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Abstract 
 

This document is located on the cluster in the ‘/storage’ directory and being updated from time to time. 

Please make sure you have the most recent version. 
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BGU ISE, DT and CS departments have two Slurm clusters – a GPU cluster and a CPU cluster. The cluster 

is a job scheduler and resource manager. It consists of a manager node and several compute nodes. 

The manager node is a shared resource used for launching, monitoring, and controlling jobs and should 

NEVER be used for computational purposes. 

The compute nodes are powerful Linux machines. 

The user connects to the manager node and launches jobs that are executed by compute nodes. 

A job is allocation of compute resources such as RAM memory, cpu cores, etc. for a limited time. A job 

may consist of job steps which are tasks within a job. 

In the following pages, Italic writing is saved for Slurm command line commands. 

You may find abundance of information regarding Slurm, on the web. 
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Use 
 

o Make sure you got admission to the cluster by your IT team. 

o Ssh to the Manager Node: 132.72.65.199 

o Use your BGU user name and password to login to the manager node. The default path is to 

your home directory on the storage. 

o Python users: create your virtual environment on the manager node. 

o If you copy files to your home directory, don’t forget about file permissions. E.g. files that need 

execution permissions, do: chmod +x <path to file> 

o Remember that the cluster is a shared resource. Currently, users are trusted to act with 

responsibility in regards to the cluster usage – i.e. release unused allocated resources (with 

scancel), not allocate more than needed resources, erase unused files and datasets, etc. Please 

release the resources even if you are taking a few hours break from interactively using them. 

o Anaconda3 is already installed on the cluster. 

o Please read thoroughly, the following page or two. If you are clueless about Linux, Conda and 

the rest of the environment then use the Step by Step Guide for First Use page. 
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Submitting a Job 
sbatch <batch file name> 

❖ Conda users: Make sure you submit the job while virtual environment deactivated on the 

manager node (‘conda deactivate’)! 

 

 

Batch File 
The batch file should look like the following: 

 
Example sbatch file location on cluster: /storage/sbatch_cpu.example  

Should you need the IT team’s support, in your request remember to state the job id and include the 

sbatch file and the output file. 

 

#!/bin/bash 

### sbatch config parameters must start with #SBATCH and must precede any other command. to ignore just add another # - like so ##SBATCH 

#SBATCH --partition main                         ### specify partition name where to run a job. main - 7 days time limit 

#SBATCH --time 0-01:30:00                      ### limit the time of job running. Make sure it is not greater than the partition time limit!! Format: D-H:MM:SS 

#SBATCH --job-name my_job                   ### name of the job. replace my_job with your desired job name 

#SBATCH --output my_job-id-%J.out                ### output log for running job - %J is the job number variable 

#SBATCH --mail-user=user@post.bgu.ac.il      ### users email for sending job status notifications 

#SBATCH --mail-type=BEGIN,END,FAIL             ### conditions when to send the email. ALL,BEGIN,END,FAIL, REQUEU, NONE 

##SBATCH --cpus-per-task=6 # 6 cpus per task – use for multithreading, usually with --tasks=1 

##SBATCH --tasks=2  # 2 processes – use for processing of few programs concurrently in a job  (with srun). Use just 1 otherwise 

 

### Print some data to output file ### 

echo "SLURM_JOBID”=$SLURM_JOBID 

echo "SLURM_JOB_NODELIST"=$SLURM_JOB_NODELIST 

 

### Start you code below  #### 

module load anaconda               ### load anaconda module 

source activate my_env             ### activating Conda environment, environment must be configured before running the job 

python my.py my_arg     ### execute python script – replace with your own command   
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Allocating Resources 
Since the resources are expensive and in high demand, you should make use of the minimum possible 

RAM. If your code makes use of 30G then by all means, do NOT ask for 50G! (to tell how much RAM was 

used, when the job completes, use: sacct -j <jobid> --format=JobName,MaxRSS). 

Same goes for the number of CPUs. There is no need to allocate more cores than threads. 
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Information about the compute nodes 
sinfo shows cluster information.  

sinfo -Nel 

 NODELIST – name of the node 

S:C:T - sockets:cores:threads 

 

List of My Currently Running Jobs 
squeue --me 

 

Cancel Jobs 
scancel <job id> 

scancel --name <job name> 

Cancel All Pending jobs for a Specific User 
scancel -t PENDING -u <user name> 

 

Running Job Information 
Use sstat. Information about consumed memory: 

sstat -j <job_id> --format=MaxRSS,MaxVMSize 

scontrol show job <job_id> 

 

Complete Job Information 
sacct -j <jobid> 
sacct -j <jobid> --

format=JobName,MaxRSS,State,Elapsed,Start,ExitCode,DerivedExitcode,Comment 

MaxRSS is the maximum memory the job needed. 
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Advanced Topics 
 

Jupyter Lab 
 

Installation 
conda install jupyterlab 

 

Make the Conda Environment Available in Notebook’s Interface 
python -m ipykernel install --user --name <conda environment> --display-name "<env name to show in 

web browser>" 

e.g.: 

python -m ipykernel install --user --name my_env --display-name "my best env” 

Don’t forget to choose the right kernel while in the notebook. 

 

Release Job Resources from Within Jupyter After Code Has Finished Running 
Add the following 3 lines at the end of your code to make the code release the job resources when 

done: 

Import os 

job_cancel_str="scancel " + os.environ['SLURM_JOBID'] 

os.system(job_cancel_str) 

 

 

How to add ipywidgets to Jupyter Lab 
Create a Conda environment with ipywidgets and install as lab extension: 

conda create -n tqdm -c conda-forge jupyterlab nodejs widgetsnbextension ipywidgets -y 

conda activate tqdm 

pip install tqdm==4.32.1 ipykernel 

python -m ipykernel install --user --name tqdm --display-name "Python (tqdm)" 

jupyter labextension install @jupyter-widgets/jupyterlab-manager 

conda deactivate 
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Tensorboard 
Run: 

tensorboard --port=9989 --logdir logs/fit 

If port 9989 occupied, choose another random port of the range 9980-9999. 

Open your web browser here: http://132.72.X.Y:9989 / (change X, Y to form your compute node 

address). 

If you cannot access Tensorboard then add, as another parameter: --bind-all 

 

 

Working with Notebooks 
Working with notebooks is interactive. If you closed your browser tab while a notebook’s cell is running, 

it keeps running on the cluster, but you will lose the output. On the other hand, it is not always possible 

to leave your browser open. The simple solutions to that are either to write variable values and results 

into a file or to run the code as a python script instead of using a notebook. 

In Ipython 6.0 and higher you can use %capture cell magic to save all output to file. Use the following 

line as the very first line of the cell:   %%capture cap_out 

Then, in order to save to variable, on the cell’s last line:  var = cap_out.stdout 

If you rather print to file then:   with open('cap_output.txt', 'w') as f: 

      f.write(cap_out.stdout) 

When you come back to the notebook you can print the content of var or cap_out.show() in another 

cell. 

 

  

http://132.72.x.y:9989/
http://132.72.x.y:9989/
http://132.72.x.y:9989/
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Allocate Extra RAM/CPUs 
In your sbatch file: 

To override default ram: 

#SBATCH --mem=58G 

 

To override default cpu number 

#SBATCH --cpus-per-task=16 
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Working with the Compute Node SSD Drive 
You may want to use the compute node local drive for fast access to data.  /scratch directory on the 

compute node is intended for that. 

Add to the sbatch script file: 

#SBATCH --tmp=100G             ### Asks to allocate enough space on /scratch 

Then in users code section: 

export SLURM_SCRATCH_DIR=/scratch/${SLURM_JOB_USER}/${SLURM_JOB_ID} 

cp /storage/*.img $SLURM_SCRATCH_DIR                           ### copy data TO node’s local storage 

mkdir $SLURM_SCRATCH_DIR/testtttt 

… 

some user code 

… 

cp -r $SLURM_SCRATCH_DIR $SLURM_SUBMIT_DIR       ### copy back final results to user home 

or other accessible location 

When job has finished, canceled or failed, ALL data in $SLURM_SCRATCH_DIR is erased! This temp folder 

lives with running jobs only! 
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Job Arrays 
Job array feature allows you to run identical version of your script with different environment variables. 

This is useful for parameter tuning or averaging results over seeds. 

To use job array, add the following line to your Slurm batch file: 

#SBATCH --array=1-10 ### run parallel 10 times 

Adding this will run your script 10 times in parallel, actually creating 10 jobs where each job gets the 

requested resources, e.g., if you requested 6 CPUs then each job shall get 6 CPUs. The environment 

variable SLURM_ARRAY_TASK_ID for each run will have different values (from 1 to 10 in this case). You 

can then set different parameter setting for each parallel run based on this environment variable. 

Remember to change #SBATCH --output=your_output.out to #SBATCH --

output=output_file_name_%A_%a.out, so the output of each parallel run be directed to a different file. 

%a will be replaced by the corresponding SLURM_ARRAY_TASK_ID for each run. %A will be replaced by 

the master job id. 

To get the above SLURM_ARRAY_TASK_ID variable in python: 

Import sys 

jobid = sys.getenv('SLURM_ARRAY_TASK_ID') 

In R: 

task_id <- Sys.getenv("SLURM_ARRAY_TASK_ID") 

 

Send Name of an Input File to Each Task 
For example, if the input files end in .txt  

file=$(ls *.txt | sed -n ${SLURM_ARRAY_TASK_ID}p) 

myscript -in $file 

 

 

Read a Line from an Input File for Each Task 
SAMPLE_LIST=($(<input.list)) 

SAMPLE=${SAMPLE_LIST[${SLURM_ARRAY_TASK_ID}]} 

 

Email Notifications 
If you would like to receive an email for each task in the array, rather than just for the whole job: 

#SBATCH --mail-type=BEGIN,END,FAIL,ARRAY_TASKS  
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Limiting the Number of Simultaneously Running Tasks from the Job Array 
For example, to limit the number of simultaneously running tasks from a 15 jobs job array to 4: 

#SBATCH --array=0-15%4 
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Job Dependencies 
Job dependencies are used to defer the start of a job based on other job’s condition. 

sbatch --dependency=after:<other_job_id> <sbatch_script>   ### start job after other_job started 
sbatch --dependency=afterok:<other_job_id> <sbatch_script>   ### start job after other_job ends with ok 

status. E.g. sbatch --dependency=afterok:77:79 my_sbatch_script.sh -> start after both job 77 and 79 
have finished 

sbatch --dependency=singleton     ### This job can begin execution after any previously launched jobs, 
sharing the same job name and user, have terminated 
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IDEs 

 

pyCharm 
Make sure you have pyCharm Professional installed (free for students/academy people). 

Create an interactive session:  

Ssh to Slurm and copy the script file /storage/pycharm.sh to your working Slurm directory. 

You can modify the following lines at the beginning of the file (just make sure GPU=0): 

######################################## 

# USER MODIFIABLE PARAMETERS: 

 PART=main     # partition name 

 TASKS=6       # 6 cores 

 TIME="2:00:00" # 2 hours 

GPU=0                  # Make sure this is 0 

 QOS=normal             # QOS Name 

######################################## 

 

Run the script by typing:  . /pycharm.sh 

The output lists the node’s ip address and the job id. 

 

Open pyCharm. 

Go to settings->Project->Project Interpreter 

On the upper right hand corner next to Project Interpreter: press the settings icon, choose ‘add’ 
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On the left hand side choose SSH Interpreter. Under ‘New server configuration’ fill in the compute 

node’s ip address and your BGU user name. Click Next. 

You might get a message about the authenticity of the remote host, asking if you want to continue 

connecting. Click ‘yes’. 

Enter your BGU password. Click Next. 

In the ‘Interpreter:’ line, enter the path to the desired interpreter. You can find your environments 

interpreters under /home/<your_user>/.conda/envs/<your_environment>/bin/python. 
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Click Finish. 

Give pyCharm some time to upload files to the cluster (upload status is shown on the status bar). 

 

Make phCharm Continue Running Script When Sessions is Disconnected 

The offline_training.py script in the frame below, launches another script with arguments:  

 train.py  -- size 192 

The output be redirected into result.txt file. 

 

offline_training.py 

 

The result.txt file may be found on the compute node. Once you run offline_training.py In Pycharm, on 

the ‘Python Console’ pane, the next line should show up: 

runfile('/tmp/pycharm_project_<some_number>/<your_offline_running_file>.py', 

wdir='/tmp/pycharm_project_<some_number>') 

The path is the path to the folder in the compute node where your local files are synced. Ssh to the 

compute node and you may find result.txt at that path. 

Remember that once the job ends, that folder is erased! 

  

import os 
import sys 
 
os.system("nohup bash -c '" + 
          sys.executable + " train.py --size 192 >result.txt" + 
          "' &") 
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Visual Studio Code 
Create an interactive session:  

Ssh to Slurm and copy the script file /storage/pycharm.sh to your working Slurm directory. 

You can modify the following lines at the beginning of the file (just make sure GPU=0): 

######################################## 

# USER MODIFIABLE PARAMETERS: 

 PART=main     # partition name 

 TASKS=6       # 6 cores 

 TIME="2:00:00" # 2 hours 

 GPU=0                  # Make sure this is 0 

 QOS=normal             # QOS Name 

######################################## 

 

Run the script by typing:  . /pycharm.sh 

The output lists the newly allocated compute node’s ip address and the job id. 

 

Assuming you have VS Code installed and a supported OpenSSH client installed, install the ‘Remote – 

SSH’ pack.  

 

 

Install the Python package, if needed. 

Press the green button (><) on the most lower left side of the window (under the ‘settings’ button). 

On the middle upper side of the window, choose “Remote – SSH: Connect to host…” and enter 

<your_BGU_user>@<compute_node_ip_address>  
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A new window opens. Enter your BGU password, when prompted. 

 

 

Ctrl+Shift+P for the Command Palette then choose ‘Python: Select Interpreter’ (start typing – it will 

show up) and choose the interpreter from your desired environment 

(~/.conda/envs/<environment>/bin/python). 

 

 

 

To enable interactive work with notebook like cells, Ctrl+Shift+P for the Command Palette then choose 

‘Preferences: Open Workspace Settings’ (start typing – it will show up) and click ‘Python’. Scroll down 

until you find ‘Conda Path’ and fill in 

‘/storage/modules/packages/anaconda3/lib/python3.7/venv/scripts/common/activate’. 
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To solve an errata with finding the actual path of the python script add the following line to launch.json 

file: 

"cwd": "${fileDirname}" 

Refer to the following paragraph for instructions as to how to place it in the file and where. 

 

Run/Debug with Arguments 

Press the Debug symbol on the left vertical ribbon. Click ‘create a launch.json file’ on the left pane. 

Open file launch.json and add another line within ‘configurations like so (example for 4 arguments): 

"args": ["—arg_name1", "value_1", "—arg_name2", "value_2"] 
 

Here is an example: 

    "configurations": [ 

        { 

            "name": "Python: Current File", 
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            "type": "python", 

            "request": "launch", 

            "program": "${file}", 

            "console": "integratedTerminal", 

            "cwd": "${fileDirname}", 

            "args": ["cuda", "100", "exit"] 

        } 

    ] 
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Docker 

 
Running Docker containers on the cluster may be done using UDOCKER. UDOCKER shall be installed in a 

Conda environment. 

 

Installation 
 

o Installation for Python3 udocker. For Python2: remove the “python=3.8” string in the next line. 

conda create -n udocker_env python=3.8 

conda activate udocker_env 

conda install configparser 

pip install udocker 

 

Test 
 

Test a tensorflow-gpu container. Copy paste the following at the end of an sbatch file: 

 

 

 

 

 

 

 

Once udocker environment is activated you can use: 

udocker --help – info about commands and way of use 

udocker run --help – help for the ‘run’ command. This can be done also with other commands 

udocker ps – list your containers 

udocker images – list your images 

udocker rm <container name/id> - remove container 

udocker rmi <image id> - remove image 

module load anaconda 

source activate udocker_env 

# pull image, create container and ‘--rm’ remove ‘hello-world’ container after run 

udocker run --rm hello-world 
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There is no need to pull the image every time. 

There is no need to create the container if it already exists.  
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Matlab 
 

Run Matlab GUI straight from terminal (no need for sbatch): 

module load matlab  

srun --x11 --nodes=1 --mem=24G --cpus-per-task=4 --partition=main matlab -desktop -sd ~ 

 

Make sure your ssh terminal supports x11 forwarding! 

 

 

Send Matlab script to run as batch by headless Matlab: 

srun --nodes=1 --mem=24G --cpus-per-task=4 --partition=main matlab -nosplash -nodisplay -nodesktop -

sd ~ -batch "my_matlab_script"  

Headless Matlab may be run by sbatch as well. 

 

•  Cluster params:  

• --nodes – number of allocated cluster nodes (must be 1)  
• --mem=24G – memory allocation  
• --cpus-per-task – number of CPUs  
• --gpus – number of GPUs  
• --partition – partition name 

•  Matlab params:  

• -desktop – run matlab in GUI mode  
• -sd – matlab working directory  

  



27 | P a g e  
 

R 
 

Command Line 
 

• Create an R conda environment. E.g.:  conda create -n r_env r-essentials r-base 

• Copy the following file:  /storage/pycharm_mem.sh 

• Edit the first section of the above file to suit your demands. 

• Execute the file:  ./pycharm_mem.sh 

• Wait for the resources to be allocated. 

• Copy the compute node’s ip address from the script output. 

• SSH to the compute node. 

• Type:  conda activate r_env 

• Type:  R 
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C# 
 

Install In Conda Environment 
conda install -c conda-forge dotnet-sdk 

 

Use 

• Use ./pycharm.sh script (see pyCharm) to allocate a compute node. 

• ssh to the compute node 

• Activate environment:  conda activate <your dotnet environment name> 

• Create a new dotnet project:  dotnet new console -o myApp 

• cd myApp 

• Run:  dotnet run 
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Appendix 
 

Step by Step Guide for First Use of Python and Conda 
 

1. Make sure you are connected through VPN or from within BGU campus. 

2. Download a SSH terminal (https://mobaxterm.mobatek.net/download.html). 

3. Open the SSH terminal and start a SSH session (port 22). The remote host is 132.72.65.199 , the 

username is your BGU username and the password is your BGU password. 

4. Once logged into the cluster’s manager node, create your Conda environment. E.g.:  

conda create -n my_env python=3.7 

5. conda activate my_env 

6. pip install <whatever package you need> or conda install <whatever package you need> 

In most cases it is advisable to use ‘conda install’ rather than ‘pip install’ 

7. conda deactivate 

8. Copy the sbatch file (job launching file) by typing (do not forget the dot at the end!):  

cp /storage/sbatch_cpu.example .  

9. Edit the file using nano editor: nano sbatch_cpu.example 

10. You may change the job name by replacing my_job with your own string. 

11. Go to the last lines of the file. ‘source activate my_env’: if needed, replace ‘my_env’ with your 

environment name that you have created on paragraph 4. 

12. ‘python my.py my_arg’ is the program to run on the compute node. You may use another 

command instead. 

13. Press ‘<ctrl>+x’, then ‘y’ and ‘<Enter>’ to save and leave the file. 

14. Launch a new job: sbatch sbatch_cpu.example 

15. You should, instantly, get the job id. 

16. To see the status of your job(s) type squeue --me 

17. Under ‘ST’ (state) column if the state is ‘PD’ then the job is pending. If the the state is ‘R’ then 

the job is running and you can look at the output file for initial results (jupyter results will take 

up to a minute to show): less job-<job id>.out 

18. If you asked for jupyter, then copy the 2nd link (which starts with ‘https://132.72.’). Copy the 

whole link, including the token, and paste it in the address bar of your web browser. Make the 

browser advance (twice) in spite of its warnings. 

 

  

https://mobaxterm.mobatek.net/download.html
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Conda 
 

Viewing a list of your environments 
conda env list 

 

list of all packages installed in a specific environment 
conda list 

 

to see a not activated environment 

conda list -n <my_env> 

  

Activating / deactivating environment 
source activate <my_env> 

or (depends on conda version) 

conda activate <my_env> 

conda deactivate 

 

Create Environment 
conda create -n <my_env> 

 

with specific python version 

conda create -n <my_env> python=3.4 

 

with specific package (e.g. scipy) 

conda create -n <my_env> scipy 

Or 

conda create -n <my_env> python 

conda install -n <my_env> scipy 

 

with specific package version 

conda create -n <my_env> scipy=0.15.0 

 

with multiple packages 

conda create -n <my_env> python=3.4 scipy=0.15.0 astroid babel 
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Update Conda 
conda update conda 

 

Compare Conda Environments 
The following python (2) script compares 2 conda environments and can be found in ‘/storage’ 

directory.  

python conda_compare.py <environment1> <environment2> 
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Transfer Files 

 

To / From Your PC 
You can use WinSCP to transfer files, or if you use MobaXTerm then it has its own file browser. 

In Windows, SISE department students can also map their cluster home directory like so: 

1. connect to BGU vpn  

2. open file explorer.  

3. on the left pane right click "This PC".  

4. on the menu that will open, click on "map network drive".  

5. choose a drive letter or leave the default letter in place.  

6. in the "Folder" field write down: \\132.72.65.201\usr_home\<your BGU username>  

7. you can choose to check or uncheck "Reconnect at sign-in".  

8. you must check "Connect using different credentials".  

9. click on "Finish" button.  

10. a new authentication window will open, in the Username field write down: bgu-users\<your BGU 

username>  

11. in the Password field write down your BGU password. 

 

Get a Public File  

from AWS s3 
 

Use wget: 

wget --no-check-certificate --no-proxy  'https://<your bucket 

name>.s3.amazonaws.com/<path and name of file>' 

 

from Google Drive 
 

Use wget: 

wget --no-check-certificate 'https://drive.google.com/uc?id=<file id> -O 

<file name to save> 

where file-id is the alphanumeric long string that shows when you right click the file in Chrome and view 

the file’s link. for example: 

wget --no-check-certificate 

'https://drive.google.com/uc?id=1A3Ef4gHdhsdjklmn6o' -O my_file.txt 
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Deap 
 

Create Environment 
 

1. conda create -n DEAP -y python=3 

2. conda activate DEAP 

3. conda install -c cyclus java-jdk 

4. pip install deap 

5. conda deactivate 
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FAQ 

Usage 
❖ Can I ssh the cluster when I am away from university? 

This can be done by using VPN.  

❖ I uploaded files to the cluster, while logged in to the manager node, can a compute node find 

these files? 

The files were uploaded to the storage. All cluster nodes have access to your files on the 

storage. 

❖ I need sudo to install library X / tool Y 

Install it in your conda environment, using ‘conda install’ or ‘pip install’ 

❖ Is Git installed on the cluster? 

Git is installed on the manager node. 

❖ Why is my job pending? What’s the meaning of REASON? 

PartitionTimeLimit – the ‘time’ variable in your sbatch file is set to time limit greater than the 

partition’s maximum possible time limit (usually 7 days). 

Resources – currently, the cluster has insufficient resources to fulfill your job.  

Priority – job is queued behind higher priority jobs. You may have exceeded your group QoS 

priority resources – You can launch a job with no QoS priority or wait for QoS priority resource 

to be available. 

QOSMaxJobsPerUserLimit – you have reached the maximum allowed concurrent jobs for the 

requested partition. 

❖ In python app I print some run time info but they are buffered and being printed all at once. 

To use unbuffered print to output:  python -u my_py_app.py 

u – unbuffered. 

Another option is to add the following line to your sbatch scripy:  

  export PYTHONUNBUFFERED=TRUE 

Please note it has performance toll, so it is not advisable to use it when not debugging. 

 

 

Errors 
❖ I installed wget python package like so: ‘conda install wget’, and I get ‘ModuleNotFoundError: 

No module named wget’ error. 



35 | P a g e  
 

Use: pip install wget 

❖ Output file shows: slurmstepd: error: _is_a_lwp: open() /proc/60830/status failed: No such 

file or directory 

It’s a rare Slurm accounting error message that should not affect the job. Just ignore it. 

❖ In my conda environment I installed a package which is a python wrapper of binary code. 

Running a code that uses it, with Jupyter notebook was successful, but running the very same 

code from pycharm, failed with the message ‘NotImplementedError: "…" does not appear to be 

installed or on the path, so this method is disabled.  Please install a more recent version of … 

and re-import to use this method.’. 

This happens because with pycharm, the environment variable ‘PATH’ remains unchanged, 

unlike with Jupyter that when choosing conda environment, ‘PATH’ gets modified. The solution 

is to modify ‘PATH’ prior to importing the wrapper package in your python code, as follows 

(replace <your_user> and <your_env> with yours): 

import os 
os.environ['PATH'] = 
'/home/<your_user>/.conda/envs/<your_env>/bin:/storage/modules/packages/anacon
da3/bin:/storage/modules/bin:/storage/modules/packages/anaconda3/condabin:/usr
/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/storage/modules/packages/matlab
/R2019B/bin:/home/<your_user>/.local/bin:/home/<your_user>/bin' 
import <python wrapper package> 
… 
 

❖ Working with udocker I get these errors when pulling an image. TypeError: unicode argument 

expected, got 'str', Error: manifest not found or not authorized 

Your udocker installation uses python2, instead of python3. Refer to Docker Installation. 

❖ VSCode error: windows remote host key has changed port forwarding is disabled 

OR: Could not establish connection to “x.x.x.x”: Remote host key has changed, port forwarding is 

disabled. 

OR: visual studio code could not establish connection… the process tried to write to a 

nonexistent pipe 

These errors mean that the remote host key does not much to the key saved locally, anymore. 

The keys mismatch may be a result of reinstalling the remote host. If that is the reason go to 

C:\Users\<your Windows user>\.ssh\ and change the names of the files. Windows will create 

new updated files instead. 

❖ Got an error like this: libstdc++.so.6: version `GLIBCXX_3.4.26' not found 

If you already installed libgcc in your conda environment (like so: conda install libgcc), add the 

following line to your sbatch script right after the #SBATCH lines (replace ‘username’ and 

‘my_env’ with yours): 

export LD_LIBRARY_PATH=/home/username/.conda/envs/my_env/lib:$LD_LIBRARY_PATH 
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