which is
important to enable it to reach its full competence. Moreover, the model was built in an open source
environment, thus making it economically. This is an important step towards integrating robotics
and state of the art machine learning algorithms to this domain.

For the fruit bunch model, integration of the model parameters with the smooth Bezier curve,
allowed an ease representation of a major plant feature. Validation of additional epochs of the
model is in progress. Presently, it is important to concentrate on epoch-whorl combinations that
are more significant in terms of fruit quality (farmers prioritize the upper whorls), and are more
convenient for the robotic operation (the structure of the fruit bunch in the early epochs is more
convenient for bundling the spikelets). Additionally, collecting samples of physical fruit bunches
from the chosen combinations can enable to perform goodness of fit tests for the model’s
distribution, hence increasing its validity and thus its acceptance in the farmers community.

The quantification of the error of the spikelets remaining length was important since it is the
meta parameter of the DMP required for the bundling motion. In addition, the ground truth for
each fruit bunch in the current work was established based on length (the radial length towards the
12" fruitlet). A relative error was used since the acceptable error is relative to the size of the fruit

bunch.

48

7.2 Learning motion parameters

Analyzing the structure of the parameter manifold was instrumental in adapting movement
parameters. Principal component analysis facilitated setting suitable hyperparameter search limits.
Furthermore, it enables to envisage the feasibility of the DNN to successfully learn the required
mapping by viewing the connections between the task and meta parameters. Absence of
components that combine strong influence of a meta parameter together with at least one of the
task parameters may result in low competence of the network to estimate the meta parameter.
Examining the locally linear embedding, for which the linearity assumption is relaxed was
important for reviewing constraints in the data and gaining a deeper understanding of model
complexity. When the layout in the 3-simantional space indicates different distribution features
along different axes, small error in the meta parameter estimation may lead to big movement error
thus big emphasis needs to be placed on the architecture and tuning of the DNN. The analysis
expedited the training of the DNN and facilitated correct emphasis to reducing errors of the more
influential parameters.

Learning a mapping with small datasets is inadequate for DNNs. The parameters representing
task requirement and the meta parameters have a nonlinear relationship. For the neural network to
generalize, it needs to see large amount of data that covers the parameter space. When establishing
big amount of data is not feasible, kernel regression may be adequate.

Dynamic movement primitives are suited for the required complex trajectories and the
dynamic interactions with the environment. The motion adapted based on the mapping is
predictable leading to robust task performance. For robotic applications that require complete
assurances of run-time behavior without forsaking run-time adaptability such traits are critical.
Moreover, the continuous mapping suites the variety that exists in dynamic environment.

In the robotic soft ball throwing experiment, the analysis of both simulations of the soft ball
throwing task indicated that the complexity of the problem was moderate, i.e., that a rather small
number of layers was required. The meta parameter h did not share a strong influence in the same
principle components with none of the task parameters. This is in-line with the DNNs high
estimation error for this parameter, regardless of the database size. For the other meta parameters,
B and R, the estimation error decreased as the size of the dataset increased. The additional non-

linear constrains in the adapted model are in line with the larger movement errors for this model

49

using both methods (deep neural networks and kernel regression). The movement error decreased
rapidly as the size of the training dataset increased for both kernel estimation the deep neural
network. While for small datasets kernel estimation outperformed the deep neural network, for the
larger datasets their performance was similar. Differently, in the Medjool thinning experiment, the
analysis of the thinning task indicated that the complexity of the problem was high, i.e., that a large
number of hidden layers, or a large the number of neurons in each hidden layer, or both is required.
The meta parameter L shared a strong influence in the same principle component with all the task
parameters. This is in-line with the small estimation error that the DNN achieved. Since the
estimation error of the meta parameter was small, a small movement error is expected despite the

distribution features in the LLE parameter space.
7.3 Mediation between simulation and physical environment

An important manner that requires future care is the mediation between simulation and physical
environment. Additional tuning of the DNN might be needed. This can be achieved by
amalgamation of this dataset with synthetic fruit bunch images integrated with background field
images. It is a promising direction currently under development along with testing the learned
mapping on data of physical fruit bunches.

For the current project the input for the DNN is the processed output from the sensing system,
composed from both a sonar and a camera. Eliminating the pre-proccing can be achieved by
constructing a network that takes as input the raw data from the sonar and camera and directly
calculates the remaining length of the spikelets. The architecture of such a network needs to be
carefully constructed since combining different types of inputs is not trivial. Furthermore, such
network may need an increased computation ability during training and possibly in runtime as

well, thus economic considerations are needed.

50

References

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from
demonstration. Robotics and Autonomous Systems, 57(5), 469-483.

Arkin, R. C. (1998). Behavior-based robotics. MIT Press.

Bac, C. W., Van Henten, E. J., Hemming, J., & Edan, Y. (2014). Harvesting robots for high-value
crops: State-of-the-art review and challenges ahead. Journal of Field Robotics, 31(6), 888-
911.

Bar-Shira, O., Cohen, Y., Shoshan, T., Cohen, Y., Sadowsky, A., Schmilovitch, Z., . . . Sigal, B.
(2019). Learning motion parameters for robotic Medjool date thinning. Manuscript
submitted for publication.

Barth, R., 1Jsselmuiden, J., Hemming, J., & Van Henten, E. J. (2018). Data synthesis methods for
semantic segmentation in agriculture: A capsicum annuum dataset. Computers and
Electronics in Agriculture, 144, 284-296.

Basri, R., & Jacobs, D. W. (2017). Efficient representation of low-dimensional manifolds using
deep networks. arXiv preprint arXiv:1602.04723.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13, 281-305.

Chiroma, H., Abdullahi, U. A., Abdulhamid, S. M., Alarood, A. A., Gabralla, L. A., Rana, N., . ..
Herawan, T. (2018). Progress on artificial neural networks for big data analytics: A survey.
IEEE Access, 7, 70535-70551.

Cohen, Y., & Berman, S. (2013). Tight dynamic movement primitives for complex trajectory
generation. 2013 IEEE International Conference on Systems, Man, and Cybernetics (pp.
2402-2407). IEEE.

Cohen, Y., & Glasner, B. (2015). Date palm status and perspective in Israel. In Date palm genetic
resources and utilization (pp. 265-298). Springer.

Cohen, Y., Bar-Shira, O., & Berman, S. (2019). Run-time adaptation based on a mapping of
dynamic movement primitive parameters. Manuscript submitted for publication.

Da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H., & dos Reis Alves, S. F. (2017).

Artificial neural networks. Springer.

51

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., . . . Lempitsky, V.
(2016). Domain-adversarial training of neural networks. The Journal of Machine Learning
Research, 17(1), 2096-2030.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. The Fourteenth
International Conference on Artificial Intelligence and Statistics (pp. 315-323).

Hoffmann, H., Pastor, P., Park, D. H., & Schaal, S. (2009). Biologically-inspired dynamical
systems for movement generation: automatic real-time goal adaptation and obstacle
avoidance. 2009 IEEE International Conference on Robotics and Automation (pp. 2587-
2592). IEEE.

Hoos, H., Ca, U. B., & Leyton-Brown, K. (2014). An efficient approach for assessing
hyperparameter importance. International Conference on Machine Learning (pp. 754-
762).

ljspeert, A. J., Nakanishi, J., & Schaal, S. (2001). Trajectory formation for imitation with nonlinear
dynamical systems. 2001 IEEE/RSJ International Conference on Intelligent Robots and
Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No.
01CH37180) (pp. 752-757). IEEE.

ljspeert, A. J., Nakanishi, J., & Schaal, S. (2002). Movement imitation with nonlinear dynamical
systems in humanoid robots. 2002 IEEE International Conference on Robotics and
Automation (Cat. No. 02CH37292) (pp. 1398-1403). IEEE.

ljspeert, A. J., Nakanishi, J., Hoffman, H., Pastor, P., & Schaal, S. (2013). Dynamical movement
primitives: Learning attractor models for motor behaviors. Neural Computation, 25(2),
328-373.

Jaderberg, M., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Synthetic data and artificial
neural networks for natural scene text recognition. arXiv preprint arXiv:1406.2227.

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11), 1238-1274.

Kober, J., Oztop, E., & Peters, J. (2011). Reinforcement learning to adjust robot movements to
new situations. Twenty-Second International Joint Conference on Artificial Intelligence
(pp.2650-2655).

Kober, J., Wilhelm, A., Oztop, E., & Peters, J. (2012). Reinforcement learning to adjust

parametrized motor primitives to new situations. Autonomous Robots, 33(4), 361-379.

52

Lee, J. (2010). Introduction to topological manifolds. Springer.

Lewis, R. A. (2001). CRC dictionary of agricultural sciences. CRC Press.

Liu, K., Weissenfeld, A., & Ostermann, J. (2006). Parameterization of mouth images by LLE and
PCA for image-based facial animation. 2006 IEEE International Conference on Acoustics
Speech and Signal Processing (pp. 461-464). IEEE.

Moustafa, A. A. (1998). Studies on fruit thinning of date palms. First International Conference on
Date Palms (pp. 354-364).

Miilling, K., Kober, J., Kroemer, O., & Peters, J. (2013). Learning to select and generalize striking
movements in robot table tennis. The International Journal of Robotics Research, 32(3),
263-279.

Mussa-Ivaldi, F. A. (1999). Modular features of motor control and learning. Current Opinion in
Neurobiology, 9(6), 713-717.

News from the grove. (2011). Retrieved from The golden date: http://www.the-golden-

date.com/category/news-from-the-grove/

Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of motor
skills by learning from demonstration. 2009 IEEE International Conference on Robotics
and Automation (pp. 763-768). IEEE.

Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., & Schaal, S. (2013).
From dynamic movement primitives to associative skill memories. Robotics and
Autonomous Systems, 61(4), 351-361.

Potena, C., Nardi, D., & Pretto, A. (2016). Fast and accurate crop and weed identification with
summarized train sets for precision agriculture. Intelligent Autonomous Systems (1AS) (pp.
105-121). Springer, Cham.

Prechelt, L. (1998). Early stopping-but when?. In Neural networks: Tricks of the Trade (pp. 55-
69). Springer.

Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500), 2323-2326.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747.

53

Rueckert, E., Mundo, J., Paraschos, A., Peters, J., & Neumann, G. (2015). Extracting low-
dimensional control variables for movement primitives. 2015 IEEE International
Conference on Robotics and Automation (ICRA) (pp. 1511-1518). IEEE.

Schaal, S., Mohajerian, P., & ljspeert, A. (2007). Dynamics systems vs. optimal control-a unifying
view. Progress in Brain Research, 165, 425-445.

Schaal, S., Peters, J., Nakanishi, J., & ljspeert, A. (2005). Learning movement primitives. In
Robotics research. The eleventh international symposium (pp. 561-572). Springer.
Shreiner, D., Sellers, G., Kessenich, J., & Licea-Kane, B. (2013). OpenGL programming guide:

The official guide to learning OpenGL, version 4.3. Addison-Wesley.

Singh, N. (1995). Systems approach to computer-integrated design and manufacturing. John
Wiley & Sons, Inc.

Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and
learning: A critical review of the literature. International Journal of Science Education,
34(9), 1337-1370.

Stulp, F., & Schaal, S. (2011). Hierarchical reinforcement learning with movement primitives.
2011 11th IEEE-RAS International Conference on Humanoid Robots (pp. 231-238). IEEE.

Sze, V., Chen, Y. H, Yang, T. J.,, & Emer, J. S. (2017). Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295-2329.

Tamosiunaite, M., Nemec, B., Ude, A., & Worgotter, F. (2011). Learning to pour with a robot arm
combining goal and shape learning for dynamic movement primitives. Robotics and
Autonomous Systems, 59(11), 910 — 922.

Varga, T., & Bunke, H. (2003). Generation of synthetic training data for an HMM-based
handwriting recognition system. Seventh International Conference on Document Analysis
and Recognition (pp. 618-622). IEEE.

Wang, J. (2012). Geometric structure of high-dimensional data and dimensionality reduction.
Heidelberg: Springer.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and
Intelligent Laboratory Systems, 2(1-3), 37-52.

Xu, R. (2015). Machine learning for real-time demand forecasting. Doctoral dissertation,

Massachusetts Institute of Technology.

54

Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview.
Computers and Electronics in Agriculture, 36(2-3), 113-132.
Zhang, Y., Guo, Q. & Wang, J. (2017). Big data analysis using neural networks.
10.15961/j.jsuese.2017.01.002, 49, 9-18.
Zhou, J., & Zhang, B. (Eds.). (2019). Agricultural robots: Fundamentals and applications. BoD—
Books on Demand.
Twn 73w N, 0ann g .(2017) o [Kachel] 7np & ,.x [Fridkin] 719 ,.7,[Hausler] "701xn
.NA0IVONI N7D'7D NMPNNYT N2'VNN 190N NIN'DI NIRPNN
2T 'XW7 (1IN -0'7N1 112 17 D'WINTA 0171000 D'NIMONE NN Yy 7w mine (2014) . [Cohen] [no
A45-46 ,nix7i7na NoTINI (D' NTY

.0mnnn 'won Tpon .(2019) .[The plant council] o'nnxn nxyvin

55

Appendix I: Medjool date fruit bunch model

Table 2 present the full model devised for capturing the geometry of the Medjool date fruit bunch.
Eighteen parameters were defined. A probability function was defined for each of the parameters
and distribution parameters were fitted for the three thinning epochs and the three whorls (9 sets
of probability parameters). Final validation was performed for the parameters of fruit bunches from

the 1% epoch-1% whorl.

Table 2: Medjool date fruit bunch full model parameter distributions.

Index | Parameter Eurr?cbt?(?rllgty Whorl Epoch
1st 2nd 3rd
1t (2,3) (2,3) (3,4)
o1 I[QC?T(]:?IS width U(a,b) ond (3,4) (3,4) (4,5)
3 (4,5 (4,5) (5.6)
1st
P2 Eﬂ"s‘jepth U(a,b) * (py) ond (0.56,0.76) X (py)
3rd
1St

Viewed section nd
p3 of rachis [cm] Constant 2 20

3rd
18 (20,25,30) (22,25,32) (29,35,40)
Hidden Rachis . nd
P4 length [cm] Triang(a,b,c) 2 (17,19,25) (15,23,30) (25,32,37)
3rd (10,13,15) (14,20,24) (22,25,30)
1 0,10 10,20 15,30
Angle between () () ()
ps rachis to tree U(a,b) 2nd (10,17) (15,25) (45,60)
trunk [°
[l 3rd (10,20) (30,40) (60,90)
1 (80,85,100)
Number of ; nd
ps spikelets Triang(a,b,c) 2 (50,70,80)
3 (50,60,65)
1St
Number of
p7 spikelets Constant 2nd 3
clusters 30
Distance of 15t Bottom cluster: 0 X (p,)
ps spikelets Middle cluster: 0.4 X (p,)

clusters from 2" Top cluster: 0.6 X (p,)

top of

presented 3rd
rachis
Dispersion of 15t
spikelet Bottom cluster: 0.5 X (pg)
po quantity 2n Middle cluster: 0.3 X (pg)
between the 3rd Top cluster: 0.2 X (pg)
clusters
18t (75,80,100)
P1o ?Cpr'n';e'et length | - iang(a, b,) ond (65,79,89)
3 (50,60,65)
1St
Spikelet radius nd
p11 e U(a,b) 2 (2,2.5)
3rd
Clamps width 1 (25,27,35) | (3540,45) | (70,80,100)
(i.e. the largest
p12 distance Triang(a,b,c) 2n (20,24,30) (30,35,40) (50,70,90)
between two
d
spikelets) [cm] 3 (20,21,24) | (243035) | (50,70,85)
Number of 1 (60,70) (40,50) (25,35)
fruitlets per nd
P13 spikelet (on U(a,b) 2 (50,60) (30,40) (17,25)
first cluster) 3rd (35,45) (25,35) (12,22)
Distance from 1
the spikelet . nd
P14 base to the first Triang(a,b,c) 2 (20,27,45)
fruitlet [cm] 3rd
18t (1,1.2,1.5) (151.82) | (1.81.82.5)
pis '[:Cr#q']“et radius | 1 iang(a, b, c) ond 091.1,12) | (1,1215) | (15182)
3 (0.7,0.8,0.9) | (09,1.1,1.2) | (1,1.2,1.5)
Distance 1
between two 1 nd
P16 adjacent Exp(z) 2 (1.3)
fruitlets [cm] 3rd
1st
Natural fallout nd
pi7 probability [%] Berr(p) 2 16 30 60
3rd
1$t
Bending of the nd
pis fruit bunch [%] Constant 2 0 0.2 0.2
3rd

a. U(a,b) — uniform distribution; Triang(a,b,c) — triangular distribution; Berr(p) — Bernoulli distribution;
Exp(%) — exponential distribution.

57

Appendix II: Code description

Fruit bunch dataset generation

Generates a dataset of images and accompanying properties of Medjool date fruit bunches. To

initial a new experiment, the user enters an experiment number, seed, dataset size, and the required

whorl and epoch. Furthermore, the user can choose whether to draw the cutting plain. The code

automatically opens a new directory to which images and a csv file containing related information

are saved. The code was developed with python 3.7. The libraries used are detailed in Table 3 and

the main methods are detailed in Table 4.

Table 3: Libraries used in the ‘Fruit bunch dataset generation’ code.

Library name Description
ame Offers computer graphics abilities. It is a python wrapper module
28 for the SDL multimedia library.
OpenGL Offers rendering abilities for 2D and 3D vector graphics.
Offers access to the mathematical functions defined by the C
math
standard.
numpy Offers scientific computing tools.

Table 4: Main methods in the ‘Fruit bunch dataset generation’ code.

Method name

Description

init_exp

Sets model parameters according to the user’s input regarding the
required whorl and epoch.

compute_bezier_points

Computes the points along a curve, given four Bezier control
points.

draw_sphere

Draws a sphere, given the required center and radius.

draw_bezier_points

Draws a curve, given a set of points that are calculated by the
“compute_bezier points” method.

draw_elliptical_cylinder

Draws an elliptical cylinder, given its girth, height, and center of its
lower base.

draw_cone

Draws a cone, given the girth and center of its base, and its height.

58

draw_spikelets

Computes four control points for each spikelet and activates the
“draw_bezier points” method.

take_screen_shoot

Saves an image of the fruit bunch to the experiment’s directory.

main

Runs the main loop that activates pyGame and creates the fruit
bunch 3d graphics by adjusting the lighting and calling the methods
above.

Generate dataset

Receives user’s input and generate a dataset by calling the ‘main’
method and saving the data to the experiment’s directory.

Complexity analysis

Performs PCA and LLE. To initial a new experiment, the user uploads the required dataset of

related task and meta parameters. Then, data preparation is conducted, both methods are applied

on the dataset, and figures are displayed and saved to a directory defined by the user. The code

was developed with python in google colaboratory. The libraries used are detailed in Table 5 and
the flow of the code is detailed in Table 6.

Table 5: Libraries used in the ‘complexity analysis’ code.

Library name

Description

pathlib

Offers a set of classes to handle filesystem paths.

matplotlib.pyplot

Offers a MATLAB-like plotting framework.

pandas Offers data analysis / manipulation tool.

numpy Offers scientific computing tools.

random Offers pseudo-random number generators for various distributions.
Offers statistical graphics tools. It is built on top of matplotlib and

seabor closely integrated with pandas data structures.

sklearn Offers machine learning tools.

mpl_toolkits.mplot3d

Offers an extended 3d plotting abilities.

59

Table 6: Flow of the ‘complexity analysis’ code.

Section name Description

Load data Loads dataset to the colaboratory.

Data preparation Normalizes the dataset so that the values are between zero and one.
PCA Applies PCA on the data.

LLE Applies LLE on the data.

Displays and saves the following images: cumulative variance of

i the principle components, weights of the parameters in the
igures o o o

principle components, 3d visualization of the top 3 principle

components, and 3d visualization of the top 3 LLE components

DNN: train and test

Trains and tests a deep neural network. To initial a new experiment, the user uploads the required
dataset of related task and meta parameters (it is optional to upload one dataset that will later be
divided to a training set and a test set, or to upload both training set and test set). Then, data
preparation is conducted, the DNN is trained and the values for the hyperparameters are chosen,
the final model is tested on the test set, and the estimation errors of the meta parameters are
calculated. There is an option to build and export a dataset containing the task parameters and the
predicted meta parameters. The code was developed with python in google colaboratory. The

libraries used are detailed in Table 7 and the flow of the code is detailed in Table 8.

Table 7: Libraries used in the 'DNN: train and test' code.

Library name Description

tensorflow Offers high performance numerical computation abilities.
pathlib Offers a set of classes to handle filesystem paths.
matplotlib.pyplot Offers MATLAB-like plotting framework.

pandas Offers data analysis / manipulation tool.

60

numpy Offers scientific computing tools.

random Offers pseudo-random number generators for various distributions.
Offers statistical graphics tools. It is built on top of matplotlib and

seaborn

closely integrated with pandas data structures.

Table 8: Flow of the 'DNN: train and test' code.

Section name

Description

Fix seed

Control all pseudo-random number generators to enable an
experiment to be repeated.

Load data

Loads dataset to the colaboratory.

Data preparation

Divides the dataset to training set and test set if needed; Creates
four datasets (training set, training labels, test set, and test labels)
by separating the labels from the full training set and the full test
set; Normalizes the training set and test set so that the values are
between zero and one (the normalization is performed using the

training set characteristics).

Hyperparameters tuning

Performs a grid-search to adjust the number of hidden layers, the

number of neurons in each layer, and the learning rate of the

optimizer.
Build model Trains the DNN with the chosen architecture.

Tests the trained DNN on the test set and computes estimation
Test model

errors of the meta parameters.

Generate dataset

builds and exports a dataset containing the task parameters and the

predicted meta parameters.

61

Appendix III: DNNs training and testing results for

the robotic soft ball throwing experiment

Table 3 present the results of training and testing of the DNNs in the robotic soft ball throwing
experiment. A DNN was trained for each of the eighteen training sets, nine training set for each
model (ballistic and adapted). the results of the grid-search that was performed for three of the
DNN hyperparameters (learning rate of the optimizer, number of hidden layers, and number of
neurons in each layer) are detailed. The trained DNNs were testes on two test sets, one for each
model, and the results of the meta parameters estimation errors are presented. All datasets are

available in Mendeley Data (https://data.mendeley.com/datasets/d75vv3tdkg/1)

Table 9: DNNSs training and testing results for the robotic ball throwing experiment.

Model Train_ing Hyperparameters optimization Meta parameters estimation
set size results error
Learning | Hidden NeUTons MAE3g MSAEn | MSAERr
rate layers [°] [%] [%0]

Ballistic 8 0.001 3 64 2.964 0.294 0.739
Ballistic 27 0.001 8 64 2.076 0.281 0.026
Ballistic 64 0.0005 8 32 1.48 0.315 0.015
Ballistic 125 0.001 8 64 2.117 0.292 0.017
Ballistic 216 0.0005 7 64 0.8 0.291 0.01
Ballistic 343 0.0005 7 32 1.043 0.291 0.007
Ballistic 512 0.0005 7 20 0.585 0.3 0.005
Ballistic 729 0.001 7 32 0.496 0.294 0.004
Ballistic 1000 0.0005 7 64 0.645 0.294 0.004
Adapted 8 0.001 3 64 2.561 0.325 0.8
Adapted 27 0.001 3 64 2.513 0.33 0.788
Adapted 64 0.0005 7 64 1.798 0.286 0.027
Adapted 125 0.0005 8 32 2.704 0.28 0.019
Adapted 216 0.0005 7 64 1.592 0.285 0.013
Adapted 343 0.0005 8 64 1.514 0.282 0.01
Adapted 512 0.001 7 32 0.81 0.294 0.009
Adapted 729 0.0005 7 64 1.214 0.286 0.01
Adapted 1000 0.0005 7 32 1.018 0.285 0.006

q°¥PN
VWY NI DY IO 107 11N 2080 91907 01T N DW 1A 0N T2WN TRdwn a0 200N 1907
Myw 3.5-52 7w 772 PV 50 1907 .3a12 230 X1 D173 2T M L,P1T wNT 21907 ,a10 .aMaa 19 MR
NPWD W XA ORIV 01D 2ORTR D1NAT XY 20 DR DT NIn DY MIWINT aTay myw 1vont tym
SR AT NTA0NAY QTR M2 NID QY 2OYLR YW 27 1901 YW 91977 WORY 9732 1°1137 110 10T

,A0N2 .YYA 20 TIN2 MWK IR VN NWATIW NP NANRA 7397 212977 VIR0 T2 AN napa
NP2 PIONY AVOW QO3 NMIR LN RT X7 1AT 72102 DMWY DAN0Y 19197 1091 NPARIYT 1% 112°207
dynamic) n1nRI°T AN N1P1AN Y D001 TRwa 20 a0 D 91907 8D NI N MaY avunn
X? MIRNWR VO NTVA AWYI NPARDTT MIIWNT SV aYuNT NP T 0w 097 (movement primitives
D°YI2P 2209 MW MRWA DY YIX02 WORY NI DY PANDY 22N DPIIYY 207D 117 WK DIIRDY
VWL PON7 101 00RO DR L2020 DI L,IRNWRTA DOVOWIA OO NI YU YW P1TI DR
NTIPI L RANT? AW 20 DR DOTAN) DY 20179 ,(2771K2 AYINT DX DR 221TI) TN IR0 (NP
(Y07 0NN 7AW L,RANTY 01RO 72720 XK DO1T) DNRT 2009 (VY NP 32007

NR 077737 0°UNI9T 1°2 M9 NXY 7Y HY NODIAN 2P0 DV PRYDTIR YYAY 1T 20X UMK
MW MDD ,AWTA 72°WH M2V YIN NTPXY DY P A9700 NP1 qWORN MD%AT .9V IUnID IR 720w
DT NP XTI AT TN INMPAR DR P02 WK 12T WRIA TARI 19917 ,A012 9070 N May
deep neural) 7MY 0211771 DY MYRARD 7727 DR YE27 10,0001 0°0291 0°09R NHYa 1O RO 19001
ST DY PRI DWAT IROR L0957 NAW OR AT MR BRI NAIW DR DO ARvwnn Muno 12 ,(network
Ry, avnavm (principal components analysis) 0»wRa 23 7N’ MYYARI D°0VRI97T A7 MN]
.(locally linear embedding) nmpn

7°2 2WN1 0KR7PT 0°1N1 °0°022 TI0NK J21TA 221N 0°02 DV JARNAY 7978 1WA ,210 P1T AwhR 0T
DPIPOUN PP RN P2 MIRDPA2 71100 NTAY NNAYR DW N 09011 DOYIXNaY NPV NI2°0
717 212977 DRWR M2V NPHPITD MTTA 201 221101 0902 NPIAW 10D .MIRDPAY 79701217 YW 70°10 020N
DIDWR IRNAT *NINANDT 271 7121 . N1DRYA 1DIRD 1XYW 221101 97217 2°31N1 0202 N°°127 VW ANMD ,NIANKRY
python) n°o2 MmN TIPR HW NPORINT 7777507 NP NOTN NON TRPLRIPN 17 A ' nn
JOTIN NRDONT AR TNE 971,010 MK Hw 0w H7n P1wRT .(openGL

T2V 2°TPR *10°12 P71 NPARPT VAN N1P1AN NOWH PRUDTRT MYXARI NPNTA IVIN %7 19107
NTIPI DR DPIRND 7R°WNRT 20R7D 3T 200 A PRIN02 7T NPV YT 0T DY 172 NPT DY 1w
VI ,A0M2 ORI 2701 S22 DTN, 0211702 1121 T NPT DY 2970 CAW .I9¥0T DY 1707 v anonan

oMY 70 Y YAz 0wn1oa ann ma .(kernel regression) n°919p 7707302 W MW nwa

D°1N1 °0°02 T2V .ORNIMNT 2702 N DOPIT 2OXIPR OV NN AN L, ARMAM C0DHaT 200 TINg v v
TI0PT DT DR 12%-1 730P7 PROn DRGAY) MDA 1P D% MW DY WWaY aVINT MRG0T
NPWH MY OV M0NRTDY WA C0RTD P2 1M IR T2 DY N1 DR PR 1w 00 (YR 2-n
MDA T2 DY ¥°2XT 020D 20N TN DPDWRA P70 MIPINRD 1XYW 2°211N1 °0°02 WRw TN N1
17 22PNaY MIRXINT .2.6% W TIRM 7913 0 AR INWA DWIT L,NAORT IRD 3NN 000 VA

JTOW 10732 777729 021011 MDY 27707 AWM, Mmuan

.0%NOKR?1 0N ,LPIY MDA ,ﬂWN‘?PTD. 72701217 ,N1AR1T A¥IIN N1P1aN inbh nomn

2533 1999 -12 NOIVIIN

NOINN 2WTINIY NONPN
211193 NPYYN NOTIND NPHNNN

9179 9N DIYYTO VI NAY NYNN NMNIAN MIVNID TIND

NOTIND VDN ININ NPT MWIITNN PON INNN MY NN

NPY-21 N : NIXRND

292 YN0 /99 - NN

£
2870972019 : INND .m...ﬂﬁ.’.\.’%ﬂ:lﬂll‘.{? 73NNN HXNN
(AR go
2870972019 : IND P02, 209 NN NYOR
(
~ ﬁ%@c"

2502 19 -12 NVIVIDIN
NOTIND W NVPIN

D113 NIYYN NONNY NPOHNNN

9179 9N DH1YYTO VI NAY DYNN MNIAN IVNID TID

NOTIND VDN ININ NPT MWIITNN PON INNN MY NN

NPY-21 NN : NI

2019 12nvo0 v"ywn' MR

