
SAMPLING IN DIRICHLET PROCESS MIXTURE MODELS FOR CLUSTERING STREAMING DATA

Or Dinari and Oren Freifeld
The Department of Computer Science, Ben-Gurion University, Israel

SAMPLING IN DIRICHLET PROCESS MIXTURE MODELS FOR CLUSTERING STREAMING DATA

Or Dinari and Oren Freifeld
The Department of Computer Science, Ben-Gurion University, Israel

Streaming-data Clustering: Challenges

• Possibly-infinite data stream.

• New data arriving rapidly.

• Need to be able to provide an estimate of the model at any given time.

• Data statistics are usually non-stationary:

– Clusters may appear/disappear.
– Cluster properties (e.g., centers) can change with time.
– Cluster weights can change with time.

Streaming-data Clustering: Example

O
rig

in
al

M
B

K
(K

=3
0)

M
B

K
(K

=8
0)

M
B

K
(K

=5
00

)
S

cS
tre

am

Figure 1: Video segmentation (example frames). Results shown for MiniBatch-Kmeans (denoted as MBK) with several
different K values, as well as for ScStream (which inferred 80 clusters).

• Frames arrive rapidly.

• Each frame is a batch, consisting of 410K samples, each of which is a 5D vector (RGBXY).

• Cluster statistics change over time (e.g. the surfer location).

• Need consistent labeling across frames.

Can the Dirichlet Process Mixture Model (DPMM) be used for
Clustering Streaming Data?

Pros:

• Can instantiate new clusters as the stream evolves.

• Highly flexible, can handle different data types
(e.g. components can be Gaussians, multinomials, etc.).

Cons:

• Cannot handle concept drifts very well.

• Cannot forget old data.

• Even in SOTA methods (e.g., [Dinari et al ., HPML 2019]), inference is too slow rapid data streams.

References
[1] Marcel R Ackermann et al. “Streamkm++ a clustering algorithm for data streams”. In: Journal of Experimental Algo-
rithmics (2012).

[2] Charu C Aggarwal et al. “A framework for clustering evolving data streams”. In: Proceedings 2003 the Very Large
Data Bases conference. Elsevier. 2003.

[3] Jason Chang and John W Fisher III. “Parallel sampling of DP mixture models using sub-cluster splits”. In: NeurIPS.
2013.

[4] Yixin Chen and Li Tu. “Density-based clustering for real-time stream data”. In: ACM SIGKDD international conference
on Knowledge discovery and data mining. 2007.

[5] Or Dinari et al. “Distributed MCMC inference in Dirichlet process mixture models using Julia”. In: IEEE CCGRID
Workshop on High Performance Machine Learning. 2019.

[6] Michael Hahsler and Matthew Bolaños. “Clustering data streams based on shared density between micro-clusters”.
In: IEEE Transactions on Knowledge and Data Engineering (2016).

[7] Matthew D Hoffman et al. “Stochastic variational inference.” In: Journal of Machine Learning Research (2013).
[8] Yisroel Mirsky et al. “pcstream: A stream clustering algorithm for dynamically detecting and managing temporal
contexts”. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer. 2015.

[9] David Sculley. “Web-scale k-means clustering”. In: WWW. 2010.
[10] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. “BIRCH: an efficient data clustering method for very large
databases”. In: ACM sigmod record (1996).

The Proposed Solution: ScStream

• Based in part on a SOTA DPMM sampler [3] and its highly-efficient distributed implementation [5].

• Uses weighted batched sufficient statistics for calculating the posterior.

• Combines the iterative sampling with an additional iteration that uses a deterministic subroutine based on the predictive posterior.

ScStream Satisfies the Following Desiderata

• Fast.

• Does not need to revisit previously-processed data.

• Can modify the number of clusters as needed.

• Supports non-stationary cluster statistics.

• No label switching.

• Efficient memory use.

Weighted Batched Sufficient Statistics

Consider Gaussian components with a Normal Inverse Wishart prior, NIW(κ,m, ν,Ψ) . In the DPMM, the posterior for cluster k, NIW(κ∗k,m
∗
k, ν
∗
k,Ψ

∗
k) . is calculated via

κ∗k = κ + Nk ν∗k = ν + Nk m∗k =
1

κ∗k
κm +

∑N

i=1
xi1zi=k Ψ∗k =

1

ν∗k
νΨ +

∑N

i=1
xix

T
i 1zi=k (1)

Since we work with batches, we replace these expressions with

κ∗k = κ + NB
k ν∗k = ν + NB

k m∗k =
1

κ∗k

(
κm +

∑B

b=q

[
K(B, b)

∑
xi∈Xb

xi1zi=k

])
Ψ∗k =

1

ν∗k

(
νΨ +

∑B

b=q

[
K(B, b)

∑
xi∈Xb

xix
T
i 1zi=k

])
(2)

where K(B, b) is a weighting function (the older the batch, the lower its weight), B is the index of the current batch and b is the index of an older batch.
Other exponential families (e.g., multinomials) are handled similarly.

The Algorithm

Algorithm 1: ScStream
Input: H, α, K, ε,T
Data: Stream X

1 X1 ←X.next
2 C1 ← X1

3 K ← 1
4 Randomly partition C1 into subclusters C1,1 and C1,2

5 q ← 1
6 Extract h1:1

1 = (s1
1, n

1
1), h̄

1:1
1,1 = (s̄1

1,1, n̄
1
1,1) and h̄1:1

1,2 = (s̄1
1,2, n̄

1
1,2) from (C1, C1,1, C1,2)

7 M← (h1:1
1 , h̄

1:1
1,1, h̄

1:1
1,2)

8 while Not Converged do
9 K,M←algorithm 2(X1;H,α,K,K,∞, _, q, B,M)

10 while XB ←X.next do
11 (h

q:(B−1)
k , h̄

q:(B−1)
k,1 , h̄

q:(B−1)
k,2)Kk=1 ←M

12 q ← min {b : b ∈ {1, . . . , B},K(B, b) > ε}
13 M← (hq:B−1

k , h̄q:B−1
k,1 , h̄q:B−1

k,2)Kk=1

14 for t = 1 : T + 1 do
15 K,M←algorithm 2(XB;H,α, . . . , t, q, B,M)
16 YieldM

Algorithm 2: Iteration of the Modified DPMM Sampler

Input: H, α, K, K,T ,t, q,B,M = (hq:Bk , (h̄q:Bk,j)j∈{1,2})
K
k=1

Output: K ′,M′

Data: XB

1 if t < T + 1 then
2 (hq:B1 , h̄q:B1,1 , h̄

q:B
1,2)←M

3 Compute (SBk)Kk=1 and (NB
k)Kk=1

4 1 iteration of the restricted sampler using (SBk)Kk=1 and (NB
k)Kk=1

5 else

6 π ←


 NB

1
K∑
k=1

NB
k +α

, . . . , NB
K

K∑
k=1

NB
k +α

, α
K∑
k=1

NB
k +α




7 for k ∈ {1, . . . , K} do

8 π̄k ←
(α

2+N̄B
k,1

α+
∑

s={1,2} N̄
B
k,s
,

α
2+N̄B

k,2

α+
∑

s={1,2} N̄
B
k,s

)

9 for xi ∈ XB do
10 zi← arg max

k∈{1,...,K}
πkp(zi = k|xi, H, SBk , NB

k)

11 z̄i← arg max
j∈{1,2}

π̄zip(z̄i = j|xi, H, S̄Bzi,j, N̄B
zi,j

)

12 for k ∈ {1, . . . , K} do
13 Extract (sBk , n

B
k), (s̄Bk,1, n̄

B
k,1) and (s̄Bk,2, n̄

B
k,2) (from Ck, C̄k,1 and C̄k,2,

respectively) and update (hq:Bk , h̄q:Bk,1 , h̄
q:B
k,2) accordingly

14 for k ∈ {1, . . . , K} do
15 Propose splitting Ck to its subsclusters and accept the split with probability

min(1, Hsplit)
16 for k, k′ ∈ {1, . . . , K} do
17 Propose merging Ck and Ck′ and accept the merge with probability

min(1, Hmerge)

18 M′← (hq:Bk , (h̄q:Bk,j)j∈{1,2})
K ′
k=1 where K ′ is the new number of clusters

Our ScStream Code is Publicly Available with Support for either Julia or Python

• Julia: github.com/BGU-CS-VIL/DPMMSubClustersStreaming.jl

• Python: github.com/BGU-CS-VIL/dpmmpythonStreaming

Experiments and Results

BIRCH CluStream† D-Stream DBSTREAM StreamKM++†
Mini Batch
K-Means†

pcStream SoVB
ScStream
(Ours)

DPMM
Sampler

2D Gaussians

ARI:
NMI:
Purity:
F-Measure:
Full-NMI:

.81± .12

.89± .04

.83± .06

.84± .10
N/A

.86± .11

.94± .03

.94± .03

.88± .09
N/A

.88± .16

.94± .05

.91± .09

.90± .13
N/A

.90± .11

.94± .04

.91± .06

.91± .09
N/A

.53± .11

.71± .05

.57± .05

.61± .08
N/A

.82± .09

.89± .03

.83± .05

.85± .08

.48± .00

.60± .12

.76± .07

.70± .08

.66± .10

.37

.58± .11

.75± .05

.68± .06

.65± .09

.52

.93± .08

.95± .03

.92± .05

.94± .07

.68± .01

.92± .14

.94± .10

.91± .10

.93± .11
N/A

CoverType

ARI:
NMI:
Purity:
F-Measure:
Full-NMI:

.07± .08

.14± .09

.66± .10

.44± .10
N/A

.10± .07

.19± .09

.71± .11

.33± .05
N/A

.07± .11

.19± .11

.70± .10

.58± .14
N/A

.10± .13

.18± .15

.68± .11

.60± .13
N/A

.09± .09

.15± .08

.68± .11

.42± .10
N/A

.07± .06

.13± .06

.66± .12

.37± .06

.06± .01

.03± .02

.20± .07

.79± .08

.11± .05

.08

.10± .09

.13± .10

.66± .13

.48± .08

.01

.15± .11

.21± .14

.71± .11

.47± .08

.13± .01

.10± .11

.16± .12

.67± .12

.48± .09
N/A

ImageNet100

ARI:
NMI:
Purity:
F-Measure:
Full-NMI:

.21± .11

.35± .11

.64± .12

.39± .08
N/A

.30± .13

.45± .09

.75± .12

.44± .10
N/A

N/A
N/A
N/A
N/A
N/A

.13± .15

.22± .17

.43± .13

.43± .09
N/A

.55± .15

.62± .09

.91± .06

.62± .14
N/A

.49± .17

.58± .12

.87± .09

.57± .15

.57± .02

.20± .09

.33± .08

.66± .10

.33± .09

.26

.31± .18

.45± .20

.49± .13

.55± .11

.23

.63± .19

.69± .15

.78± .14

.73± .12

.48± .01

.64± .28

.72± .24

.74± .22

.76± .17
N/A

ImageNet1K

ARI:
NMI:
Purity:
F-Measure:
Full-NMI:

N/A
N/A
N/A
N/A
N/A

.30± .14

.45± .10

.74± .14

.44± .09
N/A

N/A
N/A
N/A
N/A
N/A

.30± .16

.40± .14

.62± .13

.48± .11
N/A

N/A
N/A
N/A
N/A
N/A

.45± .12

.59± .07

.97± .03

.51± .12

.63± .01

.19± .07

.38± .06

.76± .08

.28± .09

.30

.00± .02

.00± .02

.25± .04

.38± .04

.00

.62± .17

.68± .13

.78± .13

.72± .12

.41± .02

N/A
N/A
N/A
N/A
N/A

100D Multinomials

ARI:
NMI:
Purity:
F-Measure:
Full-NMI:

N/A
N/A
N/A
N/A
N/A

.00± .01

.11± .05

.09± .03

.04± .01
N/A

N/A
N/A
N/A
N/A
N/A

.00± .00

.00± .00

.03± .00

.04± .01
N/A

.34± .24

.65± .16

.53± .25

.35± .24
N/A

.41± .24

.69± .16

.61± .25

.42± .24

.54± .01

N/A
N/A
N/A
N/A
N/A

.21± .14

.52± .14

.31± .15

.23± .13

.27

.78± .24

.89± .12

.84± .20

.78± .24

.72± .01

.45± .22

.62± .30

.53± .25

.46± .22
N/A

20NewsGroup

ARI:
NMI:
Purity:
F-Measure:
Full-NMI:

N/A
N/A
N/A
N/A
N/A

.00± .00

.12± .02

.13± .02

.10± .00
N/A

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

.01± .00

.07± .01

.11± .01

.10± .00
N/A

.01± .00

.09± .01

.12± .01

.09± .00

.05± .01

N/A
N/A
N/A
N/A
N/A

.06± .01

.20± .02

.13± .01

.14± .01

.17

.13± .01

.36± .03

.28± .02

.20± .01

.32± 0.03

.12± .01

.33± .02

.24± .02

.19± .01
N/A

† Parametric methods given the true K.

Table 1: Comparing our method (ScStream) with BIRCH [10], CluStream [2], D-Stream [4], DBSTREAM [6], StreamKM++ [1], Mini Batch K-Means [9], pcStream [8], SoVB [7]. Also
included is DPMM sampler [5]. N/A indicates that a method did not scale enough or lacks support for the data type.

BIRCH CluStream† D-Stream DBSTREAM StreamKM++†
Mini Batch
K-Means†

pcStream SoVB
ScStream
(Ours)

DPMM
Sampler

2D Gaussians 112.5 31.3 24.7 17.0 15.4 1.4 1020.7 53.3 22.9 589.5
CoverType 95.8 45.9 1723.8 12.1 25.5 0.8 1610.3 115.6 6.1 254.8
ImageNet100 57.9 66.7 N/A 65.2 242.7 12.0 15.7 100.5 23.1 1039.9
ImageNet1K N/A 1454 N/A 814 N/A 148 195 9219 1005 N/A
100D Multinomials N/A 44.7 N/A 12.9 25.5 0.8 N/A 115.6 23.5 254.8
20NewsGroup N/A 71.9 N/A N/A 61.1 0.2 N/A 3.1 12.7 122.6
† Parametric methods given the true K.

Table 2: Running time (in seconds)

BIRCH

CluStre
am

D-Stre
am

DBSTREAM

Stre
amKM++

MB-K
means

pcStre
am

SoVB

ScStre
am

(O
urs)

0.00

0.20

0.40

0.60

0.80

1.00

(a) Gaussian 2D

BIRCH

CluStre
am

D-Stre
am

DBSTREAM

Stre
amKM++

MB-K
means

pcStre
am

SoVB

ScStre
am

(O
urs)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

(b) CoverType

BIRCH

CluStre
am

DBSTREAM

Stre
amKM++

MB-K
means

pcStre
am

SoVB

ScStre
am

(O
urs)

0.00

0.20

0.40

0.60

0.80

1.00

(c) ImageNet100

CluStre
am

DBSTREAM

MB-K
means

pcStre
am

SoVB

ScStre
am

(O
urs)

0.00

0.20

0.40

0.60

0.80

1.00

(d) ImageNet1K

CluStre
am

DBSTREAM

Stre
amKM++

MB-K
means

SoVB

ScStre
am

(O
urs)

0.00

0.20

0.40

0.60

0.80

1.00

(e) Multinomial

CluStre
am

Stre
amKM++

MB-K
means

SoVB

ScStre
am

(O
urs)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(f) 20NewsGroups

Figure 2: Box plots of the ARI metric for each of the experiments.

