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ABSTRACT

Robotic assisted minimally invasive surgery (RAMIS) systems provides many advan-

tages to the surgeon and patient over open and standard laparoscopic surgery. How-

ever, haptic feedback, which is crucial for the success of many surgical procedures, is

still an open challenge in RAMIS, and is missing in the majority of clinical RAMIS

systems. Understanding the way that haptic feedback affects the surgeon’s perfor-

mance and learning can be useful in the development of haptic feedback algorithms

and teleoperation control systems. In this study, we examined the performance of

inexperienced participants under different haptic feedback conditions in a surgical

needle driving via a soft homogeneous deformable object - an artificial tissue. We

designed an experimental setup to characterize their movement trajectories and the

forces that they applied on the artificial tissue. Participants first performed the task

in an open condition, with a standard surgical needle holder, followed by teleopera-

tion in one of three feedback conditions: (1) no haptic feedback, (2) haptic feedback

based on position exchange, and (3) haptic feedback based on direct recording from

a force sensor, and then again with the open needle holder. To quantify the effect

of different force feedback conditions on the quality of needle driving, we developed

novel metrics that assess the kinematics of needle driving and the tissue interaction

forces. We combined our novel metrics with classical metrics such as task success and

completion time. We analyze the final teleoperated performance in each condition,

the improvement during teleoperation, and the aftereffect of teleoperation on the per-

formance when using the open needle driver. We found that there is no significant

difference in the final performance and in the aftereffect between the 3 conditions.

Only the two conditions with force feedback presented statistically significant im-

provement during teleoperation in several of the metrics, but when we compared

directly between the improvements in the three different feedback conditions none

of the effects reached statistical significance. We discuss possible explanations for

the relative similarity in performance. We conclude that we developed several new

metrics for the quality of surgical needle driving, but even with these detailed met-
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rics, the advantage of state of the art force feedback methods to tasks that require

interaction with homogeneous soft tissue is questionable.

Keywords: teleoperation, force feedback, needle driving, robot assisted mini-

mally invasive surgery
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Terminology

DF - direct feedback

DOF - degrees of freedom

dVRK - da-Vinci research kit

F/T - force / torque

MIS - minimally invasive surgery

MTM - master tool manipulator

NF - no feedback

PE - position exchange

PSM - patient side manipulator

RAMIS - robot assisted minimally invasive surgery
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1 INTRODUCTION

Robot Assisted Minimally Invasive Surgery (RAMIS) refers to minimally invasive

surgical procedure aided by robots. RAMIS is the robotic development of laparo-

scopic surgery, in which the surgery is performed through several small incisions in

the patient body. In RAMIS, the surgeons use a robotic manipulator to operate

robotic instruments inside the patient’s body. The surgical instrument (or end effec-

tor, e.g. gripper, scissors) follows the movement of the surgeons hands, usually with

different motion scaling, filtering, and other possible manipulations or restrictions.

Minimally Invasive Surgery (MIS), yields faster recovery time for the patients,

has aesthetical benefits, and for some cases have been shown to improve surgical

outcome compared to open surgery[1]. RAMIS has all the advantages of MIS, with

the additional key advantages such as 7 degrees-of-freedom (DOF), 3D high defini-

tion visual system, higher precision and accuracy, and more intuitive operation (e.g.

preventing the Fulcrum effect). As a result, RAMIS has the potential to produce a

better surgical outcome [1][2][3][4].

The field of general surgery has gone through a big change in the 1990s when

several robotic teleoperation systems for minimally invasive surgery were presented

[5]. At the moment, the most widely spread system in the market is the da-Vinci

surgical system (Intuitive Surgical Inc.) with about 4400 installed systems world-

wide [6] but other players are entering this market, such as the Senhance system

(TransEnterix) that is approved for clinical use in Europe. In 2017, the number of

surgical procedures using the widespread da-Vinci RAMIS system was ˜877, 000 [6],

and this number has been consistently growing over the years [7][8][9].

Surgeons that were used to operate with their hands in full contact with the

patient have moved to sit behind robotic interfaces that mediated between them

and the patient. In this process, surgeons have lost the ability to use the crucial

sense of touch, or haptic sense. The haptic sense is used in many surgical procedures

for detecting lesions, orient inside the body and most importantly to facilitate the

amount of force needed in each of the 7 DOF available in current teleoperation
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systems [10][11].

The haptic sense is generally divided into two main modalities - kinesthetic and

tactile [12]. Kinesthetic modality refers to forces and torques that are sensed in the

muscles, tendons, and joints. This definition is then translated to haptic feedback,

such that kinesthetic haptic feedback will be sensed by the kinesthetic modality.

In this study, we will refer to kinesthetic haptic feedback as haptic feedback. In

surgery, the haptic feedback is being used constantly by the medical staff, as the

haptic sense has an important role in motor control and in many surgical procedures.

Currently, the main commercial RAMIS system does not offer any haptic feedback

to the surgeon, although the system is physically able to provide kinesthetic haptic

feedback using embedded motors. New RAMIS systems report to have the ability to

provide haptic feedback (Senhance system, TransAstrix; REVO-I Robotic Surgical

System, Meere Company) [12] [13] [14].

As consequence of the lack of haptic feedback, surgeons have to estimate the forces

based only on visual information (e.g. tissue deformation, color changes of tissue)

and prior knowledge (e.g. the stiffness and deformability of the specific tissue).

This estimation is worsened when the surgeon’s field of view is obstructed. Prior

literature stressed that estimating forces and torques using other modalities can cause

an inaccurate estimation, and as a consequence surgeons can apply substantial forces

on the tissue ending in unwanted injuries. This drawback is especially important

when considering non-expert surgeons and trainees that are in the process of learning

how to control and estimate the forces correctly, while the lack of feedback is making

the use of the devices less intuitive [7][13][15].

The reasons for the lack of haptic feedback are mainly due to stability issues

in closed loop teleoperation with force feedback and challenges in force estimation.

Introducing haptic feedback in teleoperation can cause the system to get out of sta-

bility, which can lead to unwanted oscillations and difficulty of controlling the end

effector [7] cause the system to get out of stability, studies on haptic interfaces and

stability have managed to give haptic feedback and ensure a stable system, but at the
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expense of the transparency. Transparency is a measure of the fidelity of the teleoper-

ation system. The transparency is defined as the ability to accurately display remote

environment impedance to the operator [7] [16] [17]. Nisky et al. [17] suggested that

transparency can be divided into 3 components, perceptual transparency, local motor

transparency, and remote motor transparency. The second component, local motor

transparency, is by definition achieved when the movement of the operator (position

and force trajectories) does not change when the teleoperation system is replaced by

an identity channel. Thus, the way the forces are rendered to the surgeon is another

challenge, and understanding the effect of different conditions of force feedback on

the surgeon (i.e. the movement of the operator) is a necessary step for optimizing

force feedback in RAMIS.

A second reason for the lack of haptic feedback is the difficulty to estimate the

forces that are applied at the end effector. Several haptic feedback algorithms were

suggested to solve the challenge of force estimation. For example, position exchange

is an algorithm that estimates the forces based on the error between the desired

position of the robot and the actual (current) position of the robot [18]. Li et al

[19] suggested sensorless force estimation using Gaussian processes regression (GPR)

based on the motors’ readouts and mathematical modeling of the Raven-II. Davland

et al [20] designed an actuated force feedback-enabled laparoscopic instrument for

robotic-assisted surgery. Anooshahpour et al [21] suggested a quasi-static model for

the da-Vinci instrument and Rivero et al [22] suggested estimating the forces based on

visual data (i.e. deformation of tissue). The suggestion of using visual information in

force estimation is interesting since currently, this is the way that surgeons estimate

the forces. Each one of the force feedback algorithms has a trade-off between system

stability and transparency along with other limitation.

The effect of haptic feedback compared to condition with no haptic feedback is

not yet fully understood [23][24][25][26]; in a meta-analysis on the effect of force

feedback (i.e. kinesthetic feedback), Weber et al [27] found that force feedback

reduced the amount of force applied, but in addition they found evidence that the
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effect of force feedback is smaller when depth perception is available (i.e. 3D vision).

Another meta-analysis by Weber et al [28] showed that the effect of force feedback

is task-depended; they found that when surgical tasks were given, the effect of force

feedback was bigger, resulting in lower applied forces.

The results in studies that compared task performance between haptic feedback

condition to no haptic feedback condition were inconclusive. Mahvash et al [29]

compared the performance in palpation task using direct force feedback (measured

by a force sensor located at the remote site), visual feedback of the forces on the

screen, both direct and visual feedback, and without force feedback. They show

mixed results in the question of whether force feedback yields better performance

in two different perceptual palpation tasks. In a heart model, the force feedback

condition with only haptic feedback yield better results compared to other conditions,

but for a prostate model, they did not find differences between the conditions. In a

follow-up experiment with similar conditions as Mahvash et al, Gwilliam et al [30]

showed that the accuracy of experienced surgeons was higher when they received

haptic feedback compared to visual force feedback or no feedback.

Santos-Carreras et al [31] compared participants performance in needle driving

task in virtual reality for three different force feedback conditions, visual feedback

(i.e. without haptic cues), 3 DOF force feedback and 6 DOF force feedback (forces

and torques). It is important to note that the visual system in the experiment was

a 2D screen (i.e. not 3D). Forces were rendered to the users by a set of equation

modeling the forces in the task. In the experiment, participants performed the task

using a surgical needle holder that was attached to a robotic interface. They tested

three metrics - completion time, exit point error and maximum penetration depth.

They show that there is a significant difference between force feedback conditions

and visual feedback for exit point error and maximum penetration depth, but they

did not find any benefits when adding torques to the force feedback.

In addition to metrics that evaluate task performance, we can define metrics to

evaluate the operator hand kinematics and characterize operator’s learning process.
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When manipulating the tool in a teleoperation system, we have different kinematics

compared to free hand movements - even when looking on simple movements such

as reaching to a target [32] or on a more complex movement such as needle driving

[33]. In needle driving task, participants presented slower learning in teleoperation

compared to needle driving preformed with needle holder as in open surgery. When

learning to use a teleoperation system, participants presents learning curve over trials

in path length, completion time and other kinematic and dynamic metrics. [32] [34].

Metrics that quantifies the human movement or performance are also used to

differentiate between novices and experts surgeons [33] [35] or to evaluate the effect

of training on performing surgical tasks [36]. Classical metrics, such as task comple-

tion time and path length were measured to asses the performance of participants

during surgical tasks, the learning process was quantified using those metrics and

learning curve were observed when looking at the performance trial by trial. [33]

[37] Same metrics and other metrics are also used to assess the movement quality in

rehabilitation process of patients. [38] Force and torque metrics were suggested to

discriminate between novice and expert surgeons [39]. Sharon et al [40] showed that

the change in instrument orientation during needle insertion movement, normalized

by path length is different between expert surgeons and novices.

In order to asses the operator performance it is possible to define metrics that

are based on research on the motor system. The motor system is complex and the

different levels of movement execution are subjects of numerous studies [41] [42]. In

order to execute a movement our motor system is engaged in a series of tasks that

ends in the desired movement. There are infinite amount of ways the motor system

can perform the same task, this is due to redundancy we have. As a result, modeling

the motor system and its movements is a non-trivial task [43].

One prominent kinematic law of the human movement is the two-thirds power

law for planar trajectories and its generalization to 3 dimensional movements, known

as the one sixth power law. The two-thirds power law describes the relation between

movement’s curvature and speed, and the one-sixth power law add the dependency
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to torsion. Several studies have shown that the law applies for simple and complex

movements [42] [44]. Sharon et al. [45] showed that surgeon expertise and the use of

teleoperation effects the parameters of the one sixth power law.

Another suggested principle in human movement is the minimum jerk. Jerk

is the 3rd derivative of the position, and studies showed that movement obey to

the principle that human movement is optimize such that its jerk will be minimal

[42]. Jerk is a measure to the smoothness of the movement, lower jerk is smother

movement. Several metrics were suggested to quantify the smoothness of the human

movement [46] [47][48][49].

In order to study how haptic feedback affects the motor system, and specifically

how it affects the learning of the motor system, we need to quantify the performance

as well as the different aspects of the movements using classic and novel metrics.

We need to develop valid metrics for evaluation of the motor system performance.

Using the metrics and trial by trial experiment with different kinesthetic force feed-

back conditions, we can asses the effect of the different haptic condition on human

movement’s learning and performance.
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2 MATERIALS AND METHODS

2.1 Needle driving task

We selected the needle driving surgical task for this experiment, and designed an ex-

perimental setup to characterize participants’ movements and applied forces. Needle

driving task encompasses a complex movement (movement in 6 DOF, divided into

several subtasks) combined with interaction with soft tissue and it is a common pro-

cedure in surgeries. Tissue interaction forces can add important information to the

operator when interacting with a soft object. The goal of needle driving is driving a

surgical needle between two points through tissue using a surgical tool. The partic-

ipants were requested to drive the needle while following the arc of the needle with

the tooltip, maintaining tool tip velocity direction perpendicular to the needle curve.

We divided the needle driving task into six subtasks (Fig. 1), (a) needle position-

ing, (b) needle insertion, (c) needle correction (optional), (d) repositioning, and (e)

needle pulling. We refer to needle correction as needle insertion after repositioning

the tool on the needle; therefore, this subtask is optional, and the participants were

instructed to avoid corrections as much as possible.

2.2 Experiment setup

2.2.1 da-Vinci Research Kit - Hardware and Control

The experimental apparatus was the da-Vinci Research Kit (dVRK) [50]. The dVRK

is based on first generation da-Vinci system hardware (Intuitive Surgical Inc.), and

has open hardware controllers and open source code [51][50]. The dVRK teleop-

eration setup (Figure 2 A,B) included two Master Tool Manipulators (MTM), two

Patient Side Manipulators (PSM), 4 controllers (one for each manipulator), foot

pedals tray and high resolution stereo viewer. During teleoperation, the remote side

manipulators (PSMs) follow the movement of the master side manipulators (MTMs)

after scaling and proper changes to orientation. Each MTM is capable of providing
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Figure 1: Needle driving task. We divided the needle driving task into 8 subtasks (A-H).

On each trial, participants (A) grasped a needle and positioned it above the starting point,

(B) transported the needle to the insertion point and positioned it, and (C) inserted the

needle into the tissue (1st insertion). (D) If needed, participants repositioned the tool

on the needle and continued in insertion (2nd insertion). Then they (F) repositioned the

tool on the needle for extraction, (F) grasped the needle for extraction, (G) extracted the

needle, and (H) positioned the needle above the finish point.

6 DOF haptic feedback. In this experiment, we used 2 large needle drivers as patient

side instruments. The 3D vision system consists of 2 HD cameras (FLIR Blackfly

S cameras, BFS-U3-32S4C, 3.2MP; Edmund Optics Lenses, 16mm, f/1.8 Ci Series

Fixed Focal Length Lens), and 2 HD flat screens (frame rate of 35 Hz, resolution of

1080 X 810). The dVRK controllers were connected to Ubuntu (UNIX) OS computer

with an Intel Xeon E5-2630 v3 2.40GHz processor. The vision system was connected

to Ubuntu OS computer with Intel Core i7-7700K 4.2GHz processor and NVIDIA

Quadro P2000 5GB graphics card. The communication between the two computers

was done over the Universitys local area network (LAN) and ROS multiple machines

configuration. The maximal latency that was measured using this communication

was 0.5 ms.
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Figure 2: Experimental setup for teleoperation (A),(B) and for open needle driving (C).

(A) Master side: the participant uses the two dVRK Master Tool Manipulators (MTM)

to control the patient side tools, and receives 3D visual feedback via the 3D viewer. For

position exchange (PE) and direct feedback (DF) conditions, the operator also receives

3 DOF haptic feedback. The foot pedal has to be pressed to enable teleoperation. (B)

Patient side: needle driving is performed on the artificial tissue using the right tool of the

patient-side manipulator (PSM). 2 HD cameras (not visible) are used to acquire the visual

information that is presented to the user. 6 DOF pose of the tools is recorded by the robot.

10 needles are prepared for each block. Inset: a side view of the artificial tissue fixture.

Forces and torques were recorded by the F/T sensor that is embedded in the fixture. (C)

Open needle driving. The participant performed needle driving using a titanium needle

holder. Magnetic transmitter records 6 DOF pose of the 2 magnetic sensors. The HD

camera records the trial. Artificial tissue, fixture, and F/T sensor setup are identical to

the teleoperated conditions.
15



The control mechanism of the dVRK teleoperation is depicted in figure 3. x and ẋ

denotes end effector Cartesian space position and velocity respectively, andX denotes

a vector of x and ẋ. q and q̇ denotes joints position and velocity respectively. M, P

and U denotes MTM, PSM and User respectively. ’des’ and ’cur’ denotes desired and

current. R, T, S and J denotes rotation matrix, transformation matrix, scaling and

Jacobian respectively. Forward and inverse kinematics are denoted by Fwd and Inv

respectively. f and τ denotes Cartesian forces and motor torques respectively. The

user moves the MTMs and receives 3DOF haptic feedback. The patient side (figure

3B) follows the master side (figure 3A) with proper scaling and transformation.

Scaling STele = 0.4, such that the user reaches the entire experimental workspace

without consideration to workspace limits. The PSM control is depicted in figure

3D. The PSM interacts with the environment (i.e. needle, tissue).

When switch 1 is closed, the user receives position exchange (PE) haptic feedback.

In PE haptic feedback, the PD controller (figure 3E) receives desired and current

position and velocities, such that the error between them is used to calculate the

force feedback. The KP and KD for the PD PE controller were selected, were tuned

manually to roughly match the output forces to the forces recorded by the F/T

sensor. The values are KP = 1000kg
s2

and KD = 30kg
s

. When switch 2 is closed,

the user receives direct feedback (DF) haptic feedback. The DF feedback is sampled

by the force sensor in 500 Hz and is transmitted to the operator directly with a

gain of GDF = 0.7. We chose the 0.7 force scaling empirically as the largest gain in

which participants were able to easily stabilize the system. Maximum latency in DF

haptic feedback was ∼ 20 ms. We measured the latency experimentally by using left

PSM to invoke the F/T sensor direct feedback to the right PSM. This way we could

find the difference between the positions of both PSMs and measure the maximum

latency. In both force feedback conditions, the forces were rendered to the user at

500 Hz. When both switches are open, the user did not receive feedback (NF). Both

switches were never closed together. In addition, dVRK gravity compensation (GC)

was enabled [50][51].
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Figure 3: dVRK teleoperation control. (A) Master-side, (B) patient side, and (C) haptic

feedback conditions: when switch 1 is closed, the user receives position exchange (PE)

haptic feedback. When switch 2 is closed, the user receives direct feedback (DF) haptic

feedback. When both switches are open, the user does not receive feedback (NF). In

addition, dVRK gravity compensation (GC) is enabled. (D) Patient side dVRK controller

(presented in B) (E) PD PE controller for the PE haptic feedback. Complete description

is given in section 2.2.1

2.2.2 Open and Teleoperation Setup

The experimental setup included two parts, (1) open needle driving, as in open

surgery, and (2) teleoperated needle driving with the dVRK. The open needle driv-

ing setup (figure 2C) consisted of magnetic tracking sensors (TrakStar, Ascension

Technologies, NDI), a titanium needle holder (Fine Needle holder, 16cm, Serrated,

Titanium, World Precision Instruments), and a single HD camera (LifeCam Studio

1080p FHD WebCam, Microsoft). We instrumented the surgical needle holder with

two magnetic 6DOF sensors. The sensors were mounted on the needle holder us-

ing custom made 3D printed fixtures that attached the sensors to the two rods of

the needle holder. We calculated the tooltip position and orientation using the two

magnetic sensors’ position and orientation. The teleoperated needle driving setup

(figure 2A,B) included the dVRK, 3D HD cameras and two large needle driver tools
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(Intuitive Surgical).

For both setups (open and teleoperated), we designed a 3D-printed custom fixture

for the artificial tissue. The artificial tissue was made from a silicone molded homoge-

nous piece (EcoFlex 00-30 mixed with 10% Silicone Thinner, Smooth-On inc.). The

tissue was molded around 2 wooden sticks that were used to fix the tissue to the

3D printed fixture. The fixture and tissue were mounted on an acrylic plate that

was fixed to a force/torque sensor (Nano 43 F/T sensor, ATI Industrial Automation)

that measured tissue interaction forces and torques. The 3D-printed fixture could

be rotated in 4 different right angles, to enable rotation of the tissue between the

experimental blocks to allow for working on a fresh portion of the artificial tissue

in each block. We used surgical needles for general surgery (GS-21, Covidien), 10

needles were placed on the fixture in each block for participants to use.

2.3 Experimental Procedures

Thirty participants (N = 30) took part in the experiment after signing an informed

consent form. The protocol and the form were approved by the Human Subject

Research Committee of Ben Gurion University of the Negev, Beer-Sheva, Israel. All

participants were right-handed, and they used the right needle driver to perform the

needle driving, and the left needle driver (or their left hand in the open setup) to

adjust the needle as needed.

Participants were asked to perform 120 trials of needle driving with the open

and the teleoperated setups. The experimental protocol is depicted in figure 4. The

protocol was divided into 12 blocks, and each block included 10 trials. After each

block, the artificial tissue was rotated such that a fresh entrance and exit point

were presented to the participant to prevent wearing of the silicone tissue. All the

participants first performed 40 trials of open needle driving. We used the performance

of each participant at the end of this baseline open part to compare with their

performance at the subsequent parts of the experiment. In the second part of the

experiment, all the participants performed 60 trials of needle driving task using the
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dVRK. Each group received one of three feedback conditions: (1) no haptic feedback

(NF, N = 10), (2) direct sensing from a force sensor that was mounted under the

tissue (DF, N = 10), and (3) position exchange based force feedback (PE, N = 10).

After completing the teleoperation part, all the participants performed additional

20 trials using the open needle driving setup. This transition back to performing

open needle driving after teleoperation represents a scenario that could happen in

real life surgeries in case that the surgeon decides that the procedure cannot be

safely completed with robotic assistance, and is used to assess the aftereffect of

teleoperation with different feedback conditions on the performance in open needle

driving.

Figure 4: Experimental protocol. Participants performed 120 trials of needle driving

that were divided into 12 blocks. To avoid tissue fatigue, the entrance and exit point

were refreshed in each block without changing the needle driving desired path by rotating

the tissue fixture by 90 degrees in the horizontal plane. In our statistical analysis, we

focused on 3 contrasts: learning, aftereffect and final performance. Learning: the effect of

practice in teleoperation the difference in performance between early and late teleoperation.

Aftereffect: the effect of teleoperation on open needle driving difference in performance

between just before and just after teleoperation. Final performance: the performance at

the end of teleoperation compared to the participants baseline the difference between the

late teleoperation performance and the performance just before teleoperation.

Prior to the first part of open needle driving, and prior to the second part of

teleoperation needle driving, participants viewed a video with instructions on how
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to perform the task correctly using the needle holder and using teleoperation respec-

tively (as in [33]). Participants were asked to perform the needle insertion in one

throw, and if needed, they could readjust their gripping of the needle and continue

the insertion along the same curve of the needle. In addition, they were asked to

work as quickly and as accurately as possible. Then, participants were asked to do a

short practice. Before the open needle driving, participants practiced the use of the

needle holder together with the surgical needle (without interaction with the tissue).

Before the teleoperation part, participants were asked to adjust the system to their

comfort (adjust chair and vision system’s height and 3D vision of the environment

was validated). Afterward, participants practiced several teleoperation exercises, to

familiarize themselves with the dynamics of the robot. They were asked to: (1) move

in a circle around the tissue and upwards, (2) reach in all directions - forwards, back-

ward and to the sides, (3) touch the tissue and fixture using the teleoperation tool,

(4) pick up the needle and release, and (5) pantomime the needle driving movements

without touching the tissue.

After completing this practice, they began the test trials. After the first three

trials of the open needle driving and first three trials in teleoperation needle driving

part, participants received feedback on correct and incorrect performance; Emphasis

was given on simultaneous wrist rotation during needle insertion and extraction,

correct needle gripping, correct use of needle holder, and insert and exit of the needle

at desired points. After each block, the tissue fixture was rotated, and participants

received a short break.

2.4 Data Analysis

2.4.1 Sampling and preprocessing

In the open needle driving setup, we recorded the data in 120 Hz, and in the tele-

operation setup we recorded in 500 Hz. We down-sampled and interpolated all the

signals to 100 Hz. Both position and force data were interpolated using the shape-
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preserving piecewise cubic interpolation. Orientation data was interpolated using

the spherical linear (slerp) quaternion interpolation method. We filtered tooltip po-

sition data with a 2nd order Butterworth low pass filter with cut-off frequency of

Fc = 10Hz using Matlab filtfilt() function, resulting in zero phase filtering with a

cut-off frequency of Fc = 8Hz. Velocity, acceleration, and jerk were calculated using

numerical differentiation. After each differentiation, we filtered the signal using the

same filter that was used for the tooltip signal.

2.4.2 Segmentation

We defined trial start as the first interaction of the needle with the tissue, and the

end of the trial as the final interaction with the tissue. We automatically segmented

trial start and end based on force and tooltip position samples - the first and last of

samples for which the force was higher than the noise threshold (th = 0.06[N ]), and

the tooltip position was inside the artificial tissue contour (i.e. there was interaction

with the tissue, not with the fixture). We manually validated this trial segmentation

based on force profiles and recorded trial video, and corrected erroneous segmentation

due to accidental tissue interaction; Corrected segmentation samples were selected

from a pool of samples that was marked by the automatic segmentation algorithm

as possible segmentation samples.

We also automatically segmented each trial into trial subtasks (figure 1). When

the gripper was closed and tissue interaction forces were above the noise threshold,

the data point was classified as belonging to one of the needle driving segments

(insertion, correction, or extraction). Insertion was defined as the first sequence of

data points that belonged to the needle driving segments. Correction segments were

classified if tooltip position was closer to needle entrance point rather than exit point.

Extraction segments were defined as last sequence of data points belonging to the

needle driving segment, or classified when tooltip position was closer to needle exit

point rather than entrance point.
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2.4.3 Metrics of performance

We quantified participants performance using four classes of metrics: (I) task per-

formance, (II) forces, (III) kinematics, and (IV) motor control grounded metrics. In

the following section, we will review all the metrics that we used, including classical

metrics and novel metrics that we developed in this study.

We used two metrics to quantify task performance. Task completion time was

calculated as the cumulative time in which participants preformed the task:

Completion Time = tend − tstart, (1)

where, tstart and tend are the start and end time of the task respectively. Exit point

error metric was measured as the Euclidean distance between desired exit point and

actual exit point:

Exit Point Error = ||xdesired − xactual||, (2)

Where, xdesired and xactual are vectors of the x, y data point in the plane of the

tissue surface. The data of the actual and desired exit point was extracted using the

images recorded by the cameras. Since the cameras and tissue in the teleoperation

setup are fixed and identical between all trials, we could used the known dimension

of the tissue to calculate the distance between them. Because the camera in the

open needle driving setup was not fixed, we could not use the images to extract the

exit point error, thus the exit point error metric was measured in the teleoperation

needle driving setup only.

We used five metrics to quantify the forces that the participants applied on the

tissue. We calculated the total normalized force as:

Total Normalized Force =
1

die

∫ t2

t1

|f(t)|dt, (3)

where, |f | denotes the total force, die is the Euclidean distance between actual

entrance and exit points. Since we used the Euclidean distance that was extracted

only from the camera in the teleoperation setup, this metric is calculated only in the
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teleoperation setup. The metric quantifies the total forces that participants applied

on the tissue as an indication of damage to the tissue. The rationale is that some

amount of force is needed for the needle driving itself, but if there are substantial

forces that were applied in incorrect directions the total cumulative forces will be

higher. However, if the participants traveled a longer path inside the tissue due to

inaccurate performance of the needle driving, larger forces will accumulate as well.

Therefore, we normalized the cumulative forces by the distance traveled through the

tissue.

Two additional metrics that quantified forces are the maximum force applied in

the perpendicular component to the tissue (denoted as Z axis):

Max Force - Z axis = max (fz), (4)

where, fz denotes the force component in the vertical direction, and maximum force

applied in the plane of the tissue (denoted as XY plane):

Max Force - XY plane = max (|fxy|), (5)

where, |fxy| denotes the force applied in the plane of the tissue. We quantified the

maximum forces separately in the Z axis and XY plane separately because the forces

in the XY plane are mainly designated for the needle insertion, while maximum

force in Z component presents the damage to the tissue when pulling the tissue. The

maximum torque around Z axis was calculated as:

Max Torque - Z axis = max (τz), (6)

where, τz denotes the torque around the vertical axis. This metric ideally should be

zero, since the optimal needle driving movement is planar, and the needle should not

rotate around the normal to the tissue direction.

The force consistency of consecutive movements was calculated as the sum of

squared Euclidean cumulative distance between all force profiles to their mean profile:

Force Consistency =
1

Nt

Nt∑
i=1

N−1∑
n=0

(|fi(n)− fmean(n)|2)2, (7)
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where, f is the 3DOF tissue interaction forces, i denotes force profile index, and N

is the number of samples within a single trajectory, and Nt = 5 is the number of

trajectories. Prior to the calculation of this metric we aligned the force trajectories

using Dynamic Time Warping (DTW) to find the mean trajectory and to allow for

calculating the distance between two trajectories.

We quantified movements kinematics using 5 metrics that calculates movement

efficiency and consistency. We calculated the path length of the movement as:

Path Length =
N−1∑
i=1

|xi+1 − xi|2, (8)

Where, N is the number of samples. This is a classical metric[32] [34][33][35][37],

and lower values imply higher efficiency of the movement.

We calculated three metrics that quantify how close the participants were to

performing the needle driving according to the instructions. For each trajectory,

we fitted a circle that ideally should be with an identical diameter to that of the

needle, and any deviation of the tip of the needle driver from that circle results in

a movement that does not push the needle along its arc. We calculated the Circle

deviation as the integrated distance of the projected path from the best fitted circle,

normalized by the length of the projection of the path on the curve of the circle.

Circle Deviation =
1

Θarc

∫ θ2

θ1

∆s2(t)dθ, (9)

where, ∆s is the Euclidean distance between the fitted circle and the path projected

on the fitted plane, and Θarc = rneedle∆θ is the total arc path in meters, where ∆θ

is the difference between the angle of the tool tip at the beginning of the movement

to the angle at the end of the movement on the arc of the fitted circle .

The Plane deviation quantifies the cumulative deviation from the movement plane

the integrated distance of the trajectory from the plane that is fitted to the move-

ment, normalized by the length of the path. We fitted the plane to the hand path

using Matlab fitlm() function, we used the vertical axis (z axis) as the response (i.e.
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dependent variable), and x− y as the predictors (i.e. independent variables).

Plane Deviation =
1

PL

∫
∆s2(t)ds, (10)

where, ∆s is the Euclidean distance between the fitted plane and the trajectory, and

PL is the total path length in meters.

Figure 5: Illustration of the fitted plane and circle use in the kinematics metrics circle

deviation and plane deviation for a single trial. In the figure we present the insertion

subtask for one participants that received DF feedback, and the trial is recorded from the

teleoperation setup. (A) The fitted plane and the path. (B) An example of a projected

path (seen in 3 dimension in A) and the circle fitted to that path. (C) The distance of

the path to the plane (i.e. shortest distance of each point). (D) The radius of the surgical

needle (yellow) used in the experiment, together with the radius of the fitted circle (red)

and the distance of the tooltip path from the center of the fitted plane.

The normalized angular path (eq. 11) quantifies technical aspects of needle driv-
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ing, such as wrist rotation during needle driving [40].

Normalized Angular Path =
1

PL

N−1∑
i=1

∆θi,i+1, (11)

where, PL is the path length, ∆θi,i+1 is the angular rotation between two consecutive

samples, and N is the number of samples. This metric was suggested in [40], where

higher normalized angular path was associated with expertise and with learning of

the needle driving with repeated performance of the task.

The trajectory consistency (eq. 7) of consecutive movements was calculated as

the sum of squared Euclidean cumulative distances between all force profiles to their

mean profile. We aligned force profiles using Dynamic Time Warping (DTW) (com-

puted by Matlab dtw() function with the squared metric)to find the mean trajectory

and to calculate the distance between each pair of trajectories.

Trajectory Consistency =
1

Nt

Nt∑
i=1

N−1∑
n=0

(|xi(n)− xmean(n)|2)2, (12)

where, x is the 3 DOF position, i denotes trajectory index, and N is the number of

samples within a single trajectory, and Nt = 5 is the number of trajectories.

We used motor control grounded metrics to quantify to what extent the move-

ments of the participants satisfy known laws in human motor control that were

proposed for simpler movements. We focused on the speed-curvature-torsion power

law [44][45] and the minimum jerk [46]. The speed-curvature-torsion power law is

defined as:

v = ακβ|τ |γ, (13)

where v is the speed, α is the velocity gain factor, κ is the curvature and τ is the

torsion. β and γ are the power constants, and in scribbling movements they were

proposed to be equal to −1/3 and −1/6 respectively [44] (but may be different in

needle-driving [45]. We used linear regression on the log-transformed data to fit the

power law to the participants trajectories, and calculated the optimal α, β, and γ

estimates.
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In addition, we calculated the root mean squared jerk (eq. 14) of participants’

movements.

Jerk =

√
1

t2 − t1

∫ t2

t1

...
x(t)2dt, (14)

where,
...
x is the jerk of the movement. Jerk is a measure for movement smoothness,

the lower the jerk, the smoother the movement. There are several suggested methods

to calculate the jerk of a movement [46]. Following an analysis of the different

methods on our data (see appendix B), we chose the method that normalizes the

jerk by movement duration, and has units of jerk. As a result, this jerk metric is

less correlated with completion time. Because this metric spans over several orders

of magnitudes, we chose to analyze the logarithm of the metric.

2.4.4 Statistical analysis

In our statistical analysis we compare three contrasts (figure 4): learning in teleop-

eration, aftereffect and final performance. In the learning contrast, we analyze the

effect of practice in teleoperation, the difference in performance between early and

late teleoperation. We define early and late as the median of the first 5 trials and

median of last 5 trials in teleoperation, respectively. In aftereffect contrast, we ana-

lyze the effect of teleoperation on open needle driving, the difference in performance

between just before (last 5 trials of 1st open needle driving) and just after teleop-

eration (first 5 trials of 2nd open needle driving). In final performance contrast, we

analyze the performance at the end of teleoperation compared to participants base-

line the difference between the late teleoperation (last 5 trials in teleoperation needle

driving) performance and the performance just before teleoperation (last 5 trials in

1st open needle driving). We chose to use the medians of blocks of 5 trials in our

statistical analysis to reduce the effect of trial-by-trial variability in the performance

of the participants.

Since most of our metrics did not distribute normally. Therefore, we chose the

median of each block as the statistic to quantify the metrics values. We used non-
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parametric statistical methods. For each one of the contrasts above, we used the

two-sided Wilcoxon sign rank test to determine whether the difference between the

two stages in each contrast was statistically different from zero. In addition, for each

contrast separately, we used the Kruskal-Wallis test to determine whether we can

reject the alternative hypothesis that the metrics describing the three force feedback

conditions belong to the same distribution. Since none of the KW tests showed

statistical significant differences no posthoc tests were needed.
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3 RESULTS

To assess the performance of our participants in the needle driving task, we first

visually examined the recorded trajectories of the tissue interaction forces and the

kinematics of the patient side instrument tip. We compared the trajectories in the

different dVRK teleoperation conditions, and the trajectories in the open needle driv-

ing with the surgical needle driver. Following the visual examination, we quantified

the performance of the participants using novel and classical metrics. We grouped

the metrics into the following categories: task performance, tissue interaction forces,

kinematics, and motor control grounded metrics. Because most of the metrics were

not normally distributed, we used non-parametric statistical tests to assess the effect

of feedback conditions on each one of the metrics. Specifically, we focused on the

effect of the different feedback conditions (no feedback NF, position exchange PE,

and direct force feedback DF) on (i) the learning during teleoperation, (ii) the

final performance in teleoperation, and (iii) the aftereffect of teleoperation on

needle driving using an open surgical needle holder.

In figure 6, the tissue interaction forces and translation trajectories of a single

participant in the first 5 trials (figure 6A,C) and the last 5 trials (figure 6B,D) are

depicted. Visual examination of the force and translation trajectories suggests that

the last 5 trials are more consistent (i.e. similar to each other) compared to the first

5 trials. Moreover, the trajectories seem to be less jerky and more planar (figure

6C,D). In Figure 7, Examples of tissue interaction forces as a function of time during

a single trial in open needle driving (figures 7A,B) and teleoperation (figures 7C,D)

are presented. When performing the task correctly (figures 7A,C), we identified

a pattern in the tissue interaction forces. In the insertion part, the ideal driving

trajectory is oriented along the x-y diagonal, and indeed the needle horizontal (x-y

plane) forces are correlated. The vertical (z ) component of the force vector is oriented

in the negative vertical direction when the needle first penetrates the tissue, but the

direction is reversed when the needle starts pointing towards the extraction point.

During repositioning, there are occasional small forces due to transient interactions
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Figure 6: An example of trajectories (lines) and tissue interaction forces (arrows) from

the first 5 teleoperated trials (A) and last 5 trials (B) of participant from direct force (DF)

feedback condition. The start of each trajectory is denoted by a diamond marker. Tissue

interaction forces are represented by arrows, and each arrow represents the direction of

the force at the specific sample together with the size of the force (length of the arrow).

Different viewpoint of the same trajectories are presented in (C) and (D). The skin-toned

flat cylinder represents the mock tissue specimen at scale. Red dotted line is presented to

orient the viewer in space.

with the tissue. The extraction is a single fast movement of pulling the needle both

in the horizontal plane and in the vertical axis, and as the movement progress, the

vertical force component is more dominant compared to forces in horizontal plane.

This pattern was consistent across participants in successful needle driving trials. For
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reference, examples of two trajectories of less successful trials are depicted in figure

7B for open needle driving and figure 7D for teleoperation. For both trajectories,

participants did not succeed to insert the needle in one throw and needed a second

throw to correct. The maximum tissue interaction force of the teleoperation example

is higher compared to the correct example, and for the open needle driving the force

trajectories have a different pattern and are less smooth.

Figure 7: Examples of force trajectories in each axis during needle-driving trials in open

needle driving (A,B) and in teleoperation (C,D). We present force trajectory for a trial

that was preformed correctly (open needle driving - A, teleoperation - C) and for a trial

that was preformed incorrectly (open needle driving - B, teleoperation - D). In addition,

the segments that were identified by the automatic segmentation algorithm are annotated.

In our analysis, we divided the needle driving task to several subtasks, and present

here the results only for the insertion subtask. We focused on the insertion sub-

task because it is most important for the success of the overall needle driving, and

its relative duration is highest (median relative duration and standard deviation of

31



50.9%± 10 for insertion; 16.6%± 14 for extraction; 16%± 14 for repositioning) com-

pared to the other subtasks. The full results of all subtasks are available in appendix

A.

To compare participants performance between the three feedback conditions, we

quantified three contrasts: (1) the learning during teleoperation (tele late - tele

early), is presented in figure 9, (2) the aftereffect of each teleoperation condition on

open needle driving (open 2 early - open 1 late) is presented in figure 11, and (3) the

final performance of each participant in teleoperation compared to the participant’s

baseline performance (tele late - open 1 late) is presented in figure 10. For each

metric, we present the median of the difference of each contrast and a non-parametric

bootstrap 95% confidence interval for each of the metrics in each of the teleoperation

conditions, along with markers denoting individual participants. Statistical results

of all metrics for the three contrasts are presented in two tables: Wilcoxon sign rank

test results are summarized in table 7 and Kruskal-Wallis test results are summarized

in table 8.

First, we examine the learning during teleoperation contrast, in figure 8 we

present a detailed look at the results of learning during teleoperation, in addition

to the statistical analysis that is summarized in figure 9. Figure 8 presents the per-

formances of the early stage teleoperation and late stage of teleoperation. For each

stage, we present the median and non-parametric bootstrap 95% confidence interval

for each of the metrics in each of the teleoperation conditions, along with markers

denoting individual participants.

Looking at task performance metrics in teleoperation learning (panels A and B

in figures 9 and 8), we observed significant improvement in completion time (effect

of 2-5 seconds, table 7) for all conditions, without difference between the feedback

conditions (figure 9B). There was no significant improvement in exit point error in

teleoperation and no difference between the conditions (figure 9A). However, the

radius of the exit point marker on the tissue was 2 mm, and thus, although we did

not see a statistically significant difference between the groups, the force feedback
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conditions (PE and DF) medians are closer to the marker radius compared to NF

condition. Hence, it could be that participants did not try to improve their exit

point accuracy more than the marker radius. Another important observation is that

the dispersion of exit point error between participants was higher in the tele-early

stage compared to tele-late stage (figure 8A), and this is more prominent in the force

feedback conditions (DF and PE). So although there was no improvement in the

groups’ exit point error median, we think that participants with high exit error at

the tele-early stage improved their exit point error accuracy, but we cannot provide

quantitative statistical support to this observation.

Looking at the force metrics in teleoperation learning (panels C-G in figures 9

and 8), for the total normalized force metric, there was significant learning for all

conditions without difference in learning between the three conditions (figure 9C). All

participants reduced their applied forces during teleoperation, and therefore, in real

surgery this would reduce the tissue damage. When isolating the maximum forces in

the vertical component and horizontal plane, we did not see significant improvement

in none of them (figure 9D,E), but when looking at the details (figure 8D,E), we can

see that at the tele-early stage there was no visible difference between the conditions,

and in the tele-late stage the dispersion for the force feedback conditions was reduced

and the tendency was towards lowering the maximum forces, while the NF group did

not reduce the median of the maximum forces. It is important to note that we did

not find significant differences between the two stages in the conditions’ median,

nor in the interaction factor. In addition, when we looked at the maximum torque

around the vertical axis (figure 9F), we saw that only PE feedback condition had

significantly reduced its maximum torques, which ideally should be zero. We did

not see a significant difference between the conditions, but we did see that the DF

feedback condition had at first (Tele-early stage, figure 8F) higher maximum torques

compared to tele-late stage (excluding 1 participant); this might be due to difficulty

in stabilizing the system. Although participants did not receive feedback on the

torques DOFs, most of them reduced the maximum torques around the vertical axis.
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Figure 8: Comparison of the performance of the insertion subtask between early and

late dVRK teleoperation. For each metric, median of first five (early) and last five (late)

trials are presented. Each small marker represents an individual subject. The big marker

with error bars shows the median of each group (NF, PE, and DF) and the 95% bootstrap

confidence interval, respectively.

As for the consistency of tissue interaction forces, the force consistency metric, for

both force feedback conditions, DF and PE, we saw a significantly improvement in

the consistency of forces in learning during teleoperation (figure 9G). It is important

to note that there was no statistically significant difference in learning between the

conditions. Higher consistency of force profiles might suggest on a certain technique
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Figure 9: Summary of the dVRK teleoperation learning during the insertion subtask.

For each metric, median of difference between late teleoperation stage to early teleoperation

stage is presented. Each marker represent individual subject. Error bars shows median

of each group difference (NF, PE, and DF) and 95% bootstrap confidence interval. Grey

asterisks represent the result of a Wilcoxon sign rank test for difference from zero.

that participants with force feedback acquired to help them perform the task.

Looking at the kinematics metrics in teleoperation learning (panels H-L in fig-

ures 9 and 8), we saw no significant difference between the feedback conditions. The

movements of force feedback conditions (PE and DF) became significantly more con-

sistent in the teleoperation learning process (figure 9L). The trajectory consistency

for the DF group’s median and variability was higher in the tele-early stage compared

to the NF and PE conditions, while at the tele-late stage there was no visible differ-

ence between the groups (figure 8L); this might be because participants experienced

difficulties in stabilizing the system in the DF condition at the beginning. There was

a significant reduction during teleoperation learning in plane deviation for PE and

NF (figure 9J), while there was no learning in DF. All 3 conditions presented lower

dispersion in path length, deviation from circle, and deviation from plane in tele-late
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stage compared to tele-early stage and there was no visible difference between the

performances of the 3 conditions (figure 9H,I,J). We saw no learning for the angular

path (figure 9K). Based on the results in [40] that showed that participants increased

their angular path during the insertion task, we expected to see a similar increase in

our study, but this was not the case.

Looking at the motor control oriented metrics in teleoperation learning (panels

M-P in figures 9 and 8), participants’ movements were generally consistent with

the speed-curvature-torsion power law (mean R2 with standard deviation of the fit:

R2
NF = 0.80± 0.06, R2

PE = 0.79± 0.06, R2
DF = 0.81± 0.06), and β and γ parameters

had tendency towards their theoretical values (-1/3 and -1/6 respectively). Although

there was no significant difference between the two stages, this result indicated that

participants tendency was to perform movements that follow the 1/6 power law.

The velocity gain factor, α, showed that there is no visible difference between the 3

conditions in the two stages: it seems that participants did not move faster as the

number of trials increases, as the tendency was towards doing slower movements.

The jerk of the participants’ movements also was not affected by the 3 conditions,

nor was it reduced in the late stage. This result indicates that participants movement

did not become smoother during teleoperation trials.

In the final performance contrast we quantified the performance at the late stage

of teleoperation compared to the baseline performance at the late stage of the first

open needle driving. The insertion completion time (figure 10A) of NF and DF

conditions were significantly higher in teleoperation compared to open, while for

PE condition there was no significant difference. As for the force metrics, there

was no significant difference between the conditions for all force metrics. In the

NF condition, participants applied significant more maximum force in the horizontal

plane (effect size of 1.35 N) in tele-late stage compared to open 1-late (figure 10C),

and there was no difference in maximum force for the force feedback conditions.

For NF and PE conditions the consistency of forces (figure 10E) was lower in tele-

late stage compared to open-1 late stage, while for the DF condition, there was no
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Figure 10: Summary of the dVRK teleoperation final performance compared to base-

line for the insertion subtask. For each metric, median of difference between late teleoper-

ation stage to late first open stage is presented. Each marker represent individual subject.

Error bars shows median of each group difference (NF, PE, and DF) and 95% bootstrap

confidence interval. Grey asterisks represent the result of a Wilcoxon sign rank test for

difference from zero.

difference between the open needle driving and teleoperation needle driving.

In the final performance of the kinematic metrics participants path length (fig-

ure 10F), there was a significant difference between PE and DF conditions, meaning

that PE force feedback group performed the task with lower path length compared

to DF force feedback, when looking on the teleoperation needle driving compared to

baseline. For the other kinematic metrics, there was no difference between the condi-

tions in the final performance. Similarly, there was no significant difference between

the feedback conditions in the motor control oriented metrics. Comparing the final

performance in velocity gain factor α metric (figure 10K), in NF and PE conditions

participants movement was slower in teleoperation compared to open needle driving

baseline. The jerk (figure 10N) for all conditions was significantly lower in the tele-
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Figure 11: Summary of the open needle driving aftereffect for the insertion subtask. For

each metric, median of difference between early stage in the second open needle driving to

late stage in the first open needle driving are presented. Each marker represent individual

subject. Error bars shows median of each group difference (NF, PE, and DF) and 95%

bootstrap confidence interval. Grey asterisks represent the result of a Wilcoxon sign rank

test for difference from zero.

operation; this might be because the control system of the dVRK adds damping to

participants movements.

For the aftereffect contrast (figure 11) we did not see aftereffect in open needle

driving for none of the metrics. This means that the participants performance did not

deteriorate due to the 60 trials of the task in teleoperation under any of the feedback

conditions, and participants did not improve their performance in open needle driving

after training the same task in teleoperation. The fact that the open performance did

not deteriorate following teleoperation is encouraging as it suggests that if during

surgical cases participants have to revert to open cases their performance would

continue to be the same as before regardless to the force feedback condition.

38



Table 1: Statistical analysis - Wilcoxon sign rank

Metric name
Learning Aftereffect Final performance

NF PE DF NF PE DF NF PE DF

Exit point error
p 0.37 0.06 0.23 - - - - - -

∆ 0.50 0.95 1 - - - - - -

Completion time
p 0.027 0.0019 0.0058 0.064 0.92 1 0.0058 0.43 0.037

∆ 1.99 3.8 5.47 -0.50 -0.079 -0.13 -1.62 -1.02 -1.64

Total Force normalized
p 0.013 0.0039 0.0019 - - - - - -

∆ 0.46 0.66 0.98 - - - - - -

Max force - Z axis
p 0.69 0.16 0.16 0.69 0.16 1 0.064 0.23 0.37

∆ -0.20 0.31 0.41 -0.12 -0.23 0.10 -0.93 -0.37 0.84

Max force - XY plane
p 0.625 0.375 0.322 0.084 0.846 0.492 0.00195 0.131 0.695

∆ -0.404 0.395 0.893 0.386 0.0344 0.35 -1.35 -0.543 -0.0909

Max torque - Z axis
p 0.69 0.0039 0.10 0.32 0.10 0.064 0.37 0.16 0.55

∆ -3 7.9 5.2 3.03 11 6.87 6.54 11.3 9.36

DTW - force
‘ ‘ p 0.19 0.027 0.037 0.84 0.43 0.10 0.002 0.013 0.19

∆ 451 1330 2140 16.6 -83.2 175 -968 -364 -192

Path length
p 0.084 0.10 0.019 0.23 0.037 1 0.37 0.0097 0.69

∆ 0.010 0.020 0.031 0.0082 0.010 0.0010 0.011 0.023 0.0020

Circle deviation
p 0.27 0.16 0.43 0.23 0.064 0.84 0.37 0.037 0.84

∆ 4.78 · 10−6 3.20 · 10−6 1.20 · 10−6 5.84 · 10−6 4.94 · 10−6 8.82 · 10−7 5.79 · 10−6 7.10 · 10−6 4.34 · 10−7

Plane deviation
p 0.027 0.013 0.55 0.84 0.19 0.55 0.43 0.037 0.69

∆ 1.85 · 10−6 2.16 · 10−6 1.75 · 10−6 −4.81 · 10−7 1.82 · 10−6 −8.20 · 10−7 8.62 · 10−77 2.64 · 10−6 −1.80 · 10−7

Angular path
p 0.10 0.55 0.27 0.69 0.92 0.13 0.77 0.16 0.16

∆ -5.96 3.53 -9.44 -10.7 1.32 15.5 8.15 -7.89 16.6

DTW - position
p 0.10 0.019 0.027 0.77 0.43 0.92 0.32 0.62 0.10

∆ 0.010 0.020 0.026 0.0021 −4.28 · 10−5 0.0014 -0.0042 -0.0010 -0.0041

1/6 power law α
p 0.32 0.084 0.13 0.77 0.32 0.23 0.013 0.0097 0.084

∆ 0.035 0.038 0.059 0.016 0.038 0.049 0.083 0.15 0.061

1/6 power law β
p 0.32 0.013 0.32 0.92 0.77 0.37 0.77 0.13 0.13

∆ -0.0057 -0.019 -0.011 0.0040 0.0048 -0.0087 -0.0047 -0.021 -0.012

1/6 power law γ
p 0.13 0.13 0.019 1 0.69 0.84 0.49 0.16 0.84

∆ -0.015 -0.0095 -0.022 -0.0040 -0.00061 -0.0016 -0.0058 -0.015 0.0041

Jerk
p 0.69 0.37 0.27 0.16 0.19 0.37 0.0019 0.0019 0.0019

∆ -0.071 -0.070 -0.14 0.11 0.21 0.099 1.22 1.4 0.86
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Table 2: Statistical analysis - Kruskal-Wallis test

Metric name
Learning Aftereffect Final performance

NF-PE NF-DF PE-DF NF-PE NF-DF PE-DF NF-PE NF-DF PE-DF

Exit point error

p model and χ2 p =0.80, χ2 = 0.43 - -

p 0.84 0.82 1 - - - - - -

∆ -2.2 -2.3 -0.1 - - - - - -

Completion time

p model and χ2 p =0.17, χ2 = 3.54 p =0.62, χ2 = 0.94 p =0.59, χ2 = 1.04

p 0.93 0.17 0.32 0.64 0.71 0.99 0.69 0.99 0.61

∆ -1.4 -7 -5.6 -3.5 -3.1 0.4 -3.2 0.5 3.7

Total Force normalized

p model and χ2 p =0.093, χ2 = 4.75 - -

p 0.77 0.083 0.31 - - - - - -

∆ -2.7 -8.4 -5.7 - - - - - -

Max force - Z axis

p model and χ2 p = 0.34, χ2 = 2.14 p = 0.44, χ2 = 1.64 p = 0.082, χ2 = 5

p 0.47 0.37 0.98 0.42 0.93 0.64 0.50 0.065 0.50

∆ -4.6 -5.3 -0.7 4.9 1.4 -3.5 -4.4 -8.8 -4.4

Max force - XY plane

p model and χ2 p =0.358, χ2 = 2.05 p =0.607, χ2 = 0.999 p =0.121, χ2 = 4.22

p 0.663 0.329 0.842 0.583 0.923 0.815 0.257 0.13 0.933

∆ -3.4 -5.6 -2.2 3.9 1.5 -2.4 -6.2 -7.6 -1.4

Max torque - Z axis

p model and χ2 p = 0.22, χ2 = 3 p = 0.91, χ2 = 0.17 p = 0.92, χ2 = 0.15

p 0.24 0.35 0.97 0.91 0.99 0.95 0.93 1 0.94

∆ -6.3 -5.4 0.9 1.6 0.5 -1.1 -1.4 -0.1 1.3

DTW - force

p model and χ2 p = 0.34, χ2 = 2.11 p = 0.27, χ2 = 2.60 p = 0.14, χ2 = 3.86

p 0.55 0.34 0.93 0.88 0.51 0.25 0.35 0.13 0.85

∆ -4.1 -5.5 -1.4 1.9 -4.3 -6.2 -5.4 -7.5 -2.1

Path length

p model and χ2 p = 0.052, χ2 = 5.91 p = 0.41, χ2 = 1.77 p = 0.028, χ2 = 7.1

p 0.97 0.11 0.069 0.92 0.63 0.39 0.23 0.56 0.022

∆ 0.9 -7.8 -8.7 -1.5 3.6 5.1 -6.4 4 10.4

Circle deviation

p model and χ2 p = 0.87, χ2 = 0.266 p = 0.20, χ2 = 3.19 p = 0.11, χ2 = 4.41

p 0.98 0.86 0.94 0.74 0.55 0.17 0.41 0.69 0.093

∆ 0.7 2 1.3 -2.9 4.1 7 -5 3.2 8.2

Plane deviation

p model and χ2 p = 0.44, χ2 = 1.61 p = 0.21, χ2 = 3.07 p = 0.10, χ2 = 4.45

p 0.80 0.41 0.80 0.63 0.67 0.18 0.56 0.51 0.088

∆ 2.5 5 2.5 -3.6 3.3 6.9 -4 4.3 8.3

Angular path

p model and χ2 p = 0.26, χ2 = 2.66 p = 0.32, χ2 = 2.25 p = 0.11, χ2 = 4.33

p 0.31 0.99 0.35 0.99 0.42 0.37 0.39 0.72 0.098

∆ -5.7 -0.3 5.4 0.4 -4.9 -5.3 5.1 -3 -8.1

DTW - position

p model and χ2 p = 0.38, χ2 = 1.91 p = 0.48, χ2 = 1.46 p = 0.46, χ2 = 1.52

p 0.85 0.35 0.67 0.63 0.97 0.48 0.55 0.99 0.51

∆ -2.1 -5.4 -3.3 3.6 -0.9 -4.5 -4.1 0.2 4.3

1/6 power law α

p model and χ2 p = 0.88, χ2 = 0.23 p = 0.68, χ2 = 0.75 p = 0.67, χ2 = 0.77

p 0.95 0.88 0.97 0.67 0.81 0.97 0.74 0.99 0.71

∆ -1.1 -1.9 -0.8 -3.3 -2.4 0.9 -2.9 0.2 3.1

1/6 power law β

p model and χ2 p = 0.46, χ2 = 1.53 p = 0.66, χ2 = 0.80 p = 0.51, χ2 = 1.32

p 0.50 0.99 0.56 0.84 0.64 0.94 0.48 0.77 0.89

∆ 4.4 0.4 -4 2.2 3.5 1.3 4.5 2.7 -1.8

1/6 power law γ

p model and χ2 p = 0.56, χ2 = 1.14 p = 0.98, χ2 = 0.023 p = 0.31, χ2 = 2.32

p 0.85 0.85 0.53 0.98 0.99 0.99 0.72 0.72 0.28

∆ -2.1 2.1 4.2 -0.6 -0.3 0.3 3 -3 -6

Jerk

p model and χ2 p = 0.88, χ2 = 0.235 p = 0.37, χ2 = 1.94 p = 0.060, χ2 = 5.61

p 1 0.90 0.91 0.55 0.95 0.38 0.81 0.21 0.057

∆ 0.1 1.7 1.6 -4.1 1.1 5.2 -2.4 6.6 9
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4 DISCUSSION

We examined the effect of feedback conditions on several aspects of task performance

and movement. We used a task of surgical needle driving to evaluate this effect on

participants in two setups, (1) teleoperation as in RAMIS, and (2) using a needle

holder as in open surgery. We designed an experimental setup, such that participants

performed the task in the two setups while we simultaneously recorded their position,

orientation, and tissue interaction forces. Force feedback conditions include two

simple force feedback approaches (1) position exchange (PE) force feedback, and (2)

direct force (DF) feedback sensed from an F/T force sensor. The third condition

was no force (NF) feedback condition. We designed a protocol to test the learning

during teleoperation, the final performance in teleoperation and the aftereffect of

teleoperation on open needle driving.

The experiment apparatus and protocol we designed enabled us to query different

aspect of human movement combined with forces for complex movement in a surgical

task in RAMIS. We developed new metrics to assess the quality of surgical needle

driving: trajectory consistency, force consistency, circle deviation, plane deviation.

We also used recently proposed as well as classical metrics to assess performance:

exit point error, completion time, total normalized force, max force in z and x− y,

max torque z axis, path length, angular path, speed-curvature-torsion power law,

and jerk.

In a study with 30 participants, we found that in several of the metrics, such

as force consistency and maximum applied torques in the vertical direction, the two

conditions with force feedback presented statistically significant improvement during

teleoperation (i.e. learning). In addition, in some of the metrics, such as task com-

pletion time and total normalized force, there was an improvement in all the force

feedback conditions. However, when we compared directly between the learning in

the three different feedback conditions, none of the effects reached statistical signif-

icance. Moreover, we did not find any statistically significant differences between

the 3 force feedback conditions in the final performance in teleoperation (except one
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difference between DF and PE in path length) and the aftereffect. Therefore, we

conclude that in our detailed analysis of the performance of needle driving through

soft tissue we did not find a benefit to presenting novice participants with force

feedback. Hence, our data suggests that the advantage of state of the art force

feedback methods to tasks that require interaction with homogeneous soft tissue is

questionable.

Up to performing this research, several studies compared conditions with force

feedback (usually one algorithm of force feedback) to no force feedback condition,

and usually added another condition with the force feedback as visual information

[30][52][53][31][25]. Results were inconclusive and were task dependent. We ex-

pected to find statistically significant differences between the three force feedback

conditions, and more specifically, we expected to find worse performance at the end

of teleoperation without force feedback compared to the other two force feedback

conditions, as in [25][54][30], and applied forces in [23], [31]. Surprisingly, we did not

see such differences for all the contrasts and metrics except one, consistently with

task completion time in [55][31], and task error in [23].

One possible explanation is that the 3D high-definition visual feedback compen-

sated for the missing in the no force feedback (NF) and the poor haptic feedback

in the position exchange force feedback (PE) conditions. The 3D visual compensa-

tion is more prominent when interacting with a deformable object such as artificial

silicone tissue. Indeed, previous studies showed the importance of 3D vision [27].

Another explanation might be that after 60 trials in the novel environments in our

experiment the human motor system adjusted to the new conditions and perform the

same. In [33], learning curve of task completion time of non-medical novice partici-

pants in needle driving task did not seem to reach a plateau after 80 trials, while for

path length it seems that the majority of learning improvement was in the first 20

trials. Another possibility is that 60 trials in teleoperation were not sufficient to the

learning of the motor system, and there is potential for further improvement in task

performance that would eventually reveal advantages to one of the force feedback
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conditions. This explanation is consistent with [32], where learning was observed

even after 200 trials in a simple reaching task in teleoperation.

Another possible explanation for our failure to find statistically significant differ-

ences between the force feedback conditions might be the high between participants

variability. This variability could be a consequence of the location of needle grasping,

or variability in entrance and exit points. Large variability in the sample reduces the

power of statistical tests. This indicates that larger sample sizes or adding constraints

on the task may be useful to increase power in future studies. To partially mitigate

the influence of between-participants variability, for each contrast we compared the

performance of the participants to their relevant baseline performance. One more

reason for the large variability is the human movement variability, which allows to

successfully perform a given task with different trajectories. Generally, variability is

unavoidable in the motor system, and is even considered a virtue of the sensorimotor

system [56] [57] [58] [59] [60] [61] [61] [62].

With repetitions of the task, the decrease in trajectory consistency and force con-

sistency metrics showed that the within-participant variability in consecutive trials

was lower at the late stage of the experiment. This suggests that unlike in simpler

movements [63] [64], participants gradually progressed towards adopting a stereo-

typic trajectory to perform the task.

In our experiment, we implemented two force feedback conditions, (1) position

exchange force feedback and (2) direct sensing from a force sensor that was attached

to the tissue plate. In addition, all participants in all 3 conditions received gravity

compensation from the current available open source dVRK code. It should be

noted that the current implementation of gravity compensation is simplest [51] and

it could be further improved by more advanced algorithms [65]. It is possible that

with better gravity compensation the participants could perform better and this

could have allowed for observing more pronounced differences between the difference

force feedback conditions.

In position exchange force feedback, we estimated the applied forces based on the
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error between desired and current state of the robot tooltip [18]. While we did not

perform an analytic analysis of stability in our force feedback implementations, we

could easily see that the position exchange force feedback remained stable throughout

the experiment. However, the force feedback did not feel real, as the forces when

interacting with the tissue felt lower compared to DF condition and open needle

driving. The position exchange form of force feedback is better when interacting

with a stiff object rather than a soft object. Since the interaction in our experiment

is with a deformable tissue, the forces felt less realistic and smaller than the actual

applied forces. In addition, because there was no dynamic compensation, participants

felt forces when moving the tool freely without any interaction with an object. This

two issues likely resulted in a poor quality of force feedback in the PE condition.

In the direct force feedback condition, participants received the forces directly

from a force sensor located under the tissue. The force sensor recorded the tissue

interaction forces with high accuracy, and as a result, the forces felt more realistic

than in the PE condition. However, occasionally, we observed the tool starting to

get out of stability. For most cases, participants succeed to stabilize the system, and

if they did not succeed they stopped teleoperation for a brief moment and returned

to the task. To mitigate this problem, we empirically tuned a gain of 0.7 for the

direct force feedback. However, in some cases, participants were still not able to

stabilize the system. In general, although the direct feedback condition had stability

issues, participants succeed to stabilize the direct force feedback condition. In some

metrics, the DF condition median was visibly difference compared to the PE and

NF condition at the early stage trials in teleoperation (e.g. completion time, force

consistency and trajectory consistency), while the difference was not visible in the

late stage.

In the final performance contrast, our aim was to compare the performances be-

tween the three conditions at the late stage in teleoperation. We chose to normalize

each participants performances to his or her baseline performances at the late stage

of open needle driving. As a result, in this contrast, we compared between the per-
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formances in open needle driving to the performances in teleoperation. Comparison

between the two setups, in which the participants perform the task with different

tools, is not trivial. However, because we compare the way the human operator

manipulates the tool end effector (i.e. needle holder tooltip and dVRK large needle

driver tooltip), and the metrics we used are relevant for the end effector we believe

that this kind of comparison is valid. We did not see statistically significant difference

between the feedback conditions in final performance (except one difference in path

length metric), but we did see that for all metrics the jerk in the teleoperation was

lower compared to open needle driving and that forces were for most cases similar

in teleoperation late stage and open needle driving.
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5 CONCLUSION

In the current study, we failed to find statistically significant differences between the

feedback conditions in needle driving through soft tissue. Both our implementations

of simple force feedback algorithms did not significantly improve the kinematics and

tissue interaction forces of the human operator compared to no force feedback, and

there was no difference between the two force feedback algorithms. This may be a

result of the poor quality of our force feedback algorithms for soft tissue interac-

tion, or due to sufficient force cues available from visual information about tissue

deformation.

Detailed understanding of the effect of haptic feedback on the operators move-

ment and tissue interaction forces is important for developing future guidelines for

human-centered design of teleoperated RAMIS systems with force feedback that will

eventually provide advantage over unilateral teleoperation. We think that better,

human-centered, force feedback algorithms have the potential to improve perfor-

mance and movement quality compared to no feedback at all or algorithms that

don’t consider the human operator as part of the control loop.
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6 FUTURE WORK

In the future, it will be interesting to perform a similar experiment with experienced

and novice surgeons that are familiar with surgery and RAMIS and to see if one of the

force feedback condition will be beneficial for them. In this study, we implemented

two simple force feedback algorithms, it is important to investigate the performance

of participants with more force feedback algorithms [31][66][67][21][22] [68], and more

importantly, in a condition with human-centered force feedback algorithm. Another

aspect to study is to see if one of the explanations that we suggested above, for

the lack of differences between the conditions, affected the results of this study.

It is possible to perform similar experiment with different vision conditions, and

particularly the 3D vision compared to 2D vision; To investigate the learning curves

and perform the research with more trials; to add more constraints to the needle

driving complex task; or to give feedback on performances in real time that will

encourage the participants to perform better in the task.
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A Appendix: Full results

In this appendix we present the statistical results for the full task and for the ex-

traction subtask. The statistical analysis is identical to the analysis that we present

in the thesis.

In section A.1 we present the statistical analysis for the full task - including

the insertion, repositioning and extraction. In section A.2 we present the statis-

tical analysis for the extraction subtask. In each section, we present three figures

corresponding to the learning contrast, aftereffect contrast, and final performance

contrast. In addition, we present the results for the statistical tests.

A.1 Results for the full task

Figure 12: Summary of the dVRK teleoperation learning during the full task. For each

metric, median of difference between late teleoperation stage to early teleoperation stage

is presented. Each marker represent individual subject. Error bars shows median of each

group difference (NF, PE, and DF) and 95% bootstrap confidence interval. Grey asterisks

represent the result of a Wilcoxon sign rank test for difference from zero.
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Figure 13: Summary of the open needle driving aftereffect for the full task. For each

metric, median of difference between early stage in the second open needle driving to late

stage in the first open needle driving are presented. Each marker represent individual

subject. Error bars shows median of each group difference (NF, PE, and DF) and 95%

bootstrap confidence interval. Grey asterisks represent the result of a Wilcoxon sign rank

test for difference from zero.

59



Figure 14: Summary of the dVRK teleoperation final performance compared to base-

line for the full task. For each metric, median of difference between late teleoperation stage

to late first open stage is presented. Each marker represent individual subject. Error bars

shows median of each group difference (NF, PE, and DF) and 95% bootstrap confidence

interval. Grey asterisks represent the result of a Wilcoxon sign rank test for difference from

zero.
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Table 3: Statistical analysis - Wilcoxon sign rank - Full trial

Metric name
Learning Aftereffect Final performance

NF PE DF NF PE DF NF PE DF

Exit point error
p 0.375 0.0645 0.232 NaN NaN NaN NaN NaN NaN

effect 0.504 0.953 1 NaN NaN NaN NaN NaN NaN

Completion time
p 0.00195 0.00195 0.0195 0.232 0.0645 0.492 0.0195 0.105 0.0371

effect 6.15 10.3 10.9 -0.759 -1.37 -0.501 -3.59 -3.06 -3.56

Total Force normalized
p 0.00195 0.00391 0.00391 NaN NaN NaN NaN NaN NaN

effect 0.825 0.975 1.43 NaN NaN NaN NaN NaN NaN

Max force - Z axis
p 1 0.846 1 0.375 0.131 1 0.00977 0.0137 0.432

effect -0.118 0.0428 -0.0142 0.0392 -0.277 0.106 -1.94 -0.979 -0.264

Max force - XY plane
p 0.922 0.492 0.322 0.131 1 0.492 0.00195 0.0645 0.492

effect -0.161 0.324 0.766 0.367 0.00279 0.345 -1.42 -0.663 -0.237

Max torque - Z axis
p 1 0.0645 0.131 0.432 0.193 0.232 0.275 0.375 0.432

effect -0.631 7.51 5.22 -0.981 17.7 6.14 4.83 18.6 9.85

DTW - force
p 0.084 0.00586 0.0195 0.375 0.193 0.492 0.00195 0.00195 0.00195

effect 745 1580 3180 -29.8 -88.9 180 -1610 -563 -463

Path length
p 0.0371 0.0371 0.0195 0.846 0.846 0.922 0.131 0.0137 0.193

effect 0.0332 0.0522 0.0706 -0.0011 -0.00059 4.85E-05 0.0366 0.0641 0.0146

Circle deviation
p 0.232 0.322 0.846 0.322 0.432 0.375 0.0137 0.695 0.432

effect 5.84E-06 -8.04E-06 8.24E-07 1.61E-05 -6.86E-06 3.77E-06 3.74E-05 4.34E-07 6.31E-06

Plane deviation
p 0.375 0.16 0.0273 0.557 0.77 0.922 0.00977 0.0137 0.0137

effect 4.75E-06 4.05E-06 9.53E-06 -2.19E-06 -2.73E-06 -1.18E-06 2.11E-05 1.99E-05 1.38E-05

Angular path
p 1 0.084 0.432 0.492 0.557 0.00586 0.625 0.00586 1

effect 0.72 8.17 -3.52 -6.19 4.27 5.53 -3.31 -15 0.44

DTW - position
p 0.0195 0.00195 0.105 0.922 0.232 1 0.77 0.275 0.232

effect 0.0741 0.0604 0.00135 0.0932 -0.0174 0.00186 0.0835 -0.00438 -0.0959

1/6 power law α
p 0.922 0.16 0.77 0.0645 0.557 0.492 0.0488 0.00391 0.00977

effect -0.0256 -0.0423 -0.00181 -0.0812 -0.0394 0.0302 0.168 0.166 0.156

1/6 power law β
p 0.492 0.77 0.922 0.375 0.0488 1 0.322 1 0.625

effect 0.00519 0.00592 0.00303 -0.0102 -0.0142 0.00209 0.00896 -0.0019 0.00681

1/6 power law γ
p 0.0488 0.084 0.695 0.375 0.275 0.846 0.432 0.432 0.922

effect -0.0153 -0.0109 0.00698 -0.00496 -0.00993 -0.00158 -0.00804 0.00446 -0.0004

Jerk
p 0.232 0.084 0.232 0.0488 0.432 0.492 0.00195 0.00195 0.00195

effect -0.158 -0.179 -0.154 0.186 0.0741 0.07 1.73 1.94 1.67
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Table 4: Statistical analysis - Kruskal-Wallis test - Full trial

Metric name
Learning Aftereffect Final performance

NF-PE NF-DF PE-DF NF-PE NF-DF PE-DF NF-PE NF-DF PE-DF

Exit point error

p model and χ2 p =0.804, χ2 = 0.436 p =NaN, χ2 = NaN p =NaN, χ2 =NaN

p 0.842 0.829 1 NaN NaN NaN NaN NaN NaN

effect -2.2 -2.3 -0.1 NaN NaN NaN NaN NaN NaN

Completion time

p model and χ2 p =0.581, χ2 = 1.09 p =0.802, χ2 = 0.441 p =0.917, χ2 =0.173

p 0.842 0.551 0.88 0.815 0.997 0.855 0.913 0.991 0.958

effect -2.2 -4.1 -1.9 2.4 0.3 -2.1 -1.6 -0.5 1.1

Total Force normalized

p model and χ2 p =0.112, χ2 = 4.38 p =NaN, χ2 = NaN p =NaN, χ2 =NaN

p 0.942 0.123 0.235 NaN NaN NaN NaN NaN NaN

effect -1.3 -7.7 -6.4 NaN NaN NaN NaN NaN NaN

Max force - Z axis

p model and χ2 p =0.907, χ2 = 0.196 p =0.244, χ2 = 2.82 p =0.164, χ2 =3.61

p 0.999 0.913 0.933 0.224 0.842 0.519 0.268 0.195 0.983

effect 0.2 1.6 1.4 6.5 2.2 -4.3 -6.1 -6.8 -0.7

Max force - XY plane

p model and χ2 p =0.625, χ2 = 0.939 p =0.708, χ2 = 0.692 p =0.208, χ2 =3.14

p 0.913 0.599 0.842 0.695 0.965 0.842 0.329 0.235 0.977

effect -1.6 -3.8 -2.2 3.2 1 -2.2 -5.6 -6.4 -0.8

Max torque - Z axis

p model and χ2 p =0.626, χ2 = 0.937 p =0.865, χ2 = 0.289 p =0.976, χ2 =0.049

p 0.679 0.679 1 0.913 0.994 0.867 0.983 1 0.977

effect -3.3 -3.3 0 -1.6 0.4 2 -0.7 0.1 0.8

DTW - force

p model and χ2 p =0.217, χ2 = 3.05 p =0.195, χ2 = 3.27 p =0.137, χ2 =3.97

p 0.801 0.195 0.519 0.711 0.567 0.168 0.246 0.16 0.972

effect -2.5 -6.8 -4.3 3.1 -4 -7.1 -6.3 -7.2 -0.9

Path length

p model and χ2 p =0.481, χ2 = 1.46 p =0.951, χ2 = 0.101 p =0.103, χ2 =4.54

p 0.972 0.488 0.631 0.95 0.972 0.997 0.384 0.711 0.0882

effect -0.9 -4.5 -3.6 1.2 0.9 -0.3 -5.2 3.1 8.3

Circle deviation

p model and χ2 p =0.266, χ2 = 2.65 p =0.298, χ2 = 2.42 p =0.0475, χ2 =6.09

p 0.235 0.742 0.647 0.442 0.316 0.972 0.0695 0.0989 0.987

effect 6.4 2.9 -3.5 4.8 5.7 0.9 8.7 8.1 -0.6

Plane deviation

p model and χ2 p =0.379, χ2 = 1.94 p =0.973, χ2 = 0.0542 p =0.584, χ2 =1.08

p 0.958 0.551 0.384 0.987 0.972 0.997 0.972 0.583 0.726

effect 1.1 -4.1 -5.2 -0.6 -0.9 -0.3 0.9 3.9 3

Angular path

p model and χ2 p =0.167, χ2 = 3.58 p =0.301, χ2 = 2.4 p =0.088, χ2 =4.86

p 0.342 0.913 0.168 0.695 0.268 0.742 0.16 0.987 0.117

effect -5.5 1.6 7.1 -3.2 -6.1 -2.9 7.2 -0.6 -7.8

DTW - position

p model and χ2 p =0.404, χ2 = 1.81 p =0.73, χ2 = 0.63 p =0.86, χ2 =0.302

p 0.902 0.384 0.647 0.786 0.999 0.757 0.987 0.923 0.855

effect -1.7 -5.2 -3.5 2.6 -0.2 -2.8 -0.6 1.5 2.1

1/6 power law α

p model and χ2 p =0.73, χ2 = 0.63 p =0.213, χ2 = 3.09 p =0.882, χ2 =0.25

p 0.786 0.999 0.757 0.726 0.186 0.583 0.88 0.933 0.991

effect 2.6 -0.2 -2.8 -3 -6.9 -3.9 1.9 1.4 -0.5

1/6 power law β

p model and χ2 p =0.882, χ2 = 0.25 p =0.334, χ2 = 2.19 p =0.671, χ2 =0.797

p 0.991 0.88 0.933 0.891 0.583 0.316 0.679 0.987 0.772

effect 0.5 1.9 1.4 1.8 -3.9 -5.7 3.3 0.6 -2.7

1/6 power law γ

p model and χ2 p =0.221, χ2 = 3.02 p =0.703, χ2 = 0.705 p =0.505, χ2 =1.37

p 0.958 0.235 0.37 0.923 0.891 0.679 0.472 0.829 0.829

effect -1.1 -6.4 -5.3 1.5 -1.8 -3.3 -4.6 -2.3 2.3

Jerk

p model and χ2 p =0.951, χ2 = 0.101 p =0.772, χ2 = 0.519 p =0.45, χ2 =1.6

p 0.997 0.972 0.95 0.772 0.855 0.987 0.695 0.902 0.427

effect 0.3 -0.9 -1.2 2.7 2.1 -0.6 -3.2 1.7 4.9
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A.2 Results for the extraction subtask

Figure 15: Summary of the dVRK teleoperation learning during the extraction subtask.

For each metric, median of difference between late teleoperation stage to early teleoperation

stage is presented. Each marker represent individual subject. Error bars shows median

of each group difference (NF, PE, and DF) and 95% bootstrap confidence interval. Grey

asterisks represent the result of a Wilcoxon sign rank test for difference from zero.
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Figure 16: Summary of the open needle driving aftereffect for the extraction subtask.

For each metric, median of difference between early stage in the second open needle driving

to late stage in the first open needle driving are presented. Each marker represent individual

subject. Error bars shows median of each group difference (NF, PE, and DF) and 95%

bootstrap confidence interval. Grey asterisks represent the result of a Wilcoxon sign rank

test for difference from zero.
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Figure 17: Summary of the dVRK teleoperation final performance compared to base-

line for the extraction subtask. For each metric, median of difference between late teleoper-

ation stage to late first open stage is presented. Each marker represent individual subject.

Error bars shows median of each group difference (NF, PE, and DF) and 95% bootstrap

confidence interval. Grey asterisks represent the result of a Wilcoxon sign rank test for

difference from zero.
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Table 5: Statistical analysis - Wilcoxon sign rank - Extraction subtask

Metric name
Learning Aftereffect Final performance

NF PE DF NF PE DF NF PE DF

Exit point error
p 0.375 0.0645 0.232 NaN NaN NaN NaN NaN NaN

effect 0.504 0.953 1 NaN NaN NaN NaN NaN NaN

Completion time
p 0.131 0.00195 0.00977 0.0645 0.00977 0.625 0.492 0.846 0.77

effect 0.605 2.12 2.08 -0.494 -0.726 -0.144 -0.32 0.027 -0.115

Total Force normalized
p 0.105 0.00977 0.00391 NaN NaN NaN NaN NaN NaN

effect 0.113 0.224 0.307 NaN NaN NaN NaN NaN NaN

Max force - Z axis
p 0.375 0.105 0.375 0.846 0.084 1 0.00391 0.00195 0.105

effect -0.513 -0.469 -0.267 -7.11E-05 -0.338 0.113 -2.24 -1.21 -0.889

Max force - XY plane
p 1 0.922 0.375 0.322 0.492 0.232 0.0195 0.00391 0.77

effect -0.0598 -0.103 0.16 -0.235 -0.21 -0.297 -0.828 -0.803 -0.0846

Max torque - Z axis
p 0.232 0.625 1 0.922 0.557 0.193 0.492 0.375 0.322

effect -3.23 -0.12 0.0869 0.158 0.277 1.03 -0.422 1.43 2.87

DTW - force
p 1 0.0137 0.00391 0.131 0.557 1 0.00586 0.00391 0.131

effect 94.8 215 1510 -45.1 -10.9 24 -291 -123 -61.3

Path length
p 0.105 0.846 0.0488 0.193 0.492 0.275 0.375 0.0273 0.0488

effect -0.00535 0.00361 0.00992 0.0038 0.00377 0.00324 0.00516 0.00916 0.0058

Circle deviation
p 0.432 0.375 0.16 0.695 0.557 0.375 0.00391 0.00195 0.00391

effect 5.71E-07 1.83E-07 1.03E-06 4.35E-06 -2.90E-06 -1.50E-06 8.96E-06 7.93E-06 3.63E-06

Plane deviation
p 0.193 0.131 0.846 0.084 0.77 0.625 0.557 0.0273 0.922

effect -2.68E-06 7.23E-07 -8.05E-07 -3.33E-06 -7.11E-07 1.40E-06 -2.17E-06 2.95E-06 1.18E-06

Angular path
p 0.131 0.00977 0.557 0.77 0.322 0.846 0.0273 0.557 0.232

effect 9 10.9 1.39 -10.9 -4.54 1.5 15.3 2.85 18.9

DTW - position
p 0.77 0.0273 0.00391 0.625 0.432 0.846 0.557 0.105 0.77

effect 0.00143 0.0122 0.0155 -0.00159 -0.00173 -0.00183 -0.00428 0.00201 0.00152

1/6 power law α
p 0.492 0.922 1 0.77 0.557 0.0371 0.557 0.0371 0.0273

effect -0.0683 -0.00676 -0.0126 0.0182 -0.0408 0.192 0.0592 0.103 0.212

1/6 power law β
p 0.322 0.432 0.16 0.557 0.625 0.0371 0.922 0.131 0.00977

effect 0.0164 0.0151 0.0123 -0.00851 -0.00366 0.018 -0.00382 0.0246 0.0263

1/6 power law γ
p 1 0.432 0.0488 0.625 0.625 0.0645 0.625 0.432 0.232

effect -0.00091 0.0134 0.0134 -0.00594 -0.00497 0.0081 0.000298 0.0104 0.013

Jerk
p 0.0488 0.131 0.084 0.275 0.432 1 0.00195 0.00195 0.00391

effect -0.382 -0.24 -0.249 0.169 0.119 -0.032 1.52 2 1.6
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Table 6: Statistical analysis - Kruskal-Wallis test - Extraction subtask

Metric name
Learning Aftereffect Final performance

NF-PE NF-DF PE-DF NF-PE NF-DF PE-DF NF-PE NF-DF PE-DF

Exit point error

p model and χ2 p =0.804, χ2 = 0.436 p =NaN, χ2 = NaN p =NaN, χ2 =NaN

p 0.842 0.829 1 NaN NaN NaN NaN NaN NaN

effect -2.2 -2.3 -0.1 NaN NaN NaN NaN NaN NaN

Completion time

p model and χ2 p =0.119, χ2 = 4.25 p =0.581, χ2 = 1.09 p =0.798, χ2 =0.452

p 0.488 0.0989 0.631 0.842 0.88 0.551 0.867 0.991 0.801

effect -4.5 -8.1 -3.6 2.2 -1.9 -4.1 -2 0.5 2.5

Total Force normalized

p model and χ2 p =0.104, χ2 = 4.53 p =NaN, χ2 = NaN p =NaN, χ2 =NaN

p 0.786 0.0934 0.329 NaN NaN NaN NaN NaN NaN

effect -2.6 -8.2 -5.6 NaN NaN NaN NaN NaN NaN

Max force - Z axis

p model and χ2 p =0.924, χ2 = 0.157 p =0.167, χ2 = 3.58 p =0.0794, χ2 =5.07

p 1 0.942 0.933 0.224 1 0.235 0.152 0.105 0.983

effect 0.1 -1.3 -1.4 6.5 0.1 -6.4 -7.3 -8 -0.7

Max force - XY plane

p model and χ2 p =0.703, χ2 = 0.705 p =0.991, χ2 = 0.0181 p =0.106, χ2 =4.48

p 0.891 0.679 0.923 0.991 0.994 1 0.987 0.137 0.186

effect -1.8 -3.3 -1.5 0.5 0.4 -0.1 -0.6 -7.5 -6.9

Max torque - Z axis

p model and χ2 p =0.557, χ2 = 1.17 p =0.389, χ2 = 1.89 p =0.985, χ2 =0.031

p 0.535 0.772 0.923 0.815 0.726 0.356 0.987 0.987 1

effect -4.2 -2.7 1.5 2.4 -3 -5.4 -0.6 -0.6 0

DTW - force

p model and χ2 p =0.0372, χ2 = 6.58 p =0.374, χ2 = 1.97 p =0.486, χ2 =1.44

p 0.384 0.0278 0.427 0.695 0.342 0.829 0.88 0.457 0.757

effect -5.2 -10.1 -4.9 -3.2 -5.5 -2.3 -1.9 -4.7 -2.8

Path length

p model and χ2 p =0.0247, χ2 = 7.4 p =0.935, χ2 = 0.134 p =0.781, χ2 =0.495

p 0.427 0.018 0.304 0.994 0.965 0.933 0.815 1 0.815

effect -4.9 -10.7 -5.8 -0.4 1 1.4 -2.4 0 2.4

Circle deviation

p model and χ2 p =0.798, χ2 = 0.452 p =0.379, χ2 = 1.94 p =0.196, χ2 =3.25

p 0.991 0.867 0.801 0.384 0.551 0.958 1 0.268 0.257

effect 0.5 -2 -2.5 5.2 4.1 -1.1 -0.1 6.1 6.2

Plane deviation

p model and χ2 p =0.298, χ2 = 2.42 p =0.42, χ2 = 1.74 p =0.113, χ2 =4.35

p 0.268 0.786 0.647 0.615 0.412 0.942 0.13 0.958 0.224

effect -6.1 -2.6 3.5 -3.7 -5 -1.3 -7.6 -1.1 6.5

Angular path

p model and χ2 p =0.0979, χ2 = 4.65 p =0.703, χ2 = 0.705 p =0.391, χ2 =1.88

p 1 0.145 0.152 0.923 0.891 0.679 0.427 0.991 0.503

effect 0.1 7.4 7.3 1.5 -1.8 -3.3 4.9 0.5 -4.4

DTW - position

p model and χ2 p =0.114, χ2 = 4.35 p =0.756, χ2 = 0.56 p =0.324, χ2 =2.25

p 0.503 0.0934 0.599 1 0.801 0.786 0.316 0.535 0.923

effect -4.4 -8.2 -3.8 0.1 -2.5 -2.6 -5.7 -4.2 1.5

1/6 power law α

p model and χ2 p =0.917, χ2 = 0.173 p =0.099, χ2 = 4.62 p =0.745, χ2 =0.588

p 0.913 0.991 0.958 0.913 0.235 0.105 0.95 0.891 0.726

effect -1.6 -0.5 1.1 1.6 -6.4 -8 1.2 -1.8 -3

1/6 power law β

p model and χ2 p =0.921, χ2 = 0.165 p =0.18, χ2 = 3.42 p =0.716, χ2 =0.668

p 0.977 0.913 0.977 0.994 0.224 0.268 0.829 0.711 0.977

effect 0.8 1.6 0.8 -0.4 -6.5 -6.1 -2.3 -3.1 -0.8

1/6 power law γ

p model and χ2 p =0.44, χ2 = 1.64 p =0.384, χ2 = 1.91 p =0.823, χ2 =0.39

p 0.647 0.427 0.933 0.972 0.398 0.535 0.829 0.88 0.994

effect -3.5 -4.9 -1.4 -0.9 -5.1 -4.2 -2.3 -1.9 0.4

Jerk

p model and χ2 p =0.652, χ2 = 0.854 p =0.852, χ2 = 0.32 p =0.443, χ2 =1.63

p 0.695 0.711 1 0.933 0.842 0.977 0.503 1 0.519

effect -3.2 -3.1 0.1 1.4 2.2 0.8 -4.4 -0.1 4.3
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B Appendix: Jerk metrics analysis

Jerk is the 3rd derivative of the movement, and is used as a measure for movement

smoothness. The lower the jerk, the smoother the movement. There are several

suggested methods to calculate the jerk of a movement [46]. In this appendix, we

present an analysis on the correlation between the different methods to calculate the

jerk to completion time and path length. We analyze the methods presented in [46].

We use the data of the insertion subtask recorded in the teleoperation setup

of the experiment. Each data point includes the calculated jerk, path length, and

completion time of each insertion subtask movement, total of 1800 data points (60

trials for each one of the 30 participants). We calculate the jerk with 6 different

methods: (1) root mean squared jerk, (2) dimensionless jerk, (3) integrated squared

jerk, (4) mean squared jerk normalized by peak speed, (5) integrated absolute jerk,

and (6) mean squared absolute jerk normalized by peak speed.

For each method to calculate the jerk, we present a figure that includes two graphs

- the jerk of the movement vs completion time and the jerk of the movement vs path

length. We present the correlation between the jerk and time and between the jerk

and path length for each feedback condition (no feedback - NF, position exchange -

PE, and direct feedback - DF).

68



Figure 18: Results for root mean squared jerk

Figure 19: Results for dimensionless jerk
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Figure 20: Results for integrated squared jerk

Figure 21: Results for mean squared jerk normalized by peak speed
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Figure 22: Results for integrated absolute jerk

Figure 23: Results for mean absolute jerk normalized by peak speed

In this study, we use the root mean squared jerk method.This method normalizes

the jerk by movement duration, and has units of jerk. As a result, this jerk metric
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is less correlated with completion time. Because the jerk metric spans over several

orders of magnitudes, we present and analyze the logarithm of the metric.
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 תקציר

מערכות ניתוח רובוטי זעיר פולשני מספקות יתרונות רבים למנתח ולמנותח בהשוואה לניתוח 

יחד עם זאת, מתן משוב כוח, אשר מהווה חלק חיוני בהצלחת פרוצדורות פתוח וניתוח לפרוסקופי. 

אתגר לא פתור ומרבית המערכות הקליניות לניתוח רובוטי זעיר פולשני  מהווהניתוחיות רבות, 

על הביצועים והלמידה של המנתח יכולה הבנת ההשפעה של משוב כוח  אינן מספקות משוב כוח.

 מרחוק. הפעלהלהיות שימושית בפיתוח של אלגוריתמים למתן משוב כוח ולבקרה של מערכות 

לא מנוסים תחת מצבים שונים של משוב כוח במטלה  קיםנבדבמחקר זה בחנו את הביצועים של 

פיון בנינו מערכת ניסוי לא רקמה מלאכותית. –של החדרת מחט ניתוחית לאובייקט הומוגני רך 

הנבדקים  ותית.לאכעל הרקמה המ שהנבדקים הפעילווהכוחות של הנבדקים מסלולי התנועה 

וחי רגיל, לאחר מכן ביצעו את המטלה ביצעו תחילה את המטלה במצב פתוח, עם מחזיק מחט נית

( משוב כוח מבוסס 2( ללא משוב כוח, )1בהפעלה מרחוק באחד משלושה תנאים של משוב כוח: )

כוח שהוקלט באופן ישיר מחיישן כוח, ( ומשוב 3, )(Position exchange) על שגיאת מיקום הרובוט

על מנת לכמת את ההשפעה של  מחט במצב פתוח.הלבסוף חזרו לבצע את המטלה עם מחזיק 

מטריקות חדשות המצבים השונים של משוב הכוח על איכות ביצוע מטלת החדרת המחט, פיתחנו 

בנוסף  כוחות האינטראקציה עם הרקמה.את על מנת לאמוד את הקינמטיקה של החדרת המחט ו

 ום המטלה.למטריקות שפיתחנו, השתמשנו גם במטריקות קלאסיות כגון: הצלחה במשימה וזמן סי

את השיפור עבור כל מצב של משוב כוח, ניתחנו את הביצועים הסופיים במערכת ההפעלה מרחוק, 

מרחוק על ביצוע המטלה  את ההשפעה של השימוש במערכת הפעלהמרחוק, ו במהלך ההפעלה

בביצועים הסופיים  הקבוצות 3בין  כי אין הבדל מובהקמצאנו  במצב פתוח באמצעות מחזיק מחט.

המצב הפתוח. בחלק מהמטריקות שבחנו, רק שני המצבים בהם מרחוק על  הפעלהפעה של ובהש

הנבדקים קיבלו משוב כוח הציגו שיפור מובהק סטטיסטית במהלך ההפעלה מרחוק, אך כאשר 

 לא הגיע הקבוצות של מתן משוב הכוח, אף אחד מהאפקטים 3ביצענו השוואה בין השיפור של 

דנים בסיבות אפשריות לביצועים הדומים יחסית בין מצבי משוב  אנחנו טית.סלמובהקות סטטי

הכוח. לסיכום, פיתחנו מספר מטריקות חדשות לבחינת איכות ביצוע החדרת מחט ניתוחית, אך 

משוב כוח למטלה שדורשת מתן של שיטות עדכניות ל החדשות, היתרון גם עם המטריקות

 בספק.אקציה עם רקמה הומוגנית רכה מוטל אינטר
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