

BEN-GURION UNIVERSITY OF THE NEGEV
FACULTY OF ENGINEERING SCIENCES

DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Learning motion primitive parameters for a Medjool date thinning robot

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

M.Sc DEGREE

By: Or Bar-Shira

 September 2019

BEN-GURION UNIVERSITY OF THE NEGEV
FACULTY OF ENGINEERING SCIENCES

DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Learning motion primitive parameters for a Medjool date thinning robot

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

M.Sc DEGREE

By: Or Bar-Shira

Supervised by: Prof. Sigal Berman

Author: Or Bar-Shira Date: 28/09/2019

Supervisor: Sigal Berman Date: 28/09/2019

Chairman of Graduate Studies Committee:…………………….. Date:

 September 2019

Abstract

Fruitlets thinning is an important task of Medjool date cultivation. Efficient and timely fruitlets

thinning is essential for attaining high quality yields. Currently, fruitlets thinning requires

precision, is time critical, and is labor intensive. The estimated time required to thin a single mature

tree is 3.5 hours and more than a million hours of labor are currently required to thin all the Medjool

trees in Israel. Automation of thinning is essential to enable fruitlets thinning of larger plots using

reduced manpower during the thinning season.

Motion control during thinning is challenging as careful into-the-canopy motion is required.

Furthermore, the environment is dynamic, therefore run time trajectory adaptation is also essential.

We present a development of a motion planning and control method for a robotic system for

Medjool date thinning. The method is based on dynamic movement primitives (DMPs). DMPs are

a set of nonlinear equations used for encoding motion policies, based on dynamical systems which

have parameters whose values can be tuned to facilitate performance of new tasks. The DMP

parameters determine the precision of the generated movement and their values are influenced by

the task, the robot, and the environment. DMP parameters can be divided into three categories:

shape parameters (defining motion trajectory), meta parameters (determining the DMPs frame of

operation, e.g., goal point), and external parameters (determining external, high level,

environmental constraints that affect DMP operation, e.g., motion start time).

We present a framework for predictable DMP parameter adaptation, based on forming a

mapping from parameters representing task requirements to meta parameters. The mapping

facilitates generalization and precision when generating a new movement, both are essential

qualities for thinning. Furthermore, the mapping is formed a-priori, hence it ensures predictable

and robust task performance during run time. Since the mapping is a multi-input-multi-output

learning problem, it can be modeled using a deep neural network, in which the task parameters

form the input layer and the meta parameters are the output layer. Network training was expedited

by analyzing the parameter space using principal component analysis and locally linear

embedding.

To attain good accuracy, the deep neural network requires a large dataset. Lack of agricultural

annotated datasets is considered among the main reasons for lower performance of advanced

machine learning algorithms in agriculture and among the main bottlenecks for introducing

robotics in agriculture. As establishing a dataset of physical measurements is challenging, a

method for constructing annotated dataset that is based on artificial data was developed. A

validated, stochastic model of a Medjool date fruit bunch was created and visualized in 3D using

python OpenGL. The fruit bunch is modeled as an assembly of geometric shapes, each shape has

a unique distribution fitted to it.

The ability to generate an accurate movement utilizing the adapted DMP method was tested in

a preliminary experiment in a simulation of a ball throwing task, where the task parameter is the

ball’s landing point on the floor. Two simulation models, ballistic and adapted, are presented.

Furthermore, the deployment of the deep neural network is compared with that of kernel

regression. The parameter space analysis indicated that the complexity of both, ballistic and

adapted, models was moderate with stronger constrains in the adapted model. The results showed

that for large datasets both mapping methods attained low movement error (beneath 12% distance

and 2° angle). A second experiment examined the competence of the deep neural network to learn

the task and meta parameter mapping for the Medjool thinning task based on datasets generated

from the fruit bunch model. The parameter space analysis indicated that the problem complexity

was high. After training, the network achieved very low error of 2.6%. The results are promising,

and the method and tools developed are ready for an upcoming field test.

Keywords: Dynamic movement primitives (DMP), robotics in agriculture, deep neural networks,

artificial data.

Acknowledgements

I would like to express my deep gratitude to Professor Sigal Berman, my supervisor, for her patient

guidance, enthusiastic encouragement and useful critique. Her experience, professionalism, and

willingness to help assisted me in guidance and in finding the best methods to perform this study;

I take pride in acknowledging the experts who were involved in the forming and validation of the

fruit bunch model for this research project: Prof. Avital Bechar, Dr. Yuval Cohen, and Mr.

Avraham Sadowsky. Without their participation and input, the building and validation of the model

could not have been successfully conducted; I would also wish to thank my lab colleagues, Mr.

Yosef Cohen and Mrs. Tal Shushan for their wonderful collaboration.

This research is supported by the Israeli ministry of agriculture and the Israeli Date Grower's board

in The Plant Council.

vi

Table of Contents
Chapter 1: Introduction ... 11

1.1 Background ... 11

1.2 Objectives and contribution .. 11

1.3 Research scope and limitations ... 12

1.4 Outline... 13

Chapter 2: Literature review ... 14

2.1 Overview ... 14

2.2 Fruitlets thinning of Medjool dates ... 14

2.2.1 Medjool dates .. 14

2.2.2 The importance of Medjool dates to the Israeli market 16

2.2.3 Thinning .. 16

2.3 Policy representation ... 17

2.3.1 Movement primitives .. 17

2.3.2 Dynamic movement primitives ... 18

2.3.3 Generalizing DMP to new tasks with meta parameters adaptation 22

2.4 Deep neural networks ... 23

2.4.1 Overview ... 23

2.4.2 Data acquisition for training deep neural networks 24

2.4.3 Adapting motion parameters with deep neural networks 25

Chapter 3: Constructing a synthetic annotated dataset of Medjool date fruit bunches 26

3.1 Overview ... 26

3.2 The model ... 26

3.2.1 Forming the model .. 26

vii

3.2.2 The stochastic model ... 27

3.2.3 Visualization of the model .. 28

3.2.4 The length of the remaining spikelets ... 30

3.3 Validation of the model .. 30

Chapter 4: Learning motion parameters ... 33

4.1 Complexity analysis of task and meta parameter manifold structure 33

4.2 Learning task and meta parameter mapping ... 33

Chapter 5: Experiments... 36

5.1 Overview ... 36

5.1.1 Robotic soft ball throwing ... 36

5.1.2 Medjool thinning ... 37

5.2 Data acquisition .. 38

5.2.1 Robotic soft ball throwing ... 38

5.2.2 Medjool thinning ... 39

5.3 Examining data complexity .. 39

5.4 Defining network structure and devising a mapping .. 40

5.5 Measures ... 40

Chapter 6: Results ... 42

6.1 Robotic soft ball throwing .. 42

6.2 Medjool thinning ... 45

Chapter 7: Discussion and future work ... 47

7.1 Synthetic dataset ... 47

7.2 Learning motion parameters ... 48

7.3 Mediation between simulation and physical environment...................................... 49

References ... 50

viii

Appendix Ⅰ: Medjool date fruit bunch model ... 55

Appendix Ⅱ: Code description .. 57

Appendix Ⅲ: DNNs training and testing results for the robotic soft ball throwing experiment .. 61

ix

List of tables

Table 1: Medjool date fruit bunch model parameter distributions ... 28

Table 2: Medjool date fruit bunch full model parameter distributions ... 55

Table 3: Libraries used in the ‘Fruit bunch dataset generation’ code ... 57

Table 4: Main methods in the ‘Fruit bunch dataset generation’ code ... 57

Table 5: Libraries used in the ‘complexity analysis’ code ... 58

Table 6: Flow of the ‘complexity analysis’ code .. 59

Table 7: Libraries used in the 'DNN: train and test' code ... 59

Table 8: Flow of the 'DNN: train and test' code ... 60

Table 9: DNNs training and testing results for the robotic ball throwing experiment 61

List of figures

Figure 1: Schematic diagram of the date palm ... 15

Figure 2: Medjool date fruit bunch (early thinning period) .. 15

Figure 3: Schematic working calendar for Medjool orchards in southern Israel.. 15

Figure 4: Thinning of a Medjool date fruit bunch .. 17

Figure 5: Dynamic movement primitive flowchart (DMP and TDMP) 22

Figure 6: A sketch of a Medjool date fruit bunch (word and python OepnGL). 27

Figure 7: Medjool date fruit bunches (synthetic and physical image) .. 31

Figure 8: Marked Medjool date fruit bunch from the 1st epoch-1st whorl 32

Figure 9: Dynamic movement primitive adapted flowchart ... 35

Figure 10: Task and meta parameters illustration (robotic soft ball throwing experiment and

Medjool thinning experiment) .. 38

Figure 11: Parameter space analysis for the robotic soft ball throwing experiment; Cumulative

variance of the principle components (ballistic model and adapted model) 42

Figure 12: Parameter space analysis for the robotic soft ball throwing experiment; Weights of the

parameters in the principle components (ballistic model and adapted model) 43

Figure 13: Parameter space analysis for the robotic soft ball throwing experiment; 3-dimantional

visualization of both PCA and LLE (ballistic model and adapted model) 43

Figure 14: Movement error as a function of dataset size (ballistic model and adapted model) ... 44

Figure 15: Parameter space analysis for the Medjool thinning experiment.................................. 46

file:///C:/Users/owner/Desktop/BGU/fifth_year/thesis/written%20work/IE_Thesis_Medjool%20Or_28Sept2019.docx%23_Toc20581162
file:///C:/Users/owner/Desktop/BGU/fifth_year/thesis/written%20work/IE_Thesis_Medjool%20Or_28Sept2019.docx%23_Toc20581164
file:///C:/Users/owner/Desktop/BGU/fifth_year/thesis/written%20work/IE_Thesis_Medjool%20Or_28Sept2019.docx%23_Toc20581166
file:///C:/Users/owner/Desktop/BGU/fifth_year/thesis/written%20work/IE_Thesis_Medjool%20Or_28Sept2019.docx%23_Toc20581172

x

List of abbreviations and nomenclature

AI Artificial Intelligence

AS [°] Spikelets minimal bounding box angle

DMP Dynamic Movement Primitives

DNN Deep Neural Networks

FL Fruitlets Load

H [cm] Gripper end point height

HBM Hierarchical Bayesian Models

L [cm] Spikelets remaining length

LLE Locally Linear Embedding

LS [cm] Spikelets minimal bounding box length

MLP Multilayer Perceptron

PA Precision Agriculture

PC Principal Component

PCA Principal Component Analysis

r [cm] Ball landing radius

R [cm] Gripper end point radius

RL Reinforcement Learning

TDMP Tight Dynamic Movement Primitives

WS [cm] Spikelets minimal bounding box width

x x coordinate of a point

y y coordinate of a point

z z coordinate of a point

𝛼 [°] Ball landing horizontal angle

𝛽 [°] Gripper end point horizontal angle

𝜏 [sec] Motion duration

11

Chapter 1: Introduction

1.1 Background

Precision agriculture (PA) is an accurate agriculture that is based on a decision support system that

take into consideration observations, measurements, and statistical analysis in order to optimize

cost and value (Zhang, Wang, & Wang, 2002). The interest in application of autonomous robotics

to precision agriculture is growing notably due to the need to keep up with the increasing demand

for productivity and quality of food production whilst decreasing the resources required, reducing

chemical treatments, and promoting sustainability (Bac, et al., 2014; Potena, Nardi, & Pretto,

2016). Yet, the introduction of robotics in agriculture is challenging. This is mainly due to the

unstructured and dynamic environment that impair the robot’s ability to adapt to changes, a

mandatory requirement for integration of robots in agricultural enviroments (Arkin, 1998; Zhou &

Zhang, 2019). Another elment considered among the main bottlenecks for introducing robotics in

agriculture is the performance of artificial intelligence (AI) algorithms. In recent years grate efforts

are dedicated to adding a degree of AI to the robot operating mechanism and thus enable increased

selectivity, precision, and robustness. However, there is a great absence of detailed and large

annotated agricultural datasets that current state-of-the-art AI methods require, data that is

infeasible to obtain manually (Barth, et al., 2018).

1.2 Objectives and contribution

This research contributes to the combination of the worlds of AI and robots in agriculture. The

research is conducted in the domain of Medjool date fruitlets thinning. Manual methods for

fruitlets thinning that are common nowadays are not here to stay. Other methods such as

autonomous or semi-autonomous systems can be much more efficient. Previous studies

implemented precision agriculture methods to improve the process of growing dates. Their focus

varied from the level of a single tree, to a grove, and more widely on a regional level (Cohen,

2014). Yet, no work was done on the use of precision agriculture for fruitlets thinning of dates and

more specifically on automation of fruitlets thinning with robots. Automated thinning can be

conducted by shortening the fruit bunch. Both, the deciding where to cut and the appropriate cut

without damaging other plant parts are complex. Advanced decision making is required, along

12

with inside-the-canopy motion which entails a dynamic control accounting for interaction with the

environment.

Our first objective was to develop a movement algorithm for a robotic arm, suited for dynamic

environment, that relies on a deep neural network for decision making. Our second objective was

to develop a method for generating artificial datasets to train the deep neural network needed for

motion planning thus enabling the generation of the movement albite the absence of real data.

A 3-dimensional model of a Medjool date fruit bunch and its visualization were built and were

validated by two physiologists, experts in Medjool date cultivation. Two experiments with two

different tasks were conducted: robotic soft ball throwing and Medjool thinning. The robotic soft

ball experiment tested the feasibility of the proposed movement algorithm and compared the

performance of the deep neural with that of kernel regression. The Medjool thinning experiment

examined the ability of the network to train on the artificial data generated from the fruit bunch

model and to perform new tasks.

Two papers were submitted and are pending response. The first paper was submitted to IEEE

Robotics and Automation Letters (RA-L) and ICRA (Q1), the second was submitted to Robotics

and Autonomous Systems (Q2). Preliminary work was published in abstracts presented in the 21st

National Conference on Industrial Engineering and Management, XXXVIII CIOSTA & CIGR V

International Conference, and the 6th Israeli Conference on Robotics.

1.3 Research scope and limitations

This work is part of multi-disciplinary project that is funded by the Israeli ministry of agriculture.

A prototype consisting a thinning tool and a sensing system that are placed on a robotic arm is

developed. The sensing system comprises a camera and a sonar sensor. The prototype will be

mounted on an altitude tool, the robotic arm will approach a fruit bunch, the perception apparatus

will estimate the properties of the fruit bunch, based on this a decision-making process will

determine the level of thinning required, and the mechanical thinning system will perform the

thinning.

The mission of the Ben-Gurion group is to develop and adapt algorithms for planning the

movement of the robotic arm in space to control the sensing and thinning. the current study

presents the movement algorithm developed for the robotic arm which is based on dynamic

movement primitives (DMPs) and on adaptation of the DMP goal during run time using a mapping

13

based on a deep neural network. Furthermore, it presents a development of a stochastic model of

the Medjool's fruit bunch for generating datasets that enable training the network.

This work does not include the processing of the sonar and image input. The image processing

was performed by Mrs. Tal Shushan, a M.Sc. student in the Department of Industrial Engineering

and Management at Ben-Gurion University of the Negev under the supervision of Prof. Sigal

Berman. The final algorithm was not field tested yet as the prototype is not yet completed.

Furthermore, the prototype needs to be tested in a limited period during thinning season (the

upcoming 2020 thinning season is in April 2020).

In the robotic soft ball throwing experiment, the current study presents the use of a deep neural

network to learn a mapping between task and meta parameters. The two simulation models that

were built for generating the datasets for this experiment and the use of kernel regression to learn

a mapping were performed by Mr. Yosef Cohen, a Ph.D. student in the Department of Industrial

Engineering and Management at Ben-Gurion University of the Negev under the supervision of

Prof. Sigal Berman.

1.4 Outline

This thesis is arranged as follows: Chapter 2 provides a literature review on the method used to

create the robot control policy and learning algorithm, prior studies, and essential concepts related

to the work. Chapter 3 describes a mathematical model of a fruit bunch that was devised and its

utilization for generating annotated datasets. Chapter 4 details the methodology for learning

motion parameters developed for this thesis. Chapter 5 describes two experiments held, chapter 6

describes the results of the experiments, discussion and future work are provided in chapter 7.

14

Chapter 2: Literature review

2.1 Overview

The current chapter reviews the concepts and methods relevant for developing a dynamic

movement algorithm for a robotic arm for fruitlets thinning of Medjool date. For promoting

understanding of the required automation section 2.2 describes Medjool dates, the Israeli Medjool

market, and the importance and difficulties of the fruitlets thinning operation. Since this work deals

with adaptation of dynamic movement primitives (DMPs) section 2.3 reviews movement primitive

representations in robotics. In addition, it describes methods for improving the ability of DMP

adaptation to new tasks using parameters. The main contribution of this work is in the use of deep

neural networks (DNNs) in an agricultural environment and in the context of tuning DMP

parameters therefore section 2.4 reviews DNNs, the difficulty in establishing training databases,

and specifically the use of DNNs for adapting motion parameters.

2.2 Fruitlets thinning of Medjool dates

2.2.1 Medjool dates

Medjool dates are considered premium dates (Bar-Shira, et al., 2019). Originated from Morocco,

the cultivar was first introduced to Israel at the 1950s and mostly during the early 1970s (Cohen

& Glasner, 2015). The medjool dates grow upon fruit bunches (Figure 1). The Medjool date fruit

bunches grow in whorls within the date crown that reaches tens of meters in height (Chao &

Krueger, 2007). Farmers usually allocate the fruit bunches to three typical whorls (Top, Middle,

Bottom) according to their location in the crown. Each fruit bunch is made up of a fruit bunch

rachis, spikelets, and fruitlets (Figure 2). The rachis grows in an upward direction, titled with

respect to the palm trunk. During the season, as the fruitlets become larger, the tilt increases due

to their weight. The spikelets grow in a helical arrangement from the top part of the rachis, they

are allocated by farmers to clusters (similar to whorls for fruit bunches). The fruitlets (small fruits)

develop from flowers along the spikelets in a process termed fruit-set (Cohen & Glasner, 2015;

Bar-Shira, et al., 2019).

Medjool dates cultivation can be divided into six main periods (Figure 3). The annual cycle

starts with the removal of spines from bases of all leaves developed during the previous year.

During flowering, between February and April, farmers collect pollen from male trees and

15

pollinate female flowers, leading to the process of fruit-set. Fruitlets thinning is performed in April

and May. At the end of this period, fruit bunches are supported on leaves, fastened, and covered

with bags. During August–October, fruit harvesting takes place (Cohen & Glasner, 2015).

Figure 1: Schematic diagram of the date palm (adapted

from Chao & Krueger, 2007).

Figure 2: Medjool date fruit bunch (early thinning

period) (Bar-Shira, et al., 2019).

Figure 3: Schematic working calendar for Medjool orchards in southern Israel. Arrowheads represent tasks

enquiring physical climbing to the crown of the tree (Cohen & Glasner, 2015).

16

2.2.2 The importance of Medjool dates to the Israeli market

Dates are the main plantation crops in the arid regions of Israel, from the Sea of Galilee, along the

Jordan Valley to the southern Arava. In the southern parts of Israel, the date industry is the major

and sometimes the only horticulture industry and its importance to the economy of these regions

is immense (Cohen & Glasner, 2015). The Medjool is the main date-palm cultivar in Israel, where

about 75% of all planted trees are Medjool (Hausler, Fridkin, & Kachel, 2017). In addition to their

importance for the livelihood of the residents of southern Israel, Medjool dates are of great value

to the Israeli economy. In the past decade dates have become one of the highest value products

that Israel export, most of them are exported to the European markets. In 2015, the volume of

exported dates was estimated at 44% of the dates production and the export value of the industry

was estimated at 400 million NIS. The Israeli Medjool has a market share of between 65% to 75%

of the amount of Medjool exported worldwide, positioning Israel as one of the major exporters of

Medjool in the international markets (Hausler, Fridkin, & Kachel, 2017). The main limitation

slowing down market expansion is that Mejdool date production is labor intensive. The most

manual intensive task in the production cycle is thinning (Bar-Shira, et al., 2019).

2.2.3 Thinning

Thinning is a term used in agriculture which mean the removal of some parts of the plant in order

to make it less dense and obtain better growth of the parts that remain (Lewis, 2001). It has been

shown that fruitlets thinning of date palms lead to an improvement of the yield and fruit quality

(Moustafa, 1998). Yet, it is considered the most labor intensive period in the cultivation of Medjool

dates since it varies from one palm tree to another and it is performed manually. The optimal

thinning requires consecutively removing two out of three fruitlets along each spikelet, enabling

the development of 1/3 of the fruitlets equally spread upon the spikelets. This procedure is not

performed in Israel since it is extremely time consuming (Cohen & Glasner, 2015). In practice,

manual thinning is performed by removing the inner (higher) spikelet cluster of the fruit bunch

and shortening the remaining spikelets (Figure 4). This simplifies the thinning operation, yet it can

still take up to 3.5 hours to thin a single mature (Bar-Shira, et al., 2019). Furthermore, thinning

must be done within a four week period, starting 4-5 weeks after pollination. Yet, many farmers

with large orchards start their thinning early since fruitlets thinning is time consuming. An early

start may lead to over-thinning or to a requirement to perform another thinning operation to adjust

17

the fruitlet load (Cohen & Glasner, 2015). Automation of the thinning operation is imperative for

enabling fruitlets thinning of larger plots with reduced manpower within the desired time frame.

Still, due to task complexity, there are currently no commercially available thinning autonomous

robot systems (Bar-Shira, et al., 2019). Furthermore, the annual crop expected in 10 years from

the currently planted trees is expected to reach more than 50,000 tons. This addition of about 40%

of the crop will require an additional 80,000 days of work of thinning, this is without considering

the added crop expected from new planting during the period (The plant council, 2019). These

forecasts accentuate the necessity of automation.

Figure 4: Thinning of a Medjool date fruit bunch. The worker bundles the spikelets with one hand and shortens the

spikelets near the bundling point using pruning shears (News from the grove, 2011).

2.3 Policy representation

2.3.1 Movement primitives

Humans perform complex motor tasks in uncertain and changing environments with little apparent

effort. They can generalize and therefore adapt to new tasks based on their motor abilities (Mülling,

et al., 2013). Human movements seem to be composed of movement primitives. Once learned,

they allow humans to quickly adapt their movements to variations of the situation without the need

of re-learning the complete movement (Kober, et al., 2012). For example, the overall shape of table

tennis forehands is very similar when the swing is adapted to varied trajectories of the incoming

ball and different targets on the opponent’s court. To accomplish such behavior, the human player

18

has learned by trial and error how the global parameters of a generic forehand need to be adapted

due to changes in the situation (Kober, et al., 2012; Mülling, et al., 2013). Understanding how this

motor competence may be represented and implemented in robots is of great value.

In robotics, the ability to generate a variety of complex movements cannot be attained by

simply storing all movements and recalling them when needed. This approach would be inadequate

because the number of possibilities is immense. To achieve its full competence, the motor system

must be capable of generalizing beyond the movements that it has experienced in the past. It is

possible to do so with movement primitives. Every movement, discrete or rhythmic, can be

represented through a sequence (repeated sequence) of a finite number of movement primitives

(Mussa-Ivaldi, 1999). To deal with complex movement, one can build a library of movements

primitives out of which complex movement can be composed by sequencing. For example, the

library may contain a grasping, placing, and releasing movements. Each of these movements is a

different movement primitive and is labeled accordingly. For moving an object on a table, a

grasping-placing-releasing sequence is required, and the corresponding primitives are recalled

from the library (Pastor, et al., 2009).

The movement algorithm developed in this work is based upon dynamic movement primitives

(DMPs), a commonly used form of movement primitives (Cohen, Bar-Shira, & Berman, 2019).

2.3.2 Dynamic movement primitives

The problem of learning a mapping between world state and actions lies at the heart of many

robotics applications. This mapping, also called a policy, enables a robot to select an action based

upon its current world state (Argall, et al., 2009). The goal of motor control and motor learning

can generally be formalized in terms of finding a task-specific control policy:

𝑢 = 𝜋 (𝑥, 𝑡, 𝛼) (1)

that maps the continuous state vector x of a control system and its environment, possibly in a time

𝑡 dependent way, to a continuous control vector u. The parameter vector 𝛼 denotes the problem

specific adjustable parameters in the policy 𝜋. A control policy is supposed to take the motor

system from an arbitrary start point to the desired behavior. The desired behavior might be simply

reaching a goal point or a cyclic movement, like walking, swimming, chewing, etc. Both cases can

be thought of as attractor dynamics, i.e., either a point attractor or a limit cycle attractor.

Systems with attractor dynamics can generally be written as a differential equation:

19

�̇� = 𝑓 (𝑥, 𝑡, 𝛼) (2)

which is almost identical to Equation 1, except that the left-hand-side denotes a change-of-state,

not a motor command. Such a kinematic formulation is suitable for motor control if this dynamic

system is conceived as a kinematic policy that creates kinematic target values (e.g., positions,

velocities, accelerations), which subsequently are converted to motor commands by an appropriate

controller (Schaal, et al., 2005; Pastor, et al., 2013). It had become a common practice to model

natural phenomena with systems of coupled nonlinear differential equations that exhibit rich

abilities for forming coordinated patterns without the need to explicitly plan or supervise the details

of such pattern formation (Ijspeert, et al., 2013).

DMP framework was originally proposed in 2001 (Ijspeert, Nakanishi, & Schaal, 2001) and

was further extended throughout the years (Schaal, Mohajerian, & Ijspeert, 2007; Hoffmann, et

al., 2009; Ijspeert, et al., 2013). DMP is a set of nonlinear equations used for encoding motion

policies. DMP equations enable to transform well-understood simple attractor systems with the

help of a learnable forcing function term into a desired attractor system. First, a model of a goal-

oriented baseline locomotion (i.e. movement primitive) is required. After this baseline model has

been accomplished, it can be used to account for more complex phenomena with the help of the

coupling dynamics of nonlinear systems and adjusting the DMP parameters (Ijspeert, et al., 2013).

Example for the DMPs equations is listed below. First is the transformation system,

instantiated by the second order dynamics:

𝜏 �̈� = 𝛼𝑧 (𝛽𝑧 (𝑔 − 𝑦) − �̇�) + 𝑓(𝑥) (3)

where g is a known goal state, 𝛼𝑧 and 𝛽𝑧 are time constants, 𝜏 is a temporal scaling factor that

control the duration of the movement, 𝑓 is a forcing term, and 𝑦, �̇�, �̈� correspond to the desired

position, velocity, and acceleration generated.

The name of the equation is due to its ability to transforms the simple dynamics of the unforced

system into a desired nonlinear behavior. Without the function 𝑓, Equation 3 is nothing but a linear

spring-damper, and, after some reformulation, the time constants 𝛼𝑧 and 𝛽𝑧 have an interpretation

in terms of spring stiffness and damping. For appropriate parameter settings and 𝑓 = 0, these

equations form a globally stable linear dynamic system with 𝑔 as a unique point attractor, which

means that for any start position the system would reach g, just like a stretched spring, upon release,

will return to its equilibrium point. However, setting 𝑓 to be a nonlinear function will allow

trajectories that are almost arbitrarily complex on the way to the goal 𝑔.

20

Next, there is the canonical system:

𝜏�̇� = −𝛼𝑥𝑥 (4)

where 𝛼𝑥 is a constant. From any initial conditions, the canonical system can be guaranteed to

converge monotonically to zero. This monotonic convergence of x becomes a substitute for time,

𝑥 can thus be conceived as a phase variable, where 𝑥 = 1 would indicate the start of time evolution

and 𝑥 close to 0 means that the goal g has been achieved. The name of the equation is because it

models the generic behavior of the model equations, a point attractor in this case (for a limit cycle

attractor, the canonical system needs to be represented in a different way).

The forcing term 𝑓 is given in Equation 5:

𝑓(𝑥) =
∑ 𝜓𝑖(𝑥)𝑤𝑖

𝑁
𝑖=1

∑ 𝜓𝑖(𝑥)𝑁
𝑖=1

𝑥(𝑔 − 𝑦0) (5)

With 𝑁 exponential basis functions 𝜓𝑖(𝑥),

𝜓𝑖(𝑥) = exp (−
1

2𝜎2
(𝑥 − 𝑐𝑖)

2) (6)

where 𝜎2 and 𝑐𝑖 are constants that determine, respectively, the width and centers of the basis

functions, 𝑤𝑖 are the weights of the basis functions that can be adjusted using learning algorithms

in order to produce complex trajectories before reaching 𝑔, and 𝑦0 is the intial state 𝑦0 = 𝑦(𝑡 =

0). The phase 𝑥 appears also multiplicative in Equation 5 such that the influence of 𝑓 vanishes at

the end of the movement when 𝑥 has converged to zero (Ijspeert, et al., 2013; Pastor, et al., 2013).

The parameters of a DMP can be divided into three categories: shape parameters, meta

parameters, and external parameters. The Shape parameters (𝑤𝑖) define the spatio-temporal shape

of the movement. The meta parameters are the values that adapt the movement behavior, e.g., the

start and goal positions (𝑦0 and 𝑔), movement duration (𝜏) etc. The external parameters determine

external, high level, environmental issues that affect DMP operation, e.g., when to start motion

with respect to additional task constraints (Kober, Oztop, & Peters, 2011; Kober, et al., 2012).

DMPs have important advantages for planning and controlling a movement. (1) DMP

equations do not encode a single, specific desired trajectory but rather a whole attractor landscape.

This provides the ability to smoothly recover from perturbations, which is an important property

when moving in a dynamic environment. (2) Avoiding the explicit time dependency simplifies the

ability of coupling with other dynamical systems. (3) DMP equations allow fast learning of a

trajectory with a relatively low number of parameters. The number of basis functions (hence of

parameters) can be adjusted depending on the desired accuracy of the fit, with more functions

21

allowing the representation of finer details of movement. Furthermore, these parameters can be

obtained efficiently. (4) The ease of modification is also ensured by having the goal state of the

movement explicitly encoded into the system. (5) The representation of 𝑦, 𝑔, 𝑥, and 𝜏 in the DMP

equations result in an invariant policy under transformations of the initial position, the goal, the

amplitude, and the duration (Ijspeert, Nakanishi, & Schaal, 2002; Kober, Oztop, & Peters, 2011).

In the DMP formulation the shape parameters are calculated a-priori and retained for motion

generation during run time (Figure 5). This limits the ability of each DMP to represent the

characteristics of the original trajectory to relatively simple trajectories, i.e., trajectories with

limited changes in curvature and jerk, since big changes, e.g. starching the learned trajectory,

decrease the accuracy of the generated movement. As a result, the movement primitives coded by

DMPs are relatively simple, thus a large set of DMPs is required for representing complex

trajectories (Cohen & Berman, 2013). The method called Tight dynamic movement primitives

(TDMP) addresses this weakness.

2.3.2.1 Tight dynamic movement primitives

TDMP is an adaptation to the DMPs. In the TDMP formulation, the stored movement parameters

are the coordinates of the typical motion trajectory. The coordinates of the path are linearly

transformed during run time based on the required meta parameters, and the suitable shape

parameters are calculated from the transformed trajectory using linear regression analysis (Figure

5). TDMP requires less primitives, with respect to DMP, to compose a complex trajectory and it

is independent from specific coordinates. Furthermore, it allows a more accurate fit to the shape

of the trajectory (Cohen & Berman, 2013).

22

2.3.3 Generalizing DMP to new tasks with meta parameters adaptation

The movement executed with DMP can be adapted both spatially and temporally without changing

the overall shape of the motion. However, with current techniques, in many cases, the robot needs

to learn a new elementary movement even if a parametrized motor plan exists that covers a related

situation. The cost of experience is high as sample generation is time consuming and often requires

human interaction (e.g., in cartpole, for placing the pole back on the robot’s hand) or supervision

(e.g., for safety during the execution of the trial). Given that the behavior will not drastically

change between related situations, it would be better to generalize the learned behavior to the

modified task. Generalizing a teacher’s demonstration or a previously learned policy to new

situations may reduce both the complexity of the task and the number of required samples (Kober,

Oztop, & Peters, 2011; Kober, et al., 2012).

Several methods have been suggested for handling a change in task requirements during run

time. These include: augmentation of the traditional DMP approach with a memory of sensory

events that occurred during the learning of the movement primitive and using the additional

Record

trajectory

Declare

new

target

Transform

trajectory

&

compute f

Compute

controller

parameters

Calculate

path

T
D

M
P

M

o
ti

o
n

g
en

er
at

io
n

Record

trajectory

&

compute f

Compute

controller

parameters

Declare

new target

D
M

P

M
o
ti

o
n

g
en

er
at

io
n

Figure 5: Dynamic movement primitive flowchart (learning and motion generation process). Top: DMP, Bottom:

TDMP (adapted from Cohen & Berman, 2013).

23

information to create a task policy with corrective commends in run time (Pastor, et al., 2013), and

creating a task policy that is composed of several movement primitives weighted by their ability

to generate successful movements in the given task context (Mülling, et al., 2013). Such

adjustments are bounded to a small region about the original parameter values.

To increase the ability to generalize the movement primitive to a larger continuum of tasks,

one can exploit the influence that the DMPs parameters have on the movement. Previous studies

showed that adapting the meta parameters can help achieve generalization of the movement

behavior (Kober, Oztop, & Peters, 2011; Kober, Wilhelm, Oztop, & Peters, 2012).

Previous work was done on adapting meta parameters with reinforcement learning (RL). Some

researchers developed methods of learning meta parameters for given shape parameters (Kober,

Oztop, & Peters, 2011). Others have integrated learning meta and shape parameters (Tamosiunaite,

et al., 2011; Stulp & Schaal, 2011). While RL indeed facilitates acquiring new skills, it has several

limitations. The continuous parameter space along with the high dimensionality of typical robotic

manipulator motor-learning problems, might lead to dimensionality reduction that severely limits

the dynamic capabilities of the robot. This may be unacceptable for many tasks (Kober, Bagnell,

& Peters, 2013).

A different body of research, of constructing data-driven models, seeks to generalize available

data, forming concise representations that capture salient motion characteristics. Researchers

suggest using hierarchical Bayesian models (HBMs) for estimating both meta and shape

parameters for probabilistic movement primitives (Rueckert, et al., 2015). Probabilistic movement

primitives facilitate encoding optimal behaviors in stochastic systems, yet they are less appropriate

when deterministic system behavior is required.

The current work is a part of an effort for forming a nonlinear and deterministic mapping from

task requirements to DMP meta parameters. The mapping is based on a representation of the task

and meta parameter manifold (Lee, 2010) with a deep neural network.

2.4 Deep neural networks

2.4.1 Overview

Deep neural networks are computational models that can acquire and maintain knowledge. They

can be defined as a set of processing units, represented by artificial neurons, interlinked by a lot of

interconnections, implemented by vectors and matrices of weights. One of the most relevant

24

features of neural networks is their capability of learning from the presentation of samples and

generalize solutions, to wit, the network can produce an output which is close to the expected

output of any given input values. There are different architectures of DNNs. One of the most

versatile architectures is the multilayer perceptron (MLP) network that belong to the multiple layer

feedforward architecture (the information always flows in a single direction), whose training is

performed with a supervised process. In supervised learning each training sample is composed of

the input attributes and their corresponding outputs. It is from this information that the network

will formulate hypothesis about the system being learned. MLP networks are commonly utilized

for function approximation (Da Silva, et al., 2017), as required for forming a mapping between

task requirements to DMP meta parameters.

2.4.2 Data acquisition for training deep neural networks

DNNs are known for their abilities to solve complex real-world problems (Chiroma, et al., 2018).

Yet, they are notoriously known for requiring large training datasets for attaining an accurate

representation. Nowadays, with the support from developing computational power, big data

analysis using neural networks has achieved great success. large volume of big data provides

tremendous training samples which enable the training of neural networks with large number of

parameters (Zhang, Guo, & Wang, 2017).

The cost of generating labeled data for training DNN is often an obstacle. Acquiring big

amount of data is especially challenging when entering a new field where there are no previous

datasets (Ganin, et al., 2016). Establishing dataset for the current problem was an immense

challenge as the thinning epoch is short and in this short time the structure of the fruit bunch

changes significantly. Furthermore, the data acquisition is complex since an altitude tool is needed

in order to reach the fruit bunches within the date crown, along with security arrangements,

professional accompaniment, and time. To overcome this challenge, the power of the simulation

was exploited. Computer simulations are computer-generated, dynamic models of the real world

and its processes (Smetana & Bell, 2012) that enables creation of myriad realistic artificial data

that facilitate increased performance of the DNN that comes with large datasets (Barth, et al.,

2018), thus, improved ability to generalize to unseen data is attained (Varga & Bunke, 2003;

Jaderberg, et al., 2014).

25

2.4.3 Adapting motion parameters with deep neural networks

For a given robotic system, environment, and task, there are n task parameters that represent the

task requirements, 𝛿1, … , 𝛿𝑛, m meta parameters, 𝛾1, … , 𝛾𝑚, and p shape parameters, 𝑤, … , 𝑤𝑝. The

task and meta parameters are related through a manifold ∅(𝛿1, … , 𝛿𝑛, 𝛾1, … , 𝛾𝑚) embedded in the

parameter space. Neural networks are suited for efficiently representing manifold structures (Basri

& Jacobs, 2017) and thus for forming a mapping between the task and meta parameters. The

hierarchical, layered structure of deep neural networks facilitates capturing complex data

structures where the outputs of such networks are continuous piecewise linear functions of the

inputs (Basri & Jacobs, 2017). The neural network can take as input the vector of task parameters

and supply as output the vector of suitable meta parameters.

Neural networks have hyperparameters whose values can be tuned to improve performance. These

include: the number of hidden layers, the number of neurons in each layer, the batch size (the

number of input samples processed before updating model parameters), the learning epochs (the

number of times that the learning algorithm will undergo the entire training dataset), the loss

function (the function used to calculate the gap between the correct scores and the scores computed

by the neural network based on its current weights), and the optimizer (the gradient descent

optimization algorithm). Furthermore, different optimizers have different parameters whose values

can be tuned as well (Ruder, 2016; Sze, Chen, Yang, & Emer, 2017). Hyperparameters have great

impact on the performance of the model, effecting both learning run time and final accuracy

attained. Accordingly, a variety of hyperparameter optimization methods were developed

(Bergstra & Bengio, 2012; Hoos, Ca, & Leyton-Brown, 2014; Xu, 2015). Based on an analysis of

the parameter manifold we performed a grid-search (Bergstra & Bengio, 2012) for central

hyperparameters determining network structure.

26

Chapter 3: Constructing a synthetic annotated

dataset of Medjool date fruit bunches

3.1 Overview

To cope with the absence of annotated data of Medjool date images, a stochastic model that

captures the geometry of a fruit bunch was devised and a 3-dimensional visualization was

composed based on the model. Medjool date experts were part of the model derivation and took

part in its structure validation. The model enabled generation of datasets required for training and

testing the neural network.

3.2 The model

3.2.1 Forming the model

The structure of the fruit bunch was captured with an assembly of geometrical shapes. The rachis

has elongated elliptical shape that narrows towards it end. The spikelets have elongated shape and

can be modeled by constructing a geometric spatial curve. The fruitlets have an oval shape and are

relatively small with respect to the spikelet length, therefore can be modeled with a stereotypic

oval shape. Accordingly, the fruit bunch was modeled with the following geometrical shapes: the

rachis is represented as an elliptical cylinder that a cone is placed on top of it, the spikelets are

Bezier curves (Singh, 1995), and the fruitlets are spheres.

During the formation of the model, we consulted with two physiologists, experts in Medjool

date cultivation. They expressed their professional opinions, advised, and referenced to literature

when needed. The professional accompaniment was mostly done in the form of face-to-face

meetings, a total of 8 meetings were held. Correspondence by email existed when necessary. The

model development considered the environment in which the system will operate (in order to

enable the system to achieve good performance in a physical environment, the training of the DNN

must be on a realistic data) and the end-user (much emphasis was placed on creating a visualization

that the end-user, i.e. the farmer, can relate too. by building a model that the end-user can relate

to, we are increasing his willingness to use to final product). The forming of the model began with

investigating a sample of Medjool date fruit bunches and the fruit bunch parts refined with the help

of the physiologists. A preliminary sketch containing the main components was drawn and a

27

visualization was performed in python OpenGL (Shreiner, et al., 2013) (Figure 6). During the

establishment of the model we discovered a great variety between fruit bunches from different

whorls and from different points of time throughout the thinning period. As a result, the

distributions of the model’s parameters were fitted depending on the whorl and the thinning period

(the thinning period was divided to 3 epochs: early, medium, and late). A total of 9 combinations

were developed in parallel.

Figure 6: A sketch of a Medjool date fruit bunch (Left: word, Right: python OepnGL).

3.2.2 The stochastic model

Eighteen parameters were defined in the model to capture the geometry of the fruit bunch. The

parameters represent main features of the fruit bunch without dependency on the whorl and

thinning epoch. The parameters define the rachis (width, depth, length, bending, and orientation),

the spikelets (quantity, dispersion, and size), and fruitlets (quantity, dispersion, size, and the natural

fallout probability). A probability function was defined for each of the parameters and distribution

parameters were fitted for the three thinning epochs and the three whorls (9 sets of probability

parameters). The parameters, the distributions, and the distribution parameter values were

established based on interviews with plant experts and farmers, visual comparison of the synthetic

images with images of physical fruit bunches, and graphical considerations.

Table 1 present the Medjool date fruit bunch model parameter distributions. Distribution

parameters given in parentheses for the 1st epoch-1st whorl. The full model is detailed in Appendix

Ⅰ.

28

Table 1: Medjool date fruit bunch model parameter distributions. Distribution parameters given in

parentheses for the 1st epoch-1st whorl.

Index Parameter Probability functiona

p1 Rachis width [cm] 𝑈(𝑎, 𝑏), (2,3)

p2 Rachis depth [cm]
𝑈(𝑎, 𝑏) ∗ (𝑝1), (0.56,0.76)

× (𝑝1)

p3 Viewed section of rachis [cm] 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 20

p4 Hidden rachis length [cm] 𝑇𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑐), 20, 25, 30)

p5 Angle between rachis to tree trunk [°] 𝑈(𝑎, 𝑏), (0, 10)

p6 Number of spikelets 𝑇𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑐), (80,85,100)

p7 Number of spikelets clusters 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 3

p8
Distance of spikelets clusters from top of

presented rachis

𝐵𝑜𝑡𝑡𝑜𝑚 𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 0 × (𝑝4)
𝑀𝑖𝑑𝑑𝑙𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 0.4 × (𝑝4)
𝑇𝑜𝑝 𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 0.6 × (𝑝4)

p9
Dispersion of spikelet quantity between the

clusters

𝐵𝑜𝑡𝑡𝑜𝑚 𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 0.5 × (𝑝6)
𝑀𝑖𝑑𝑑𝑙𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 0.3 × (𝑝6)
𝑇𝑜𝑝 𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 0.2 × (𝑝6)

p10 Spikelet length [cm] 𝑇𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑐), (75, 80, 100)

p11 Spikelet radius [cm] 𝑈(𝑎, 𝑏), (2,2.5)

p12
Clamps width (i.e. the largest distance between

two spikelets) [cm]
𝑇𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑐), (25, 27, 35)

p13
b

Number of fruitlets per spikelet (on bottom

cluster)
𝑈(𝑎, 𝑏), (60,70)

p14
Distance from the spikelet base to the first

fruitlet [cm]
𝑇𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑐), (20,27,45)

p15 Fruitlet radius [cm] 𝑇𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑐), (1, 1.2, 1.5)

p16
b Distance between two adjacent fruitlets [cm] 𝐸𝑥𝑝(

1

𝜆
), (1.3)

p17 Natural fallout probability [%] 𝐵𝑒𝑟𝑟(𝑝), 16

p18 Bending of the fruit bunch [%] 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 0

𝑈(𝑎, 𝑏) – uniform distribution; 𝑇𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑐) – triangular distribution; 𝐵𝑒𝑟𝑟(𝑝) – Bernoulli distribution; 𝐸𝑥𝑝(
1

𝜆
) – exponential

distribution. (b) These parameters were used for testing the outcome of the generation process detailed blow.

3.2.3 Visualization of the model

The visualization was developed with python 3.7. The libraries used and the main methods are

detailed in Appendix Ⅱ. The spikelet clusters are modeled as ellipses along the cone, parallel to its

base. They are located at three heights according to parameter p8. The spikelets are drawn in 3°

intervals around each cluster, where each spikelet has an appearance probability that is calculated

29

according to parameters p6 and p9. Parameters p10, p12 and p18 are used to define the four Bezier

points defining the cubic Bezier curve for each spikelet,

𝐵(𝑡) = [𝑡3 𝑡2 𝑡 1] [

−1
 3
−3
 1

 3
−6
 3
 0

−3
 3
 0
 0

 1
 0
 0
 0

] [

V0

V1

V2

V3

] , 0 ≤ 𝑡 ≤ 1 (7)

Where V0, V1, V2, and V3 are Bezier points in the 3-dimensional space 𝑉𝑖 = [𝑉𝑖,𝑥, 𝑉𝑖,𝑦 , 𝑉𝑖,𝑧]. The

curve starts at V0, that lies on the circumference of the cluster, and ends at V3. V1 and V2 are the

Bezier control points. For all spikelets, V3,y, i.e., the height of V3, is defined by,

V3,y = (𝑝3 + 𝑝10) × 𝑝18 (8)

This causes the spikelets in the higher (inner) clusters, i.e. the middle and top clusters, to be shorter

than the spikelets in the lower (outer) cluster and achieves the typical overall shape of the cluster

which bears resemblance to that of a broom.

For spikelets in the lower cluster of fruit bunches from the 1st epoch, the x and z coordinates

of V3 are depended on the parameter p12 and on V0,j (j=x, z) such that the point V3 lies at the same

angle as V0 and in a radius that equals 0.5 × 𝑝12 (for spikelets found in the higher clusters, the

point V3 is adjusted in a similar way with a smaller radius). For 𝐵𝑒𝑟𝑟(0.7) of the spikelets, the

two control points, V1 and V2, are defined by constant values with addition of white noise that was

set empirically. Hence, their curvature is typical for the whorl-epoch combination and is

constrained within the overall structure defined by the model. For the remaining spikelets, V1,y and

V2,y has a considerably larger noise value to capture natural disorder found in the field.

For spikelets in all clusters of fruit bunches from the 2nd epoch and the 3rd epoch, V1 is depended

on V0 such that the point V1 lies at the same angle as V0, and at a higher height which was

empirically set. The x and z coordinates of V3 and V2 lie at a 90° interval. V2,y, i.e., the height of

V2, is defined by,

V2,y = (𝑝3 + 𝑝10) (9)

For 𝐵𝑒𝑟𝑟(0.7) of the spikelets, V1,j, V2,j ,and V3,j (j=x, z) are defined by constant values with

addition of white noise that was set empirically. Hence, their curvature is typical for the whorl-

epoch combination and is constrained within the overall structure defined by the model. For the

remaining spikelets, those coordinates have a considerably larger noise value to capture natural

disorder found in the field.

30

The fruitlets are drawn in spiral about the Bezier curve. The first fruitlet is drawn at the first

point whose distance from the starting point is larger than parameter p14. From that point and until

the end of the curve, fruitlets are drawn at each curve point with probability according to parameter

p17. For the 1st whorl-1st epoch each Bezier curve consists of 250 points, such that the number of

fruitlets per spikelet (p13) and the distance between fruitlets (p16) fit the model.

Figure 7 presents examples for two pairs of physical and synthetic fruit bunches from different

whorl-epoch combinations.

3.2.4 The length of the remaining spikelets

Nowadays, the length of the spikelets after thinning is determined based on the time of thinning,

the fruit bunch’s whorl, and by the farmer long term yield policy which may be influenced by

various parameters including the fruitlet load, the expected natural fruitlet fallout, or the girth of

the rachis. In order to mimic such a decision-making process a DNN is trained for each

combination of whorl and epoch (a total of 9 networks). For training of the DNN, the ground truth

needs to be known as it is a supervised learning algorithm (Da Silva, et al., 2017). Since the

thinning method implemented in the work is shortening of the fruit bunch, the DNNs output is the

remaining length of the spikelets after the thinning. The spikelets remaining length was quantified

with respect to the thinning epoch, the whorl, and thinning technique implemented in the current

work (e.g., for fruit bunches from the 1st epoch-1st whorl, based on a goal of 400-500 fruits at

harvest, the remaining spikelet length for each fruit bunch was set as the average distance from the

base of the spikelets in the lower (outer) cluster to their 12th fruitlet).

3.3 Validation of the model

The final tuning and validation of the model were made for fruit bunches from the 1st whorl-1st

epoch. A dataset of ten fruit bunches was generated. The database contained two images of each

object, with one of the images showing the cutting location of the fruit bunch. Additionally,

properties of each fruit bunch (the fruitlets load and the number of the remaining fruitlets after

thinning) were detailed in an accompanying file (Figure 8). Both physiologists were asked to

review and validate the dataset visually and numerically. The dataset was approved and datasets

for training and testing the neural network were generated.

31

Figure 7: Medjool date fruit bunches (Left: synthetic, Right: physical image). Top: 1st epoch-1st whorl; Bottom: 3rd

epoch-2nd whorl (Bar-Shira, et al., 2019).

32

Figure 8: Marked Medjool date fruit bunch from the 1st epoch-1st whorl. Fruitlets load: 3290; Fruitlets after thinning:

804.

33

Chapter 4: Learning motion parameters

4.1 Complexity analysis of task and meta parameter manifold structure

Examining the complexity of the interactions between the task and meta parameters is important

for understanding the manifold structure through which these parameters are connected. We

performed complexity analysis using two methods, principal component analysis (PCA) and

locally linear embedding (LLE). PCA is a classical method often used for dimensionality

reduction. Based on the dataset it determines a coordinate system which is a linear transformation

of the original data features comprising the data’s principal components (PCs), i.e., the axes onto

which the retained variance under projection is maximal. PCA enables representation of dominant

patterns in the data by plotting the primary principal component (this relies on the assumption that

the directions of maximum variance express most of the information in the data) (Wold, Esbensen,

& Geladi, 1987). LLE (Roweis & Saul, 2000) computes low-dimensional, locally linear,

neighborhood-preserving embedding of high-dimensional inputs. The method is based on simple

geometric intuitions: if data is sampled from a smooth manifold, then neighbors of each point

remain nearby and are similarly co-located in the low-dimensional space. In LLE, each point in

the dataset is linearly embedded into a locally linear patch of the manifold. Then low-dimensional

data is constructed such that the locally linear relations of the original data are preserved (Wang,

2012). The downside of using LLE is that, unlike for PCA analysis, the relationship between the

output and input parameters is not readily available for analysis. Both concepts facilitate

visualization of the parameter response surface in low dimensional space (PCA for data which

contain a linear or near linear structure and LLE for non-linear data structures) (Liu, Weissenfeld,

& Ostermann, 2006).

4.2 Learning task and meta parameter mapping

The suggested workflow has additional steps during learning in order to learn the task and meta

parameter manifold and again during runtime in order to obtain the meta parameters with the

learned mapping. The workflow consists of the following steps (Figure 9): data containing tuples

of related task and meta parameters is established in simulation, a complexity analysis is performed

to acquire intuition regarding the task and meta parameter manifold structure and the manifold is

learned. Then, as the TDMP require, the movement primitive trajectory is recorded prior to

34

receiving a new task where the features of the trajectory are points in the 3-dimensional space

along the fitted curve that reflect spatial information, i.e., the shape of the movement. When

receiving a new task, the task parameters are determined, they are given as an input to the learned

mapping, and the suited meta parameters are obtained. Next, the movement primitive trajectory is

adapted according to the new parameters, the control (i.e. shape) parameters are computed

analytically, and the movement is generated.

The task and meta parameter mapping for adapting the DMP parameters during run-time, is

learned a-priori (Figure 9). It possible to learn the manifold with different methods. Two methods,

deep neural networks and kernel regression were tested in our group (Cohen, Bar-Shira, & Berman,

2019). In the current work we elaborate on using a deep neural network for learning this mapping.

The neural network was constructed considering the complexity of the structure of the task and

meta parameter manifold.

35

Motion

generation

Dataset

acquisition

Complexity

analysis

Learn

task-meta

parameter

manifold

Record

trajectory

Declare new

target

Obtain meta

parameters

Transform

trajectory&

compute f

Compute

controller

parameters

Calculate path

Figure 9: Dynamic movement primitive adapted flowchart. New steps are surrounded by a dashed box.

36

Chapter 5: Experiments

5.1 Overview

Two experiments with two different tasks were held for examining the adapted DMP methodology:

robotic soft ball throwing and Medjool thinning. In the robotic soft ball throwing experiment, the

mapping between task requirements to meta parameters was learned on a synthesized data. In the

Medjool thinning experiment the mapping was learned based on the Medjool date fruit bunch

model. The ball throwing experiment is a simpler task and it was conducted as a first toy example

for initial tests of the methodology. The Medjool date thinning task is more complicated and is an

example of a practical task for which the methodology is suited.

5.1.1 Robotic soft ball throwing

A ballistic movement of a robotic soft ball throwing task was chosen since while the motion

trajectory can be readily defined for the throwing motion, the task dynamics for a soft ball contain

non-linear components. Thus, setting the exact parameters for the trajectory is not non-trivial. For

robot soft ball throwing, the task requirement is to throw a ball to a specific goal positioned on a

plain (i.e. the floor). The task parameters, describing the required landing point on the floor, are

the radius r and the horizontal angle α (Figure 10). The meta parameters, describing the endpoint

of the robotic throwing motion, are the horizontal angle β, height h, radius R, and the motion

duration τ (Figure 10). The velocity profile of the robot is trapezoid (maximal acceleration, zeros

acceleration, and maximal deceleration). To achieve the required task the ball is released not at the

end of the motion, but rather when the robot is moving at its maximal velocity, directly before it

starts decelerating.

Two models were considered for the ball throwing task, a ballistic model and an adapted

model. The ballistic model was based on standard ballistic motion equations. The adapted model

was developed in order to make the simulation more realistic and account for some of the

limitations of the physical robot. The adapted model reflects the fact that it is harder for the robot

to develop high velocities throwing the ball sideways (larger absolute β values) using the current

motion profile and that it is also harder to develop high velocities for small throwing radiuses

(smaller R values). The full workflow was examined for both models.

37

In the robotic soft ball throwing, the ability of the DNN to learn the task and meta parameter

manifold and thus achieve an accurate movement was compared with that of kernel regression.

Kernel regression is also suitable for learning efficient manifold representations, yet it has different

strengths compering to the DNN (Cohen, Bar-Shira, & Berman, 2019). The two learning methods

are examined in light of different sizes of training datasets.

5.1.2 Medjool thinning

The Medjool date thinning experiment conducted to test the competence of the DNN to learn the

mapping between task requirements to meta parameters for 1st epoch-1st whorl fruit bunches based

on the Medjool date fruit bunch model. The task parameters were defined based on farmer account

regrading critical parameters for the decision on the spikelets cutting length and based on

measurable parameters. These include the fruitlets load (FL) and the parameters of the minimal

bounding box surrounding the spikelets (length (LS), width (WS), and angle (AS)) (Figure 10).

The meta parameter is the spikelets remaining length, L, i.e., the path length for advancing in

direction AS in the frontal plane (with respect to the camera viewpoint) along the spikelets, from

the intersection point between the rachis and the spikelets (Figure 10). For the Medjool thinning

experiment, the following steps were performed: Datasets acquisition, complexity analysis,

learning task and meta parameter manifold, and obtaining the meta parameter for new tasks.

38

Figure 10: Task and meta parameters illustration. Left: robotic soft ball throwing experiment. The task parameters are

the landing point on the floor defined by the radius r and the horizontal angle α. The meta parameters are motion

endpoint defined by the horizontal angle β, height h, and radius R (and motion duration τ) (Cohen, Bar-Shira, &

Berman, 2019); Right: Medjool thinning experiment. The task parameters are the fruit bunch defined by the length

LS, width WS, and angle AS of the minimal bounding box surrounding the spikelets (and the fruit load FL). The meta

parameter is the spikelets remaining length L (adapted from Bar-Shira, et al., 2019).

5.2 Data acquisition

5.2.1 Robotic soft ball throwing

Datasets containing tuples of related task and meta parameters were created using two simulation

models in Matlab 2015a to account for a 6 degrees of freedom HP6 manipulator (Yaskawa,

Motoman, Japan). The simulations differed based on the dynamic model used for computing the

ball’s trajectory (ballistic model and adapted model). For both models the meta parameter values

were randomly sampled from a uniform distribution within the following intervals: β=[-45°,45°],

h=[40mm, 140mm], R=[500mm,700mm]. Given the meta parameters and typical trajectory (A

typical trajectory suitable for throwing the ball was programmed and tested in the physical

environment and then transformed to the coordinates of the simulated environment), shape

parameters were calculated using TDMP. Then the resulting task parameters were calculated by

using the DMP controller in simulation (ballistic or adapted). The landing point was determined

based on the dynamic equations of the ball’s trajectory after it was released by the robot.

39

Different datasets were constructed for different analyses. For all datasets, the robot started at

an initial configuration in which the end effector was low and close to the robot’s base. Motion

duration was set to a constant value of τ=5 since preliminary analysis with the physical robot

showed that this is an appropriate value for a duration of a successful shot.

Datasets of different sizes were constructed. 8, 27, 64, 125, 216, 343, 512, 729, and 1000

parameters tuples training sets and 125 parameters tuples test set for each simulation model

(ballistic model and adapted model).

5.2.2 Medjool thinning

A training set of 800 tuples and a test set of 200 tuples of related task and meta parameters were

constructed. For generating the datasets, fruit bunches from the 1st epoch-1st whorl were sampled

from the model. Each fruit bunch was sampled with different seed to create datasets with

independent samples. Each sample of a fruit bunch was automatically visualized, and a screen

shoot was saved along with the fruit bunch parameters (e.g. the fruitlets load and the spikelets

remaining length). The length, width, and angle of the minimum bounding box surrounding the

spikelets were computed based on image analysis. The final datasets hold the following

parameters: [𝐹𝑆 ± 10%, 𝐿𝑆, 𝑊𝑆, 𝐴𝑆, 𝐿] where the 10 percent error in the fruitlets load is to account

for the sonar error.

5.3 Examining data complexity

The relationship between the parameters was examined using both PCA and LLE methods, and a

mapping was devised using a neural network. First the PCA was computed and the weights of each

parameter in the top principal components were examined. The required dimensionality reduction

was set, based on the number of principal components required for explaining 95% of the variance,

and the LLE was computed.

The PCA weights influenced the effort to minimize the error of each meta parameter when

learning the structure of the neural network. In case of multiple meta parameters, a meta parameter

that had larger weights in the top principle components was marked as more important hence the

error threshold guiding the training was lower. Problem complexity was assessed by examining

the variance explained by the PCA components and the layout of the top components of both PCA

and LLE in 3-dimensional figures. When the accumulation of 95% of the variance required more

components, the problem space is more complex. When the PCA and LLE parameter dispersion

40

is less uniform problem complexity is higher. Higher problem complexity requires either deeper

networks, more neurons in each hidden layer, or both. The code was developed with python in

google colaboratory. The libraries used and the flow of the code are detailed in Appendix Ⅱ.

5.4 Defining network structure and devising a mapping

In both experiments, the number of neurons in the input layer was equal to the number of task

parameters and the number of neurons in the output layer was equal to the number of meta

parameters. MLP networks were used. The networks consist with a ReLU activation function,

mean absolute error loss function, and Adam optimizer (Glorot, Bordes, & Bengio, 2011; Ruder,

2016). The batch size and the number of epochs were empirically set to 32 and 1000 respectively.

A grid-search was performed to adjust the number of hidden layers, the number of neurons in each

layer, and the learning rate for the optimizer. Based on the analysis of the parameter space we

established the boundaries of the grid-search (Bergstra & Bengio, 2012) for adjusting the number

of hidden layers and the number of neurons in each layer. Early stopping technique was applied,

according to which, the training stops when the performance of the model on the validation set did

not improve following subsequent number of epochs (Prechelt, 1998). The final model for a given

dataset was devised with the combination of hyperparameters values that minimized the mean

absolute error (MAE) between the estimated and truth values, on the validation set,

MAE𝑦=
1

𝑛
∑ |𝑦𝑡 − �̂�𝑡|𝑛

𝑡=1 (9)

Where y is a meta parameter, n is the number of samples, 𝑦𝑡 is the truth value, �̂�𝑡 is the estimated

value.

The code was developed with python in google colaboratory. The libraries used and the flow of

the code are detailed in Appendix Ⅱ.

5.5 Measures

We examined the estimation error of the meta parameters in both experiments. The estimation

error of the meta parameters is directly computed from the output of the DNN (i.e., the learned

mapping) and the corresponding ground truth values. The error in meta parameter estimation and

its relationship to the task parameter estimation error is important for evaluation of the estimation

method used for mapping. For the robotic soft ball throwing experiment, we additionally tested

the movement error (i.e., the distance between the landing point of the ball to the task requirement),

41

which characterizes the overall performance of the method. For estimating the movement error an

additional step was executed to compute the landing point of the ball based on the estimated meta

parameters.

For distance estimation (robotic soft ball throwing: h (robot endpoint height), R (robot endpoint

radius), r (ball landing point radius). Medjool thinning: L (length of the remaining spikelets)), the

error was calculated as the mean scaled absolute error (MSAE) between the estimated and truth

values,

MSAE𝑦=
1

𝑛
∑

|𝑦𝑡−�̂�𝑡|

𝑦𝑡

𝑛
𝑡=1 (10)

Where y is one of the parameters (h, R, r, L), n is the number of samples, 𝑦𝑡 is the truth value, �̂�𝑡

is the estimated value.

For the angle measures (robotic soft ball throwing: β (endpoint horizontal angle) and α (ball

landing point horizontal angle)), the error was calculated as the mean absolute error (MAE)

between the estimated and truth values (Equation 9), Where y is one of the parameters (β, α), n is

the number of samples, 𝑦𝑡 is the truth value, �̂�𝑡 is the estimated value.

42

Chapter 6: Results

6.1 Robotic soft ball throwing

In both the ballistic and the adapted model, the top 3 of 5 PCA components explain more than 95%

of the variance (Figure 11). Accordingly, the complexity of both models is moderate. The

dispersion of the first 3 PCA components was similar and nearly uniform in both models (Figure

13) but the dispersion of the first 3 LLE components differed, showing different concentration

along different axes, suggesting stronger internal constraints among the parameters of the adapted

model (Figure 13).

Examining the PCA components shows a clear separation between the parameters (Figure 12).

The angles (α, β) have very high weights in the 1st component, the distances (r, R) in the 2nd

component, and the height (h) in the 3rd component. This implies separation between distances and

angles, and a weak relationship between the values of height and the values of other parameters.

The data complexity analysis implied that the complexity of the problem was moderate, thus

the following values were chosen for the hyperparameters grid-search: the number of hidden layers

was [3, 5, 7, 8] and the number of neurons was [10, 20, 32, 64]. The results of training and testing

of the DNN are detailed in Appendix Ⅲ. For both models in all datasets that contain above 64

tuples, the meta parameter h had a consistently higher error than the other two parameters.

Figure 11: Parameter space analysis for the robotic soft ball throwing experiment; Cumulative variance of the principle

components. Left: ballistic model; Right: adapted model (Cohen, Bar-Shira, & Berman, 2019).

43

Figure 12: Parameter space analysis for the robotic soft ball throwing experiment; Weights of the parameters in the

principle components. Left: ballistic model; Right: adapted model (Cohen, Bar-Shira, & Berman, 2019).

Figure 13: Parameter space analysis for the robotic soft ball throwing experiment; 3-dimantional visualization of the

top 3 components (Top: PCA, Bottom: LLE). Left: ballistic model; Right: adapted model (Cohen, Bar-Shira, &

Berman, 2019).

44

The landing point of the ball was computed based on the estimated meta parameters. For both the

ballistic and adapted models and for both estimation methods tested (kernel regression and neural

networks) both the distance and angle errors were smaller as dataset size increased (Figure 14).

For kernel regression, the reduction in estimation error becomes very small when increasing

dataset size beyond 30 tuples for the ballistic model or 64 tuples for the adapted model. For neural

network, the reduction in estimation error becomes very small when increasing dataset size beyond

500 tuples for both the ballistic model and the adapted model. Beyond this value (500 tuples), the

error converges in both methods to values of 3% at a distance (r) and 1° at angle (α) in the ballistic

model and to values of 12% at a distance and 2° at the angle in the adapted model.

Figure 14: Movement error as a function of dataset size (Top: ball landing horizontal angle 𝛼, Bottom: ball landing

radius r). Left: ballistic model; Right: adapted model (Cohen, Bar-Shira, & Berman, 2019).

45

6.2 Medjool thinning

PCA results showed that in order to attain above 90% of the variance all 5 components are needed

and the amount of the variance explained by each PCA components is similar (Figure 15). This

indicates that the complexity of the problem is relatively high. The dispersion of the first 3 PCA

displays a concentration of observation that is forming a sphere-like shape and as the distance from

the center of the sphere increase the dense of the observations lessen (Figure 15). The dispersion

of the first 3 LLE components also displayed a concentration of observations but, unlike the PCA,

when distancing from the dense area, different behavior along the different axes is observed

(Figure 15).

Examining the PCA components (Figure 15) shows that the meta parameter 𝐿 appears in

different combination along with all task parameters. This implies a strong connection between

the parameters.

The data complexity analysis implied that the complexity of the problem was high, thus the

following values were chosen for the hyperparameters grid-search: the number of hidden layers

was [9, 17, 21, 33] and the number of neurons was [16, 32, 64, 128].

When training the deep neural network, the combination of hyperparameters that minimized the

error on the validation set was of 21 hidden layers and 128 neurons per layer. The learned mapping

was tested on new task requirements and the final estimation error for the remaining length of the

spikelets was 2.6%.

46

Figure 15: Parameter space analysis for the Medjool thinning experiment; A. Cumulative variance of the principle

components. B. Weights of the parameters in the principle components. C. 3-dimantional visualization of the top 3

principle components. D. 3-dimantional visualization of the top 3 LLE components (Bar-Shira, et al., 2019).

B. A.

C. D.

47

Chapter 7: Discussion and future work

The research examines establishing DMP parameter values based on a mapping between task

parameters and meta parameters that relies on a deep neural and a method for generating synthetic

datasets to train the deep neural network.

7.1 Synthetic dataset

The integration of the stochastic fruit bunch model facilitates generation of multiple fruit bunch

samples. In the last thinning season, a dataset of more than 100 physical fruit bunches was

constructed. While great effort was exerted in attaining the dataset it will not be enough on its own

to train the DNN. In a real environment, the cost of generating a training set with large data is

expensive (long epochs, expansive equipment). Building a simulation model that takes into

consideration as many physical elements as possible in order to generate a training set relaxes the

difficulty of acquiring data, thus enabling the neural network to train on a large dataset which is

important to enable it to reach its full competence. Moreover, the model was built in an open source

environment, thus making it economically. This is an important step towards integrating robotics

and state of the art machine learning algorithms to this domain.

For the fruit bunch model, integration of the model parameters with the smooth Bezier curve,

allowed an ease representation of a major plant feature. Validation of additional epochs of the

model is in progress. Presently, it is important to concentrate on epoch-whorl combinations that

are more significant in terms of fruit quality (farmers prioritize the upper whorls), and are more

convenient for the robotic operation (the structure of the fruit bunch in the early epochs is more

convenient for bundling the spikelets). Additionally, collecting samples of physical fruit bunches

from the chosen combinations can enable to perform goodness of fit tests for the model’s

distribution, hence increasing its validity and thus its acceptance in the farmers community.

The quantification of the error of the spikelets remaining length was important since it is the

meta parameter of the DMP required for the bundling motion. In addition, the ground truth for

each fruit bunch in the current work was established based on length (the radial length towards the

12th fruitlet). A relative error was used since the acceptable error is relative to the size of the fruit

bunch.

48

7.2 Learning motion parameters

Analyzing the structure of the parameter manifold was instrumental in adapting movement

parameters. Principal component analysis facilitated setting suitable hyperparameter search limits.

Furthermore, it enables to envisage the feasibility of the DNN to successfully learn the required

mapping by viewing the connections between the task and meta parameters. Absence of

components that combine strong influence of a meta parameter together with at least one of the

task parameters may result in low competence of the network to estimate the meta parameter.

Examining the locally linear embedding, for which the linearity assumption is relaxed was

important for reviewing constraints in the data and gaining a deeper understanding of model

complexity. When the layout in the 3-simantional space indicates different distribution features

along different axes, small error in the meta parameter estimation may lead to big movement error

thus big emphasis needs to be placed on the architecture and tuning of the DNN. The analysis

expedited the training of the DNN and facilitated correct emphasis to reducing errors of the more

influential parameters.

Learning a mapping with small datasets is inadequate for DNNs. The parameters representing

task requirement and the meta parameters have a nonlinear relationship. For the neural network to

generalize, it needs to see large amount of data that covers the parameter space. When establishing

big amount of data is not feasible, kernel regression may be adequate.

Dynamic movement primitives are suited for the required complex trajectories and the

dynamic interactions with the environment. The motion adapted based on the mapping is

predictable leading to robust task performance. For robotic applications that require complete

assurances of run-time behavior without forsaking run-time adaptability such traits are critical.

Moreover, the continuous mapping suites the variety that exists in dynamic environment.

In the robotic soft ball throwing experiment, the analysis of both simulations of the soft ball

throwing task indicated that the complexity of the problem was moderate, i.e., that a rather small

number of layers was required. The meta parameter ℎ did not share a strong influence in the same

principle components with none of the task parameters. This is in-line with the DNNs high

estimation error for this parameter, regardless of the database size. For the other meta parameters,

β and 𝑅, the estimation error decreased as the size of the dataset increased. The additional non-

linear constrains in the adapted model are in line with the larger movement errors for this model

49

using both methods (deep neural networks and kernel regression). The movement error decreased

rapidly as the size of the training dataset increased for both kernel estimation the deep neural

network. While for small datasets kernel estimation outperformed the deep neural network, for the

larger datasets their performance was similar. Differently, in the Medjool thinning experiment, the

analysis of the thinning task indicated that the complexity of the problem was high, i.e., that a large

number of hidden layers, or a large the number of neurons in each hidden layer, or both is required.

The meta parameter 𝐿 shared a strong influence in the same principle component with all the task

parameters. This is in-line with the small estimation error that the DNN achieved. Since the

estimation error of the meta parameter was small, a small movement error is expected despite the

distribution features in the LLE parameter space.

7.3 Mediation between simulation and physical environment

An important manner that requires future care is the mediation between simulation and physical

environment. Additional tuning of the DNN might be needed. This can be achieved by

amalgamation of this dataset with synthetic fruit bunch images integrated with background field

images. It is a promising direction currently under development along with testing the learned

mapping on data of physical fruit bunches.

For the current project the input for the DNN is the processed output from the sensing system,

composed from both a sonar and a camera. Eliminating the pre-proccing can be achieved by

constructing a network that takes as input the raw data from the sonar and camera and directly

calculates the remaining length of the spikelets. The architecture of such a network needs to be

carefully constructed since combining different types of inputs is not trivial. Furthermore, such

network may need an increased computation ability during training and possibly in runtime as

well, thus economic considerations are needed.

50

References

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from

demonstration. Robotics and Autonomous Systems, 57(5), 469–483.

Arkin, R. C. (1998). Behavior-based robotics. MIT Press.

Bac, C. W., Van Henten, E. J., Hemming, J., & Edan, Y. (2014). Harvesting robots for high‐value

crops: State‐of‐the‐art review and challenges ahead. Journal of Field Robotics, 31(6), 888-

911.

Bar-Shira, O., Cohen, Y., Shoshan, T., Cohen, Y., Sadowsky, A., Schmilovitch, Z., . . . Sigal, B.

(2019). Learning motion parameters for robotic Medjool date thinning. Manuscript

submitted for publication.

Barth, R., IJsselmuiden, J., Hemming, J., & Van Henten, E. J. (2018). Data synthesis methods for

semantic segmentation in agriculture: A capsicum annuum dataset. Computers and

Electronics in Agriculture, 144, 284-296.

Basri, R., & Jacobs, D. W. (2017). Efficient representation of low-dimensional manifolds using

deep networks. arXiv preprint arXiv:1602.04723.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of

Machine Learning Research, 13, 281-305.

Chiroma, H., Abdullahi, U. A., Abdulhamid, S. M., Alarood, A. A., Gabralla, L. A., Rana, N., . . .

Herawan, T. (2018). Progress on artificial neural networks for big data analytics: A survey.

IEEE Access, 7, 70535-70551.

Cohen, Y., & Berman, S. (2013). Tight dynamic movement primitives for complex trajectory

generation. 2013 IEEE International Conference on Systems, Man, and Cybernetics (pp.

2402-2407). IEEE.

Cohen, Y., & Glasner, B. (2015). Date palm status and perspective in Israel. In Date palm genetic

resources and utilization (pp. 265-298). Springer.

Cohen, Y., Bar-Shira, O., & Berman, S. (2019). Run-time adaptation based on a mapping of

dynamic movement primitive parameters. Manuscript submitted for publication.

Da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H., & dos Reis Alves, S. F. (2017).

Artificial neural networks. Springer.

51

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., . . . Lempitsky, V.

(2016). Domain-adversarial training of neural networks. The Journal of Machine Learning

Research, 17(1), 2096-2030.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. The Fourteenth

International Conference on Artificial Intelligence and Statistics (pp. 315-323).

Hoffmann, H., Pastor, P., Park, D. H., & Schaal, S. (2009). Biologically-inspired dynamical

systems for movement generation: automatic real-time goal adaptation and obstacle

avoidance. 2009 IEEE International Conference on Robotics and Automation (pp. 2587-

2592). IEEE.

Hoos, H., Ca, U. B., & Leyton-Brown, K. (2014). An efficient approach for assessing

hyperparameter importance. International Conference on Machine Learning (pp. 754-

762).

Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2001). Trajectory formation for imitation with nonlinear

dynamical systems. 2001 IEEE/RSJ International Conference on Intelligent Robots and

Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No.

01CH37180) (pp. 752-757). IEEE.

Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2002). Movement imitation with nonlinear dynamical

systems in humanoid robots. 2002 IEEE International Conference on Robotics and

Automation (Cat. No. 02CH37292) (pp. 1398-1403). IEEE.

Ijspeert, A. J., Nakanishi, J., Hoffman, H., Pastor, P., & Schaal, S. (2013). Dynamical movement

primitives: Learning attractor models for motor behaviors. Neural Computation, 25(2),

328-373.

Jaderberg, M., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Synthetic data and artificial

neural networks for natural scene text recognition. arXiv preprint arXiv:1406.2227.

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The

International Journal of Robotics Research, 32(11), 1238-1274.

Kober, J., Oztop, E., & Peters, J. (2011). Reinforcement learning to adjust robot movements to

new situations. Twenty-Second International Joint Conference on Artificial Intelligence

(pp.2650-2655).

Kober, J., Wilhelm, A., Oztop, E., & Peters, J. (2012). Reinforcement learning to adjust

parametrized motor primitives to new situations. Autonomous Robots, 33(4), 361-379.

52

Lee, J. (2010). Introduction to topological manifolds. Springer.

Lewis, R. A. (2001). CRC dictionary of agricultural sciences. CRC Press.

Liu, K., Weissenfeld, A., & Ostermann, J. (2006). Parameterization of mouth images by LLE and

PCA for image-based facial animation. 2006 IEEE International Conference on Acoustics

Speech and Signal Processing (pp. 461-464). IEEE.

Moustafa, A. A. (1998). Studies on fruit thinning of date palms. First International Conference on

Date Palms (pp. 354-364).

Mülling, K., Kober, J., Kroemer, O., & Peters, J. (2013). Learning to select and generalize striking

movements in robot table tennis. The International Journal of Robotics Research, 32(3),

263-279.

Mussa-Ivaldi, F. A. (1999). Modular features of motor control and learning. Current Opinion in

Neurobiology, 9(6), 713–717.

News from the grove. (2011). Retrieved from The golden date: http://www.the-golden-

date.com/category/news-from-the-grove/

Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of motor

skills by learning from demonstration. 2009 IEEE International Conference on Robotics

and Automation (pp. 763-768). IEEE.

Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., & Schaal, S. (2013).

From dynamic movement primitives to associative skill memories. Robotics and

Autonomous Systems, 61(4), 351-361.

Potena, C., Nardi, D., & Pretto, A. (2016). Fast and accurate crop and weed identification with

summarized train sets for precision agriculture. Intelligent Autonomous Systems (IAS) (pp.

105-121). Springer, Cham.

Prechelt, L. (1998). Early stopping-but when?. In Neural networks: Tricks of the Trade (pp. 55-

69). Springer.

Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding.

Science, 290(5500), 2323-2326.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

53

Rueckert, E., Mundo, J., Paraschos, A., Peters, J., & Neumann, G. (2015). Extracting low-

dimensional control variables for movement primitives. 2015 IEEE International

Conference on Robotics and Automation (ICRA) (pp. 1511-1518). IEEE.

Schaal, S., Mohajerian, P., & Ijspeert, A. (2007). Dynamics systems vs. optimal control-a unifying

view. Progress in Brain Research, 165, 425–445.

Schaal, S., Peters, J., Nakanishi, J., & Ijspeert, A. (2005). Learning movement primitives. In

Robotics research. The eleventh international symposium (pp. 561-572). Springer.

Shreiner, D., Sellers, G., Kessenich, J., & Licea-Kane, B. (2013). OpenGL programming guide:

The official guide to learning OpenGL, version 4.3. Addison-Wesley.

Singh, N. (1995). Systems approach to computer-integrated design and manufacturing. John

Wiley & Sons, Inc.

Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and

learning: A critical review of the literature. International Journal of Science Education,

34(9), 1337-1370.

Stulp, F., & Schaal, S. (2011). Hierarchical reinforcement learning with movement primitives.

2011 11th IEEE-RAS International Conference on Humanoid Robots (pp. 231-238). IEEE.

Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017). Efficient processing of deep neural

networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295-2329.

Tamosiunaite, M., Nemec, B., Ude, A., & Worgotter, F. (2011). Learning to pour with a robot arm

combining goal and shape learning for dynamic movement primitives. Robotics and

Autonomous Systems, 59(11), 910 – 922.

Varga, T., & Bunke, H. (2003). Generation of synthetic training data for an HMM-based

handwriting recognition system. Seventh International Conference on Document Analysis

and Recognition (pp. 618-622). IEEE.

Wang, J. (2012). Geometric structure of high-dimensional data and dimensionality reduction.

Heidelberg: Springer.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and

Intelligent Laboratory Systems, 2(1-3), 37-52.

Xu, R. (2015). Machine learning for real-time demand forecasting. Doctoral dissertation,

Massachusetts Institute of Technology.

54

Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview.

Computers and Electronics in Agriculture, 36(2-3), 113-132.

Zhang, Y., Guo, Q., & Wang, J. (2017). Big data analysis using neural networks.

10.15961/j.jsuese.2017.01.002, 49, 9-18.

Zhou, J., & Zhang, B. (Eds.). (2019). Agricultural robots: Fundamentals and applications. BoD–

Books on Demand.

מדינת ישראל, משרד .ענף התמרים(. 2017.), י [Kachel] קחל &., , צ [Fridkin] , ד., פרידקין [Hausler] האוסלר

 .החקלאות ופיתוח הכפר, החטיבה למחקרת כלכלה ואסטרטגיה

ירחון לנושאי גידולי -ניר ותלם (. ייחודו של עץ התמר והפיתוחים הטכנולוגיים הדרושים לו. 2014, י'.)[Cohen] כהן

 . 45-46, חקלאות שדה מיכון והנדסה ב

 . מפקד מטעי התמרים(. 2019[.)The plant councilהצמחים]מועצת

55

Appendix Ⅰ: Medjool date fruit bunch model

Table 2 present the full model devised for capturing the geometry of the Medjool date fruit bunch.

Eighteen parameters were defined. A probability function was defined for each of the parameters

and distribution parameters were fitted for the three thinning epochs and the three whorls (9 sets

of probability parameters). Final validation was performed for the parameters of fruit bunches from

the 1st epoch-1st whorl.

Table 2: Medjool date fruit bunch full model parameter distributions.

Index Parameter
Probability

functiona
Whorl Epoch

 1st 2nd 3rd

p1
Rachis width

[cm]
𝑈(𝑎, 𝑏)

1st (2,3) (2,3) (3,4)

2nd (3,4) (3,4) (4,5)

3rd (4,5) (4,5) (5,6)

p2
Rachis depth

[cm]
𝑈(𝑎, 𝑏) ∗ (𝑝1)

1st

(0.56,0.76) × (𝑝1) 2nd

3rd

p3
Viewed section

of rachis [cm]
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

1st

20 2nd

3rd

p4
Hidden Rachis

length [cm]
𝑇𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑐)

1st (20, 25, 30) (22,25,32) (29,35,40)

2nd (17,19,25) (15,23,30) (25,32,37)

3rd (10,13,15) (14,20,24) (22,25,30)

p5

Angle between

rachis to tree

trunk [°]

𝑈(𝑎, 𝑏)

1st (0, 10) (10,20) (15,30)

2nd (10,17) (15,25) (45,60)

3rd (10,20) (30,40) (60,90)

p6
Number of

spikelets
𝑇𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑐)

1st (80,85,100)

2nd (50,70,80)

3rd (50,60,65)

p7

Number of

spikelets

clusters

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

1st

3 2nd

3rd

p8

Distance of

spikelets

clusters from

1st 𝐵𝑜𝑡𝑡𝑜𝑚 𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 0 × (𝑝4)

𝑀𝑖𝑑𝑑𝑙𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 0.4 × (𝑝4)
𝑇𝑜𝑝 𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 0.6 × (𝑝4) 2nd

56

top of

presented

rachis

3rd

p9

Dispersion of

spikelet

quantity

between the

clusters

1st
𝐵𝑜𝑡𝑡𝑜𝑚 𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 0.5 × (𝑝6)
𝑀𝑖𝑑𝑑𝑙𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 0.3 × (𝑝6)

𝑇𝑜𝑝 𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 0.2 × (𝑝6)

2nd

3rd

p10
Spikelet length

[cm]
𝑇𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑐)

1st (75, 80, 100)

2nd (65,79,89)

3rd (50,60,65)

p11
Spikelet radius

[cm]
𝑈(𝑎, 𝑏)

1st

(2,2.5) 2nd

3rd

p12

Clamps width

(i.e. the largest

distance

between two

spikelets) [cm]

𝑇𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑐)

1st (25, 27, 35) (35,40,45) (70,80,100)

2nd (20,24,30) (30,35,40) (50,70,90)

3rd (20,21,24) (24,30,35) (50,70,85)

p13

Number of

fruitlets per

spikelet (on

first cluster)

𝑈(𝑎, 𝑏)

1st (60,70) (40,50) (25,35)

2nd (50,60) (30,40) (17,25)

3rd (35,45) (25,35) (12,22)

p14

Distance from

the spikelet

base to the first

fruitlet [cm]

𝑇𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑐)

1st

(20,27,45) 2nd

3rd

p15
Fruitlet radius

[cm]
𝑇𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑐)

1st (1, 1.2, 1.5) (1.5,1.8,2) (1.8,1.8,2.5)

2nd (0.9,1.1,1.2) (1,1.2,1.5) (1.5,1.8,2)

3rd (0.7,0.8,0.9) (0.9,1.1,1.2) (1,1.2,1.5)

p16

Distance

between two

adjacent

fruitlets [cm]

𝐸𝑥𝑝(
1

𝜆
)

1st

(1.3) 2nd

3rd

p17
Natural fallout

probability [%]
𝐵𝑒𝑟𝑟(𝑝)

1st

16 30 60 2nd

3rd

p18
Bending of the

fruit bunch [%]
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

1st

0 0.2 0.2 2nd

3rd

a. U(a,b) – uniform distribution; Triang(a,b,c) – triangular distribution; Berr(p) – Bernoulli distribution;

Exp(
1

𝜆
) – exponential distribution.

57

Appendix Ⅱ: Code description

Fruit bunch dataset generation

Generates a dataset of images and accompanying properties of Medjool date fruit bunches. To

initial a new experiment, the user enters an experiment number, seed, dataset size, and the required

whorl and epoch. Furthermore, the user can choose whether to draw the cutting plain. The code

automatically opens a new directory to which images and a csv file containing related information

are saved. The code was developed with python 3.7. The libraries used are detailed in Table 3 and

the main methods are detailed in Table 4.

Table 3: Libraries used in the ‘Fruit bunch dataset generation’ code.

Library name Description

pygame
Offers computer graphics abilities. It is a python wrapper module

for the SDL multimedia library.

OpenGL Offers rendering abilities for 2D and 3D vector graphics.

math
Offers access to the mathematical functions defined by the C

standard.

numpy Offers scientific computing tools.

Table 4: Main methods in the ‘Fruit bunch dataset generation’ code.

Method name Description

init_exp
Sets model parameters according to the user’s input regarding the

required whorl and epoch.

compute_bezier_points
Computes the points along a curve, given four Bezier control

points.

draw_sphere Draws a sphere, given the required center and radius.

draw_bezier_points
Draws a curve, given a set of points that are calculated by the

“compute_bezier_points” method.

draw_elliptical_cylinder
Draws an elliptical cylinder, given its girth, height, and center of its

lower base.

draw_cone Draws a cone, given the girth and center of its base, and its height.

58

draw_spikelets
Computes four control points for each spikelet and activates the

“draw_bezier_points” method.

take_screen_shoot Saves an image of the fruit bunch to the experiment’s directory.

main

Runs the main loop that activates pyGame and creates the fruit

bunch 3d graphics by adjusting the lighting and calling the methods

above.

Generate dataset
Receives user’s input and generate a dataset by calling the ‘main’

method and saving the data to the experiment’s directory.

Complexity analysis

Performs PCA and LLE. To initial a new experiment, the user uploads the required dataset of

related task and meta parameters. Then, data preparation is conducted, both methods are applied

on the dataset, and figures are displayed and saved to a directory defined by the user. The code

was developed with python in google colaboratory. The libraries used are detailed in Table 5 and

the flow of the code is detailed in Table 6.

Table 5: Libraries used in the ‘complexity analysis’ code.

Library name Description

pathlib Offers a set of classes to handle filesystem paths.

matplotlib.pyplot Offers a MATLAB-like plotting framework.

pandas Offers data analysis / manipulation tool.

numpy Offers scientific computing tools.

random Offers pseudo-random number generators for various distributions.

seaborn
Offers statistical graphics tools. It is built on top of matplotlib and

closely integrated with pandas data structures.

sklearn Offers machine learning tools.

mpl_toolkits.mplot3d Offers an extended 3d plotting abilities.

59

Table 6: Flow of the ‘complexity analysis’ code.

Section name Description

Load data Loads dataset to the colaboratory.

Data preparation Normalizes the dataset so that the values are between zero and one.

PCA Applies PCA on the data.

LLE Applies LLE on the data.

Figures

Displays and saves the following images: cumulative variance of

the principle components, weights of the parameters in the

principle components, 3d visualization of the top 3 principle

components, and 3d visualization of the top 3 LLE components

DNN: train and test

Trains and tests a deep neural network. To initial a new experiment, the user uploads the required

dataset of related task and meta parameters (it is optional to upload one dataset that will later be

divided to a training set and a test set, or to upload both training set and test set). Then, data

preparation is conducted, the DNN is trained and the values for the hyperparameters are chosen,

the final model is tested on the test set, and the estimation errors of the meta parameters are

calculated. There is an option to build and export a dataset containing the task parameters and the

predicted meta parameters. The code was developed with python in google colaboratory. The

libraries used are detailed in Table 7 and the flow of the code is detailed in Table 8.

Table 7: Libraries used in the 'DNN: train and test' code.

Library name Description

tensorflow Offers high performance numerical computation abilities.

pathlib Offers a set of classes to handle filesystem paths.

matplotlib.pyplot Offers MATLAB-like plotting framework.

pandas Offers data analysis / manipulation tool.

60

numpy Offers scientific computing tools.

random Offers pseudo-random number generators for various distributions.

seaborn
Offers statistical graphics tools. It is built on top of matplotlib and

closely integrated with pandas data structures.

Table 8: Flow of the 'DNN: train and test' code.

Section name Description

Fix seed
Control all pseudo-random number generators to enable an

experiment to be repeated.

Load data Loads dataset to the colaboratory.

Data preparation

Divides the dataset to training set and test set if needed; Creates

four datasets (training set, training labels, test set, and test labels)

by separating the labels from the full training set and the full test

set; Normalizes the training set and test set so that the values are

between zero and one (the normalization is performed using the

training set characteristics).

Hyperparameters tuning

Performs a grid-search to adjust the number of hidden layers, the

number of neurons in each layer, and the learning rate of the

optimizer.

Build model Trains the DNN with the chosen architecture.

Test model
Tests the trained DNN on the test set and computes estimation

errors of the meta parameters.

Generate dataset
builds and exports a dataset containing the task parameters and the

predicted meta parameters.

61

Appendix Ⅲ: DNNs training and testing results for

the robotic soft ball throwing experiment

Table 3 present the results of training and testing of the DNNs in the robotic soft ball throwing

experiment. A DNN was trained for each of the eighteen training sets, nine training set for each

model (ballistic and adapted). the results of the grid-search that was performed for three of the

DNN hyperparameters (learning rate of the optimizer, number of hidden layers, and number of

neurons in each layer) are detailed. The trained DNNs were testes on two test sets, one for each

model, and the results of the meta parameters estimation errors are presented. All datasets are

available in Mendeley Data (https://data.mendeley.com/datasets/d75vv3tdkg/1)

Table 9: DNNs training and testing results for the robotic ball throwing experiment.

Model
Training

set size

Hyperparameters optimization

results

Meta parameters estimation

error

Learning

rate

Hidden

layers
Neurons

MAEβ

[°]

MSAEh

[%]

MSAER

[%]

Ballistic 8 0.001 3 64 2.964 0.294 0.739

Ballistic 27 0.001 8 64 2.076 0.281 0.026

Ballistic 64 0.0005 8 32 1.48 0.315 0.015

Ballistic 125 0.001 8 64 2.117 0.292 0.017

Ballistic 216 0.0005 7 64 0.8 0.291 0.01

Ballistic 343 0.0005 7 32 1.043 0.291 0.007

Ballistic 512 0.0005 7 20 0.585 0.3 0.005

Ballistic 729 0.001 7 32 0.496 0.294 0.004

Ballistic 1000 0.0005 7 64 0.645 0.294 0.004

Adapted 8 0.001 3 64 2.561 0.325 0.8

Adapted 27 0.001 3 64 2.513 0.33 0.788

Adapted 64 0.0005 7 64 1.798 0.286 0.027

Adapted 125 0.0005 8 32 2.704 0.28 0.019

Adapted 216 0.0005 7 64 1.592 0.285 0.013

Adapted 343 0.0005 8 64 1.514 0.282 0.01

Adapted 512 0.001 7 32 0.81 0.294 0.009

Adapted 729 0.0005 7 64 1.214 0.286 0.01

Adapted 1000 0.0005 7 32 1.018 0.285 0.006

 תקציר

ימה חשובה בתהליך הגידול של תמר המגה'ול. דילול יעיל ומתוזמן הינו הכרחי על מנת להשיג דילול חנטים הינה מש

שעות 3.5-איכות פרי גבוהה. כיום, דילול דורש דיוק, כוח אדם גדול והוא מוגבל בזמן. דילול של עץ בודד מוערך בכ

כיום בישראל. אוטומציה של פעולת עצי המגה'ול הקיימיםומעל למיליון שעות עבודה דרושות על מנת לדלל את כל

 הדילול הינה הכרחית בכדי לאפשר דילול של מספר רב של מטעים עם פחות כוח אדם ובמסגרת הזמן הרצויה.

בקרת תנועה במהלך ביצוע הדילול הינה מאתגרת כיוון שנדרשת תנועה אל האשכולות בתוך סבך העץ. בנוסף,

לשינויים במהלך זמן הריצה היא הכרחית. אנחנו מציגים שיטה לתכנון ובקרת ת ולכן יכולת להסתגלהסביבה הינה דינאמי

 dynamicהתנועה עבור מערכת רובוטית לצורך דילול של תמר מג'הול. השיטה מבוססת על תבניות תנועה דינאמיות)

movement primitivesאות לא נעשה בעזרת סט משוו (. לפי שיטה זו, קידוד התנועה של המערכות הדינאמיות

ניתנים לכוונון על מנת לאפשר ביצוע של משימות חדשות. הפרמטרים קבועים םלינאריות אשר להן פרמטרים שערכיה

מושפעים מהמשימה, הרובוט והסביבה. את הפרמטרים ניתן לחלק לשלוש םאת הדיוק של התנועה המיוצרת וערכיה

פרמטרי על)מגדירים את מרחב הפעולה. לדוגמא, נקודת צורת התנועה במרחב(, קטגוריות: פרמטרי צורה)מגדירים את

 התחלה ונקודת יעד(ופרמטרים חיצוניים)מגדירים אילוצי סביבה חיצוניים. לדוגמא, השהייה בתחילת התנועה(.

רים את אנחנו מציגים דרך לבצע אדפטציה של הפרמטרים המבוססת על ידי יצירת מיפוי בין הפרמטרים המגדי

מטרי העל. המיפוי מאפשר יכולת הכללה ודיוק בעת יצירת תנועה עבור משימה חדשה, תכונות חשובות המשימה אל פר

עבור פעולת הדילול. בנוסף, המיפוי נלמד מראש דבר אשר מבטיח את אמינותו במהלך זמן הריצה. מכיוון שלמידת

 deep neuralעמוקה)נוירונים רשת ע את הלמידה באמצעותהמיפוי היא בעיה בעלת קלטים ופלטים מרובים, ניתן לבצ

network בה פרמטרי המשימה מהווים את שכבת הקלט ופרמטרי המטה הם שכבת הפלט. אימון הרשת הואץ על ידי ,)

הטמעה לינארית (וprincipal components analysisניתוח מרחב הפרמטרים באמצעות ניתוח גורמים ראשיים)

 .(locally linear embeddingמקומית)

כדי להשיג דיוק טוב, הרשת צריכה להתאמן על בסיס נתונים גדול. מחסור בבסיסי נתונים חקלאיים נחשב בין

הסיבות העיקריות לביצועים נמוכים יותר של אלגוריתמי למידת מכונה בחקלאות ובין צווארי הבקבוק העיקריים

המכיל מדידות פיזיקליות עבור משימת הדילול הינה כיוון שבנית בסיס נתוניםהמעכבים כניסה של רובוטיקה לחקלאות.

מאתגרת, פותחה שיטה לבניית בסיס נתונים המכיל נתונים שיוצרו באופן מלאכותי. נבנה מודל הסתברותי המתאר אשכול

 pythonבפיתון) ה הגראפית של הקוד הפתוחיעזרת הספרישל תמר מג'הול ובוצעה לו וויזואליזציה תלת ממדית ב

openGL) .האשכול מודל כאוסף של צורות גיאומטריות, ולכל צורה הותאמה התפלגות ייחודית .

היכולת לייצר תנועה מדויקת באמצעות האדפטציה לשיטת תבניות תנועה דינאמיות נבדקה בניסוי מקדים עבור

ה מתארים את נקודת משימה זו, פרמטרי המשימ משימה של זריקת כדור על ידי זרוע רובוטית שמודלה בסימולציה. עבור

הנחיתה של הכדור על הרצפה. שני מודלים של זריקת כדור נבנו בסימולציה, מודל בליסטי ומודל מותאם. בנוסף, השימוש

. ניתוח מרחב הפרמטרים הצביע על כך שמורכבותם (kernel regressionרגרסיה קרנלית)ברשת הושווה לשימוש ב

יתה בינונית עם אילוצים חזקים יותר במודל המותאם. עבור בסיסי נתונים ים, הבליסטי והמותאם, הישל שני המודל

הקטנה זווית שגיאת ו 12%-שגיאת מרחק הקטנה מ) ותנמוכ היות התנועה שהשיגו שתי שיטות המיפוי וגדולים, שגיא

משימת פרמטרי העל עבורלהמשימה מעלות(. ניסוי שני בדק את יכולת הרשת ללמוד את המיפוי בין פרמטרי 2-מ

הדילול תוך שימוש בסיסי נתונים שיוצרו באמצעות מודל האשכול. ניתוח מרחב הפרמטרים הצביע על כך שמורכבות

. התוצאות שהתקבלו הינן 2.6%הייתה גבוהה. לאחר האימון, הרשת השיגה שגיאה חיזוי נמוכה מאוד של ההבעי

 .וכנים לבדיקה בניסוי שטחמבטיחות, והשיטה והכלים שפותחו מ

 תבניות תנועה דינאמיות, רובוטיקה בחקלאות, רשתות עמוקות, נתונים מלאכותיים. מילות מפתח:

 גוריון בנגב - אוניברסיטת בן
 הפקולטה למדעי ההנדסה
 המחלקה להנדסת תעשייה וניהול

 ל תמר מג'הוללימוד פרמטרי תבניות תנועה עבור רובוט לדילו

 חיבור זה מהווה חלק מהדרישות לקבלת תואר מגיסטר בהנדסה

 שירה -מאת: אור בר

 מנחה: פרופ' סיגל ברמן

 28/09/2019 תאריך: שירה -אור בר חתימת המחבר:

 28/09/2019 תאריך: סיגל ברמן אישור המנחה:

 :תאריך : "ר ועדת תואר שני מחלקתיתאישור יו

 גוריון בנגב - אוניברסיטת בן

 הפקולטה למדעי ההנדסה

 המחלקה להנדסת תעשייה וניהול

 לימוד פרמטרי תבניות תנועה עבור רובוט לדילול תמר מג'הול

 חיבור זה מהווה חלק מהדרישות לקבלת תואר מגיסטר בהנדסה

 שירה -אור בר מאת:

 2019אלול ה'תשע"ט ספטמבר

