
Query Content in Sequential One-shot Multi-Agent Limited Inquiries when
Communicating in Ad Hoc Teamwork

William Macke1, Reuth Mirsky1, Peter Stone1, 2

1 The University of Texas at Austin, 2 Sony AI
{wmacke,reuth,pstone}@cs.utexas.edu

Abstract

Communication in Ad Hoc Teamwork (CAT) is a research
area that investigates how communication can be leveraged
by an agent that plans in a distributed, multi-agent collabora-
tive environment, even if that agent does not have knowledge
about its teammates or their plans a priori. This paper reports
our progress in identifying three factors that can impact the
complexity of CAT – environment, teammates, and commu-
nication protocol. Following the identification of these com-
ponents, this paper investigates three extensions from exist-
ing work that affect each of these factors respectively – richer
environments, complex teammate representations, and com-
plex communication protocols. We present new algorithms to
compute when to query under these new configurations, as
well as preliminary results of their performance.

Introduction
Autonomous agents are becoming increasingly capable of
solving complex tasks, but encounter many challenges when
required to solve such tasks as a team. For example, service
robots have been deployed to assist medical teams in the
recent pandemic outbreak. Such robots’ coordination strat-
egy cannot be learned or decided a priori, as it interacts
with previously unmet teammates (Cakmak and Thomaz
2012). This motivation is the basis for ad hoc teamwork,
which is defined as collaborating with teammates without
pre-coordination (Stone et al. 2010; Albrecht and Stone
2018). This terminology reflects that the collaboration is ad
hoc – the ways in which the agents learn, act, and interact
may be quite principled. Our previous work on CAT identi-
fied a specific variant of CAT, namely the Sequential One-
shot MultiAgent Limited Inquiry CAT scenario, or SOMALI
CAT (Mirsky et al. 2020). In SOMALI CAT, the agents exe-
cute sequential plans and only the ad hoc agent can inquire
about a teammate’s goal. SOMALI CAT was defined to be
a broadly representative class of CAT problems. In such a
SOMALI scenario, the robot can fetch different tools for a
physician in a hospital. The physician would normally pre-
fer to avoid the additional cognitive load of communicat-
ing with the robot, but will answer an occasional question

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

from it so that the robot can be a better collaborator. The re-
sults from this work were evaluated on a simulated test-bed,
namely the tool fetching domain. The algorithm presented
in that work was a means to decide when to query in such a
SOMALI scenario. This paper reports our progress investi-
gating the different factors that can affect the complexity of a
SOMALI scenario: environment, teammates, and communi-
cation protocol. An additional contribution is a set of heuris-
tic algorithms for choosing when to query, that are shown to
outperform previous work in these complex configurations.

Background
Communicating agents has been a fertile research area in
the context of distributed multiagent systems (Singh 1998;
Cohen, Levesque, and Smith 1997; Decker 1987). Gold-
man and Zilberstein (2004) formalized the problem of a de-
centralized POMDP with communication (DEC-POMDP-
com). Communication in Ad-Hoc Teamwork (CAT) is a
close problem that shares some similar assumptions: all
teammates strive to be collaborative and the agents have
a predefined communication protocol available. However,
DEC-POMDP-com uses a single model that is collabora-
tively controlled by multiple agents, whereas CAT is set
from the perspective of one agent that has no additional
knowledge about its teammates’ policies and that it cannot
change the properties of these teammates (Stone et al. 2010).

Barrett et al. (2014) considered a scenario in which either
teammates are assumed to share a common communication
protocol, or else this assumption can be quickly tested on
the fly (e.g. by probing). Their work was situated in a very
restrictive multi-agent setting, namely a multi-arm bandit,
where each task was a single choice of which arm to pull. A
different type of CAT scenarios refers to tasks where a sin-
gle agent reasons about the sequential plans of other agents,
and can gain information by querying its teammates or by
observing their actions (Mirsky et al. 2020). This Sequen-
tial One-shot Multi-Agent Limited Inquiry CAT scenario, or
SOMALI CAT, was inspired by the use case of a service
robot that is stationed in a hospital, who mainly have to re-
trieve supplies for physicians or nurses, and has two main
goals to balance: understanding the task-specific goals of its
human teammates, and understanding when it is appropri-



Figure 1: Example of the tool fetching domain. W , F , and T
are the locations of the worker, fetcher, and toolbox respec-
tively. The locations of the workstations are represented by
the numbered squares.

ate to ask questions over acting autonomously. In such SO-
MALI CAT scenarios, we have additional assumptions: the
task performed requires a sequence of actions; it is also an
episodic, one-shot task; the environment is static, determin-
istic, and fully observable; the teammate is assumed to have
perfect knowledge about the environment; the teammate is
assumed to plan optimally, given that it is unaware of the ad
hoc agent’s plans or costs; and there is one communication
channel, where the ad hoc agent can query as an action, and
if it does, the teammate will forgo its action to reply truth-
fully (the communication channel is noiseless).

The Tool Fetching Domain Our previous work in SO-
MALI CAT introduced an experimental domain known as
the tool fetching domain. This domain consists of an ad
hoc agent, the fetcher, attempting to meet a teammate, the
worker, at some workstation with a tool. The worker needs a
specific tool depending on which station is its goal, and the
worker’s goal is unknown before hand to the fetcher. It is
the job of the fetcher to deduce the goal of the worker based
on its actions, and to bring the correct tool to the correct
workstation. At each timestep, the agents can execute one
action each. Additionally, the fetcher can query the worker
with questions of the form “Is your goal one of the stations
g1, g2...gN?”, where g1, . . . , gN ⊆ G is a subset of all work-
stations. All queries in the original setup are assumed to
have a cost identical to moving one step, regardless of the
content of the query. Figure 1 shows an example of this do-
main where the fetcher is following the path to the toolbox
while the worker is following one of the paths to an unknown
workstation. In this paper, the domain was implemented as a
custom OpenAI Gym environment (Brockman et al. 2016).

When to Query To reason about when to act in the envi-
ronment and when to query, three different reasoning zones
were defined for each query that the ad-hoc agent can ask to
disambiguate a subset of goals (G′ ⊂ G) from (G \G′):

Zone of Branching (ZB) for a set of goals G′ ⊆ G is the
set of timesteps from when the ad hoc agent (the fetcher)

2,3

Figure 2: Example of a domain with multiple toolboxes. T1

houses tool 1 while T2,3 houses tools 2 and 3.

is required to commit to a specific goal and until the end of
the episode, which means the timesteps in which it might
take a different action from the one it would have taken if
it had perfect knowledge about the teammate’s true goal.

Zone of Information (ZI ) for a set of goals G′ ⊆ G is the
set of timesteps from the beginning of the plan and until
there is no longer any ambiguity in the domain between
goals in G′ and G \G′.

Zone of Querying (ZQ) for a subset of goals G′ ⊆ G is
the intersection of these two sets of timesteps, where there
may be a positive value in querying instead of acting.

Given these zones for each subset of goals G′, we can iden-
tify the Critical Querying Point (CQP) as the first timestep
inside ZQ(G

′), and is the first timestep in which the ad hoc
agent should consider whether to query “Is your goal one
of the stations in G′?”. If ZQ(G

′) is empty, then there is no
time in which this query can be useful and CQP (G′) =
−1. In Figure 1, some of the critical querying points are
CQP ({1}) = CQP ({2}) = 6, as it takes the fetcher 5
timesteps to reach the toolbox and only then it enters ZB for
goals 1 and 2.Notice that CQP ({1, 3}) = 6 as well, as in
this case G′ = {1, 3} and G \ G′ = {2}, which means that
there is still a benefit from disambiguating a group of goals
that contains goal 1 and a group of goals that contains goal
2. CQP ({3}) = −1, as by the time the fetcher reaches the
toolbox, the worker has already reached or passed station 3.

Generalizing SOMALI CAT
While previous work successfully demonstrated that each
set of possible queries had a unique optimal time to ask,
namely the CQP, it used a naive approach of choosing half
the relevant goals at random for deciding the content of a
query when multiple queries share the same CQP. Such an
approach also misses the potential in more complicated sce-
narios, such as when the worker chooses its goal with a non-
uniform probability. or when different queries cost different
amounts based on their content. In this section we modify
some of the assumptions from previous work: having multi-
ple tool stations instead of just one (hence having multiple
zones of branching); having a non-uniform distribution over



the possible goals the worker might reach; and having dif-
ferent query cost models rather than a unit cost per query.

Multiple Zones of Branching In previous work, domain
setups only contained one toolbox that housed all the tools.
This meant that effectively all queries had the same CQP re-
gardless of their content, so an efficient strategy was to query
about half of the goals randomly at the CQP. However, when
there is more than one tool location present, this strategy no
longer holds. Figure 2 shows an example when this strategy
falls short. In this example, the tool for station 1 is in the top
toolbox (T1) and the tools for goals 2 and 3 are in the bot-
tom toolbox (T2, T3). The first point in time when the fetcher
might want to query is after it arrives at the toolbox T1. If
it were to query about half the goals randomly, it may ask
“Is your goal station 1?” This action is effectively a wasted
query, since it does not add new information, which means
that the fetcher cannot act upon its current knowledge.

Non-Uniform Goal Distribution Another assumption
made in previous work was that the worker is always as-
signed a goal according to a uniform probability distribu-
tion. This assumption may not hold in practice. For in-
stance, if a human were to take the part of the worker, they
may be more likely to choose goals that are closer to them.
Knowledge of this distribution may allow the fetcher to con-
struct more informative queries. For instance, if there are
three goals in a domain, and the worker goal distribution is
g1 = 0.98, g2 = 0.01, g3 = 0.01 then it is likely better to
query about {g1} or {g2, g3} than about {g2} or {g3} (the
fetcher is more likely to learn the worker’s true goal with the
former queries than with the latter ones).

Query Cost An assumption that was used in previous
work is that the cost of querying is uniform, relatively small,
and is not affected by the content of the query or its tim-
ing. However, it is very likely that a different cost model
would result in different performance. If the cost of a query
is larger than the value of the information gained, then there
will be no benefit from asking such a query. We investigate
how effective various query strategies are with different cost
models. We consider two variables for a cost model in par-
ticular: base cost (bc), or the initial cost of asking any query,
and station cost (sc), or the additional cost of including an-
other station in a query. The total cost of asking a query q
that asks “Is your goal one of the stations g1, g2, ...gN?” is
bc+sc∗N . Importantly, in such a cost model, querying about
many goals is more costly than querying about just one goal.
This means that in the first running example, querying about
{g2, g3} or {g1} are no longer equal in their potential bene-
fit, and the latter, smaller query becomes preferable.

Query Algorithms
We present a basic objective for determining what to query
without any of the new assumptions presented earlier in this
section. Previous work would query about half the relevant
goals to try and maximize information gain. However rea-
soning more thoroughly regarding which goals to ask about

can give even better performance. Consider the pairs of goals
GB = {(gi, gj)|t ∈ ZB(gi, gj)} where t is the current time
and gi, gj ∈ GB , a set of all N possible goals that might
still be the true goal of the worker. We can construct a bi-
nary vector ~x of length N such that if xi is the i-th value in
that vector, then goal gi is included in the query if and only
if xi = 1. A query that asks about a subset of goals G′ ⊆ G
will disambiguate between the sets G′ and G\G′. Therefore,
to increase the information gained from the query, we want
to split the pairs of goals (gi, gj) as evenly as possible be-
tween G′ and G \G′. We write the following maximization
goal

max
∑

(gi,gj)∈GB

(xi ⊕ xj) (1)

The term in the objective is 1 only when one x is 0 and
the other is 1. This objective ensures that the query disam-
biguates between as many of the pairs of goals as possi-
ble. Consider the example above when the fetcher arrives
on toolbox T1. This approach is guaranteed to now ask ei-
ther “Is your goal in {g1}?” or “Is your goal in {g2, g3}?”,
both of which are guaranteed to allow the fetcher to act in
the next timestep regardless of the worker’s answer.

While the above can easily handle multiple tool locations,
it can fail under circumstances where there’s a non-uniform
probability distribution over the worker’s possible goals. To
reason about such circumstances, we modify the integer pro-
gram’s objective from the previous section to weigh the
goals by the ad-hoc agent’s current belief state:

max
∑

(gi,gj)∈GB

(P (gi) + P (gj)) ∗ (xi ⊕ xj) (2)

where P (gi) refers to the probability that the worker’s goal
is gi. Intuitively, this new equation will prioritize goals that
are more likely. If the worker’s goal has the same probability
to be either gi or gj , than it is most informative to disam-
biguate between the two. On the other hand, if one goal has
a probability of 0.99, as in the example in section , it would
be advantageous just to query about that one goal. Incorpo-
rating the probabilities of goals in the objective as shown
above results in the method prioritizing disambiguating this
higher probability goal from others.

Finally, a complete model that is able to reason about all
of the extensions presented in the previous section is still
required to incorporate different query cost models. Since
we want to minimize the needed query cost as part of our
objective within the integer program, we add the negative
cost of the query to our objective. Consequently, the final
integer program objective becomes

max
∑

(gi,gj)∈GB

(xi⊕xj)∗(P (gi)+P (gj))−
∑
i

(xi∗sc) (3)

where sc is the cost of including a goal in a query. This ob-
jective now simultaneously attempts to maximize the prob-
ability that the ad hoc agent will be able to act in the next
timestep and minimize the cost of the query. All objectives
shown above were solved with the Coin-Or Integer Program
Solver using PuLP as the front end (Forrest et al. 2018;
Mitchell, Consulting, and Dunning 2011).



Table 1: The different algorithms used in the experiments.

Never Query Never Queries but waits
until it knows an action is optimal

Random Query Randomly asks about half the remaining
potential goals when in a ZQ

Max Binary Policy Optimizes the query according to
Equation 1 when in a ZQ

Goal Prob Policy Optimizes the query according to
Equation 2 when in a ZQ

Weighted Cost Policy Optimizes the query according to
Equation 3 when in a ZQ

Results
We hypothesized that our new methods should be able to
significantly outperform the previous approach regardless of
the cost model used or the worker’s probability of choos-
ing goals. The experiments compare 5 different query algo-
rithms, as presented in Table 1. Additionally, if the fetcher is
going to query in a given timestep, it may be advantageous
to query about goals that are not critical for acting. That is,
goals g such that (g, g′) 6∈ GB∀g′ ∈ G. While it is possible
to modify the objective to consider these goals, the size of
the integer program quickly increases beyond what is rea-
sonably tractable. Therefore, as a heuristic, we include half
of these stations in the query in order to increase informa-
tion gain. Each of the following experiments has a grid size
of 50× 50 with 100 stations located randomly. Each station
has a required tool that is in one of five random toolbox lo-
cations. We assume the cost of all non-querying actions is
1. All results are averaged over 100 random instances where
each instance consists of a station and tool locations, the ini-
tial fetcher and worker positions and a specific workstation
assigned as the worker’s goal.

0.0 0.1 0.2 0.3 0.4 0.5
Cost per Station

0

5

10

15

20

25

30

35

M
ea

n 
M

ar
gi

na
l C

os
t

Never Query
Random Query
Max Binary Policy
Goal Prob Policy
Weighted Cost Policy

Figure 3: Marginal cost of the fetcher’s plan execution given
a varying cost per station in a query, under uniform distribu-
tion of goals for the worker.

Figure 3 shows the marginal plan execution costs over the
optimal plan, assuming an oracle that lets the fetcher know
what’s the worker’s true goal. The x-axis shows different ad-
ditional cost per workstation (sc) in a query, given an initial
query cost (bc) of 0.5. The probability of a worker being as-
signed a goal is uniform across all 100 goals. As shown,
all query methods decrease in performance as the cost per
station increases, however Weighted Cost Policy decreases

0.0 0.1 0.2 0.3 0.4 0.5
Cost per Station

0

5

10

15

20

25

M
ea

n 
M

ar
gi

na
l C

os
t

Never Query
Random Query
Max Binary Policy
Goal Prob Policy
Weighted Cost Policy

0.0 0.1 0.2 0.3 0.4 0.5
Cost per Station

0

10

20

30

40

M
ea

n 
M

ar
gi

na
l C

os
t

Never Query
Random Query
Max Binary Policy
Goal Prob Policy
Weighted Cost Policy

Figure 4: Marginal cost of the fetcher’s plan execution when
the probability of a worker being assigned to a goal is a soft-
max of the worker’s negative (top) and positive (bottom) dis-
tances to a goal.

at a much lower rate compared to other methods and never
performs significantly worse than the Never Query method.

Figure 4 show marginal costs with various additional cost
per workstation in a query, but with a non-uniform worker
goal distribution. The probability of a worker being as-
signed a goal as the softmax of the negative and of the pos-
itive worker’s distances to goals respectively. Intuitively, it
respectively defines workers that are most likely to prefer
workstations that are closer or farther from their initial lo-
cation. These graphs present similar results, with the pri-
mary difference being the relative performance of the Never
Query Strategy. In Figure 4 (top), the worker is much more
likely to move to a close workstation, which reduces the
maximum time before the fetcher knows the worker’s goal.
Similarly in Figure 4 (bottom), the worker is more likely to
move to a distant station, increasing this maximum time for
the fetcher to know its goal, which causes the Never Query
strategy to perform better or worse respectively.

Conclusion

We presented several extensions to SOMALI CAT and
several novel algorithms for determining what and when
to query, and demonstrated their performance in the Tool
Fetching Domain. Our new algorithms were able to outper-
form previous techniques in multiple scenarios. For future
work we plan to further generalize our query algorithms to
perform well in any SOMALI CAT domain, regardless of the
query cost model, probability over goals, or other domain-
specific details.



ACKNOWLEDGMENTS
This work has taken place in the Learning Agents Re-
search Group (LARG) at UT Austin. LARG research is sup-
ported in part by NSF (CPS-1739964, IIS-1724157, NRI-
1925082), ONR (N00014-18-2243), FLI (RFP2-000), ARO
(W911NF-19-2-0333), DARPA, Lockheed Martin, GM, and
Bosch. Peter Stone serves as the Executive Director of Sony
AI America and receives financial compensation for this
work. The terms of this arrangement have been reviewed
and approved by the University of Texas at Austin in accor-
dance with its policy on objectivity in research. Studies in
this work were approved under University of Texas at Austin
IRB study numbers 2015-06-0058 and 2019-03-0139.

References
Albrecht, S. V., and Stone, P. 2018. Autonomous agents
modelling other agents: A comprehensive survey and open
problems. Artificial Intelligence 258:66–95.
Barrett, S.; Agmon, N.; Hazon, N.; Kraus, S.; and Stone,
P. 2014. Communicating with unknown teammates. In
AAMAS, 1433–1434.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
Cakmak, M., and Thomaz, A. L. 2012. Designing robot
learners that ask good questions. In ACM/IEEE interna-
tional conference on Human-Robot Interaction.
Cohen, P. R.; Levesque, H. J.; and Smith, I. A. 1997. On
team formation. Synthese Library 87–114.
Decker, K. S. 1987. Distributed problem-solving tech-
niques: A survey. IEEE transactions on systems, man, and
cybernetics 17(5):729–740.
Forrest, J.; Ralphs, T.; Vigerske, S.; LouHafer; Kristjans-
son, B.; jpfasano; EdwinStraver; Lubin, M.; Santos, H. G.;
rlougee; and Saltzman, M. 2018. coin-or/cbc: Version 2.9.9.
Goldman, C. V., and Zilberstein, S. 2004. Decentralized
control of cooperative systems: Categorization and com-
plexity analysis. Journal of artificial intelligence research
22:143–174.
Mirsky, R.; Macke, W.; Wang, A.; Yedidsion, H.; and Stone,
P. 2020. A penny for your thoughts: The value of communi-
cation in ad hoc teamwork. International Joint Conference
on Artificial Intelligence (IJCAI).
Mitchell, S.; Consulting, S. M.; and Dunning, I. 2011. Pulp:
A linear programming toolkit for python.
Singh, M. P. 1998. Agent communication languages: Re-
thinking the principles. Computer 31(12):40–47.
Stone, P.; Kaminka, G. A.; Kraus, S.; and Rosenschein, J. S.
2010. Ad hoc autonomous agent teams: Collaboration with-
out pre-coordination. In AAAI.


