
Planning for Cooperative Multiple Agents with Sparse Interaction Constraints

Guy Revach,1 Nir Greshler,2 Nahum Shimkin2

1 The Institute for Signal and Information Processing (ISI),
Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, Switzerland

2 Viterbi Faculty of Electrical Engineering, Technion, Haifa, Israel
revach@isi.ee.ethz.ch, nirgreshler@campus.technion.ac.il, shimkin@ee.technion.ac.il

Abstract

We consider the problem of cooperative multi-agent plan-
ning (MAP) in a deterministic environment, with a com-
pletely observable state. Most tractable algorithms for MAP
problems assume sparse interactions among agents and ex-
ploitable problem structure. We consider a specific model for
representing interactions among agents using soft coopera-
tion constraints (SCC), which enables a compact representa-
tion of symmetric dependencies. We present a two-step plan-
ning algorithm that breaks down a multi-agent problem with
K agents, to multiple instances of independent single-agent
problems, such that the aggregation of the single-agent plans
is optimal for the group. We propose an efficient algorithm
for computing the single-agent optimal plan under a given set
of soft constraints, denoted as the response function. We then
utilize a well-known graphical model for efficient min-sum
optimization in order to find the optimal aggregation of the
single agent response functions. The proposed planning al-
gorithm is complete, optimal, and effective when interactions
among the agents are sparse. We further indicate some useful
extensions to the basic SCC formulation presented here.

1 Introduction
The problem of cooperative multi-agent planning (MAP) is
motivated by many real-world applications in a variety of
domains, such as military, logistics, and search-and-rescue.
In these problems, agents must coordinate their decisions to
maximize their (joint) team value. When the state of the en-
vironment and all agents is fully-observable by each agent,
the planning problem can be formalized as a multi-agent
Markov decision process (MMDP, Boutilier 1996). How-
ever, these models suffer from exponential increase in the
size of the state and action spaces in the number of agents,
which makes them computationally intractable in general.
Specific structural assumptions are therefore required for an
optimal solution to be feasible.

An important class of problems concerns high-level plan-
ning problems, where agents are essentially independent ex-
cept for a prescribed set of possible interactions that can
facilitate the plan execution. These types of problems are

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

typically characterized by loose coupling and sparse inter-
actions between agents, and some models exploit this fact to
develop efficient algorithms. The complexity of such algo-
rithms is often described by means of the problem coupling
level. For instance, (Nissim, Brafman, and Domshlak 2010)
propose a fully distributed planning algorithm, based on the
MA-STRIPS (Brafman and Domshlak 2008) model, and
(Melo and Veloso 2011) propose approximate algorithms
based on the decentralized sparse-interaction MDPs model.

Another common approach is to exploit the problem
structure by using a compact representation with factored
models. An example of such a representation is the coordi-
nation graph (Guestrin, Koller, and Parr 2002), also referred
to as interaction graph (Nair et al. 2005) or collaborative
graphical games (Oliehoek, Whiteson, and Spaan 2012),
which is solved using a graph-based optimization method,
such as variable elimination (VE) (Guestrin, Koller, and Parr
2002; Larrosa and Dechter 2003), or by distributed methods
as investigated in the field of distributed constraint optimiza-
tion problem (DCOPs, Fioretto, Pontelli, and Yeoh 2018).

It is also possible to exploit locality of interactions
(Oliehoek et al. 2008; Melo and Veloso 2011) and reward
structure in transition-independent models, both centralized
(Scharpff et al. 2016) and decentralized (Becker et al. 2004).
More specifically, in (Scharpff et al. 2016) reward dependen-
cies are represented using conditional return graphs (CRGs)
which are solved by a branch-and-bound policy search al-
gorithm. In (Becker et al. 2004) a general formulation is
suggested to represent the reward structure, using the no-
tion of events. A coverage set algorithm is presented to find
optimal policies. Scalability can often be improved even
on more complex models, such as Network Distributed Par-
tially Observable MDP (ND-POMDP), by leveraging sparse
and structured interactions among agents. For example, the
CBDP (Kumar and Zilberstein 2009) algorithm is exponen-
tial only in the width of agents interaction graph.

In this paper, we focus on the multi-agent planning prob-
lem in a deterministic environment, where interactions be-
tween agents are symmetric and sparse. Possible interac-
tions are captured using a notion of soft cooperation con-
straints (SCC), where agents can affect the cost function by
jointly satisfying prescribed constraints in state and time.

This formulation is akin to the event-based formulation of
(Becker et al. 2004), although less general to allow more
specific and explicit computation schemes for each agent.

Based on the SCC model, we present a complete and op-
timal two-step planning algorithm, effective mostly in cases
where interactions among agents are sparse. It is a dynamic
programming (DP)-based algorithm, that decouples a multi-
agent problem withK agents toK independent single-agent
problems, such that the aggregation of the single-agent plans
is optimal for the group. More specifically, in the first step
we independently compute each agent’s response function,
which is its optimal plan with respect to all possible assign-
ments of the timing variables of its associated constraints.
We present an explicit algorithm for computing the response
function, and provide a detailed complexity analysis. The
second step is a centralized global plan merging, in which
an optimal assignment to the timing variables is found under
the minimum-sum objective. A factor graph, which captures
dependencies among cooperative agents and exploits the in-
ternal structure of the problem, is applied to the problem
with a variable elimination algorithm for efficient min-sum
optimization.

Complexity analysis shows that the proposed algorithm is
linear in the number of agents, polynomial in the span of the
time horizon, and depends exponentially only on the number
of interactions among agents.

We present a simulation implementing our proposed al-
gorithm on a specific multi-agent planning problem. Our
simulations show that the algorithm is efficient for this par-
ticular multi-agent setup and scales well in the number of
agents compared to a standard solution.

We finally outline possible extensions to our model, to
represent more complex cooperation constraints. For details
of these extensions we refer (Revach 2018).

The remainder of the paper is organized as follows. In
section 2 we present the model used and the formulation of
SCC. Section 3 presents a detailed description and imple-
mentation of our algorithm, followed by a complexity anal-
ysis. In section 4 we present experimental results for our al-
gorithm. In section 5 we present an extension to our model
to include asymmetric interactions between agents. Section
6 concludes the paper and suggests directions for extensions
and future research.

2 Model
We consider the finite horizon multi-agent determin-
istic planning problem. Our starting point is an
MMDP with a factored state space, defined by a tuple
〈T ,G,S,A,H, C, σI , σ∗〉, where
• T = {0, ..., T} is the time domain of length T .
• G = {g1,g2, ...,gK} is a set of K agents.
• S = S1 × ... × SK is a finite state space, factored across

agents, where Sk is the state space of agent gk.
• A = A1 × ... × AK is a joint action space, similarly

factored across agents.
• H : S ×A → S is a deterministic transition function.
• C : S ×A → R ∪ {∞} is a real-valued cost function.

• σI ∈ S is the initial state ~s0, and σ∗ ∈ S the goal state.
Our objective is to find an optimal group policy ~π∗ such

that J~π is minimal, i.e., ~π∗ ∈ arg min~π∈ΠK J~π , where
~π = (π1, ..., πK) is the joint policy, J~π is the aggregate cu-
mulative cost defined by

J~π =

T−1∑
t=0

C (~st,~at) (1)

if ~sT = σ∗, and J~π = ∞ otherwise. Here ~at =
(at,1, at,2, ..., at,K) ∈ A is the joint action at time t, such
that at,k = πk (st, t).

We next describe the sparse interactions structure. We
first assume transition and cost independence across agents,
namely

H (~s,~a) = (H1 (s1, a1) , . . . ,HK (sK , aK)) (2)

and

C (~s,~a) =

K∑
k=1

Ck (sk, ak) (3)

Coupling between agents is introduced via a set Ψ =
{ψ1, ..., ψL} of soft cooperation constraints. Each con-
straint ψ` defines a single opportunity for cooperative in-
teraction between agents. In particular, a constraint ψ`,
` ∈ {1, ..., L}, is specified by the following tuple:

ψ` =
〈
G`,Σ`, C−` , T`

〉
(4)

where
• G` = {gk, k ∈ K`}, with K` = (k`,1, . . . , k`,n(`)), is

the set of n(`) agents interacting in constraint ψ`.
• Σ` = {σ`,k, k ∈ K`}, with σ`,k ∈ Sk, is a set of local in-

teraction states. Namely, for the constraint to hold, agent
k is required to be in state σ`,k at some prescribed time.

• C−` is a (reduced) immediate cost for the group for in-
teraction, applicable when the constraint is satisfied (see
equation 5).

• T` is the constraint time domain; i.e., it is a subset of time
instances at which the interaction may take place: T` ⊆
{0, 1, ..., T − 1} ∪ T∅. Here T∅ is a special notation for
the null assignment, where the constraint is not satisfied,
i.e., there is no interaction.
Note that the SCC formulation can be extended to repre-

sent more general constraints. For instance, a constraint can
have a set of time domains, one for each agent, such that
each agent interacts at a different time. Moreover, a con-
straint can have a subset of interaction states (instead of a
single state). While the ideas are similar, for concreteness
and brevity we leave these extensions to future work.

2.1 Interaction-Dependent Cost
Agents are coupled only via the constraint set Ψ. Therefore,
the group cost depends on the constraints satisfied, where
each satisfied constraint ψ` represents an interaction which
applies the group a reduced cost C−` . We now describe the
structure of the group cost under this formulation.

Let τ` ∈ T` be an interaction timing variable that defines
the timing of the interaction under constraint ψ`. For a given
assignment to the timing variable τ`, we define an indicator
function that is true if all interacting agents in G` satisfy
constraint ψ`:

ψ̂` (τ`;~π) = I{τ` 6=T∅}
∏
k∈K`

I{sτ`,k=σ`,k} (5)

where IA is the 0/1 indicator of eventA. Namely, constraint
ψ` is satisfied given τ` = τ if τ 6= T∅ and all interacting
agents in ψ` arrive at their interaction state at time τ .

Furthermore, ~τ is the interaction vector, and D is its do-
main, i.e., the cross space of all constraint time domains:

~τ = (τ1, τ2, ..., τL) ∈ T1 × T2 × ...× TL , D (6)

~τk is the timing vector of all constraints involving agent gk
(with domain Dk).

Under this new formulation, given an initial state σI ∈ S,
a goal state σ∗ ∈ S, and a constraint set Ψ, our objective is
to find the optimal group policy where J~π in equation 1 is
now

J~π (~τ) =

T−1∑
t=0

K∑
k=1

C0,k (st,k, at,k) +

L∑
`=1

ψ̂` (τ`;~π) C−` (7)

where C0,k is the single-agent independent immediate cost
with no consideration of interactions. Namely, it is the sum
of all agents’ independent immediate cost plus the sum of
the reduced costs of all satisfied constraints.

Note that now the multi-agent optimal policy ~π is a para-
metric policy with respect to timing variables, and the aggre-
gate cumulative cost J~π is a function of the timing variables.
Effectively, there may be a different optimal policy for each
assignment of timing variables. Furthermore, J∗k (~τk) is the
optimal response function (i.e., the optimal cumulative cost)
for agent gk given an assignment of the timing vector ~τ .

Our objective is to minimize the multi-agent cumulative
cost under L interaction constraints:

J∗ = min
~τ∈D

min
~π∈ΠK

{
J~π (~τ)

}
(8)

where J~π (~τ), defined by equation 7, is decomposable, and
where each single agent cost function depends only on the
single agent policy. Therefore, we may switch the order of
summation to compute independently for each agent:

J~π (~τ) =

K∑
k=1

T−1∑
t=0

C0,k (st,k, at,k) +

L∑
`=1

ψ̂` (τ`;~π) C−` (9)

provided that ~sT = σ∗ and J~π (~τ) =∞ otherwise.
We can then minimize each single agent cost indepen-

dently for any given assignment of the timing vector ~τ ∈ D
(and specifically ~τk for each agent gk). After the optimal
single agent response functions are found, we need to find
the optimal assignment for the timing variables. Let us ob-
serve that the multi-agent problem decomposition results in
a min-sum optimization problem:

~τ∗ ∈ arg min
~τ∈D

K∑
k=1

J∗k (~τk) (10)

that is, the sum of optimal response functions. We can use
this structure to our advantage by applying an efficient opti-
mization algorithm.

3 DIPLOMA - Distributed Planning and
Optimization Algorithm for Multiple

Agents
In this section we present the DIstributed PLanning and
Optimization algorithm for Multiple Agents (DIPLOMA),
which addresses the previous multi-agent interaction model
and optimizes cost and policy. Using this model, we are
able to decompose a global multi-agent planning problem
into a two-step problem. First, K distributed independent
single-agent planning problems are solved. Second, we op-
timize the global solution with respect to the cooperation
constraints by selecting a plan for each agent.

We now describe the steps of our proposed algorithm, pre-
sented in algorithm 1:

1. Response Function Computation
For every agent gk ∈ G, compute the single agent re-
sponse function independently,

∀~τk ∈ Dk , J∗k (~τk) = min
πk∈Πk

Jπkk (~τk) (11)

It may be computed using various dynamic programming
algorithms, and more specifically using the algorithms de-
scribed next, in detail. This step can be parallelized over
agents.

2. Plan Merging
Compute the optimal total multi-agent cost by minimiz-
ing the sum single agent response with respect to the con-
straint variables. More specifically:

J∗ = min
~τ∈D

K∑
k=1

J∗k (~τk) (12)

The minimization process can be carried out efficiently
using factor graph modeling and a variable elimination
algorithm, as described below. Let ~τ∗ denote the optimal
assignment of the constraint variables.

3. Policy Backtracking

(a) For every agent gk ∈ G, backtrack the single agent
optimal policy independently:

π∗k ∈ arg min
πk∈Πk

Jπkk (~τ∗k) (13)

(b) The global optimal multi-agent policy is then given by

~π∗ = {π∗1 , π∗2 , ..., π∗k, ..., π∗K} (14)

Algorithm 1 DIPLOMA
1: returns ~π∗, the optimal group policy
2: inputs: MMDP, Ψ
3: for all gk ∈ G do . response function computation
4: for all ~τk ∈ Dk do
5: J∗k (~τk) = minπk∈Πk J

πk
k (~τk)

6: J∗ = min~τ∈D
∑K
k=1 J

∗
k (~τk) . plan merging

7: ~τ∗ ∈ arg min~τ∈D
∑K
k=1 J

∗
k (~τk)

8: for all gk ∈ G do
9: π∗k ∈ arg minπk∈Πk

Jπkk (~τ∗k)

10: ~π∗ = {π∗1 , π∗2 , ..., π∗k, ..., π∗K}
11: return ~π∗

3.1 Response Function Computation
The main step of our proposed algorithm is computing the
single agent response function with respect to constraint tim-
ing variables. We now describe algorithms to compute J∗k
efficiently for each agent. Before describing the algorithms
in detail, we present a few basic definitions and notations:

• The algorithms presented are from a single agent perspec-
tive; therefore, we omit the index k from the notation
wherever possible.

• V∗ (σ, σ∗, τ), the cost-to-state, is the optimal cumulative
cost from state σ at time t = τ to the target state σ∗ in
T − τ time steps.

• J ∗ (σI , σ, τ), the cost-from-state, is the optimal cumula-
tive cost from initial state σI at time t = 0 to state σ in τ
time steps, and J∗ = J ∗ (σI , σ∗, T).

• More generally, V∗♦ (sI , sg, τI , τg) is the optimal cumula-
tive cost from state sI at time t = τI to state sg at time
t = τg in τg − τI time steps.

We start with the following computation in algorithm 2
of the cost-to-state and cost-from-state. The result is re-
quired only for intermediate states in the agent’s constraint
set. A natural implementation by Dynamic Programming
(DP) computes these costs via a single pass for all states and
times.

Algorithm 2 Costs to and from states
1: for all τ ∈ {1, .., T} and σ ∈ {σ`} do
2: Compute J ∗ (σI , σ, τ) iteratively using DP.
3: for all τ ∈ {T − 1, .., 0} σ ∈ {σ`} do
4: Compute V∗ (σ, σ∗, τ) iteratively using DP.
5: Cache all results for later use.

The single agent response function is the optimal cumula-
tive cost with respect to the timing variables, i.e., the optimal
plan from the initial state to the goal state, while satisfying
the constraints in times specified by the timing variables. To
simplify the presentation, we start by showing how to com-
pute the single-agent response function with a single inter-
action (i.e., a single constraint), and then follow with the
general case of L interactions.

Let τ` be a single timing variable (i.e., L = ` = 1), and
J∗σ (τ`) the optimal cumulative cost from initial state σI to
goal state σ∗ in T time steps, via the intermediate state σ`;
i.e., sτ` = σ`. For a given assignment of τ`, we can compute
the response function in this simple case as:

J∗σ (τ) =

{
J∗, τ = T∅
J ∗ (σI , σ`, τ) + V∗ (σ`, σ∗, τ) , otherwise

(15)
Namely, it is computed by two parts: planning from the ini-
tial state σI in time t = 0 to the constraint state σ` in time
t = τ`, and from the latter to the goal state at T (i.e., for
T − τ time steps). If τ` = T∅, the constraint is not imposed.
Hence, J∗σ (τ`) = J∗, i.e., the optimal cost with no consid-
eration of interactions.

The generalization for L = Lk constraints (the number of
constraints agent k is involved in) follows the same idea. We
need to compute the response function J∗σ1,...,σL (τ1, ..., τL)
for every assignment of L timing variables. We present an
incremental scheme that efficiently avoids repeated compu-
tation of given segments:

1. Pre-compute the state-to-state cost functions by dynamic
programming, and cache the results for later use:

1.1. Apply algorithm 2.
1.2. Pre-compute V∗♦ using algorithm 3.

2. Build the response function from the bottom up using the
previously cached values that were pre-computed in the
previous step, using algorithms 4 and 5. For simplicity
we use the following concise notation, for 1 ≤ ` ≤ L:

J∗ {`} , J∗σ1,...,σ`
(τ1, ..., τ`) (16)

In algorithm 5 we show how to compute J∗ {`+ 1}
for all assignments to τ`+1, given J∗ {`} for a spe-
cific assignment to τ1, . . . , τ`. The idea is es-
sentially to replace V∗♦ (σ`1 , σ`2 , τ`1 , τ`2) by the sum
V∗♦ (σ`1 , σ`+1, τ`1 , τ`+1)+V∗♦ (σ`+1, σ`2 , τ`+1, τ`2) when
constraint `+ 1 is added with timing assignment τ`+1 be-
tween existing τ`1 and τ`2 .

Algorithm 3 Multiple constraint response - step 1.2
1: for all σi, σj ∈ {σ1, σ2, ..., σL} do
2: for all τi ∈ Ti do
3: for all τj ∈ Tj , τj > τi do
4: Compute V∗♦ (σi, σj , τi, τj)
5: Cache the results for later use.

Algorithm 4 Multiple constraint response - step 2
1: for all ` ∈ {1, 2, ..., L− 1} do
2: for all τ1, τ2, ..., τ` do
3: For a given assignment to τ1, τ2, ..., τ`
4: Such that τi1 ≤ τi2 ≤ ... ≤ τi`
5: Compute J∗ {`+ 1} from J∗ {`} for all τ`+1 ∈
T`+1, using Algorithm 5

Algorithm 5 Multiple constraint response - inner algorithm
1: Assume τi1 ≤ τi2 ≤ ... ≤ τi`
2: p = 1 . Initialize pivot index
3: b = 1 . Set baseline flag
4: for all τ`+1 ∈ {0, 1, ..., T − 1} do
5: if p = 1 then
6: if b = 1 then
7: J∗base = J∗{`} − J ∗ (σI , σi1 , τi1) . Initialize a baseline value for J∗{`+ 1}
8: b = 0 . Reset baseline flag
9: if τ`+1 < τi1 then

10: J∗{`+ 1} = J∗base + J ∗ (σI , σ`+1, τ`+1) + V∗♦ (σ`+1, σi1 , τ`+1, τi1)
11: else . τ`+1 = τi1
12: J∗{`+ 1} =∞ . There is no valid plan that meets the constraints
13: p = 2 . Increment pivot index
14: b = 1 . Set baseline flag
15: else if 1 < p ≤ ` then
16: if b = 1 then
17: J∗base = J∗{`} − V∗♦

(
σip−1

, σip , τip−1
, τip

)
18: b = 0 . Reset baseline flag
19: if τ`+1 < τip then
20: J∗{`+ 1} = J∗base + V∗♦

(
σip−1 , σ`+1, τip−1 , τ`+1

)
+ V∗♦

(
σ`+1, σip , τ`+1, τip

)
21: else . τ`+1 = τip
22: J∗{`+ 1} =∞ . There is no valid plan that meets the constraints
23: p = p+ 1 . Increment pivot index
24: b = 1 . Set baseline flag
25: else . p > `
26: if b = 1 then
27: J∗base = J∗{`} − V∗ (σi` , σ∗, τi`) . Initialize a baseline value for J∗{`+ 1}
28: b = 0 . Reset baseline flag
29: J∗{`+ 1} = J∗base + V∗♦ (σi` , σ`+1, τi` , τ`+1) + V∗

(
σi`+1

, σ∗, τi`+1

)
30: J∗{`+ 1} (T∅) = J∗{`} . τ`+1 is equal to the null assignment, namely no constraint

3.2 Plan Merging
The plan merging step of our proposed algorithm re-
quires finding an optimal assignment to the timing vari-
ables while optimizing the global cost function J∗ (~τ). This
is a weighted constraint satisfaction programming problem,
which is NP-hard in the general case (Larrosa and Dechter
2003). In the special case of the min-sum objective (equa-
tion 12), we can reduce optimization complexity by using
models that consider the internal structure of the depen-
dency among agents. A graphical model, called factor graph
(Loeliger 2004), describes the interaction among agents, and
captures agent dependency or independency, therefore lead-
ing to more efficient optimization algorithms.

A factor graph contains variable nodes representing con-
straint variables (the timing variables), and factor nodes rep-
resenting single-agent cost functions J∗k (~τk). Edges connect
a cost function to all the variables associated with the con-
straints involved in that cost function. Figure 1 illustrates
how the min-sum optimization problem is represented using
a factor graph. In this example, we have three cooperation
constraints, where G1 = {g1,g2,g3} ,G2 = {g1,g3}, and
G3 = {g3,g4}.

On the factor graph we apply a variable elimination (VE)
algorithm, which is used mainly for exact inference (Koller

and Friedman 2009). VE exploits the internal structure of
the problem and reduces computations (Larrosa and Dechter
2003).

The factor graph structure and the VE elimination order-
ing have a major effect on the complexity and efficiency of
the algorithm, which is out of the scope of this work (see
Koller and Friedman 2009). However, in the next section
we present several representative cases. The scheme for ap-
plying VE to solve the optimization problem is described in
(Revach 2018).

Figure 1: Factor graph example

3.3 Complexity Analysis
In this section we present an overall complexity analysis
of our proposed algorithm. We first present the complex-
ity of the response function computation, followed by an
overall analysis of a few representative cases, and estab-
lish an upper bound on the complexity of planning prob-
lems. The complexity result is formulated in terms of the
overhead of planning for a multi-agent system as a func-
tion of planning for each single agent in isolation, when
considering the same problem structure. More specifically,
we denote T (V∗, T) and T (J ∗, T) as the time complex-
ity of computing a single-agent cost-to-state and cost-from-
state, respectively, over the time horizon T , and assume
T (V∗, T) = T (J ∗, T).

For the response function computation, the first step of
pre-computation (algorithms 2 and 3) is of the order of
L2 ·

∑
τ`∈T` T (V∗, τ`) ≤ L2 · T2 · T (V∗, T), where L is

the number of constraints in which the agent is involved.
We can use an efficient algorithm for computing a single
agent cost-to-state from every initial state to a fixed and
specific goal state (e.g., using dynamic programming) and
denote its time complexity as T (V∗B, T). In that case, we
may reduce the time complexity by a factor of L, compared
to single agent planning, i.e., L · T2 · T (V∗B, T). The time
complexity of the second step (algorithm 4) is dominated by
O
(
TL
)
. Therefore, the overall complexity for computing

the response function is

L · T
2
·T (V∗B, T) +O

(
TL
)

(17)

In the case of a single constraint, this reduces to 2 ·
T (V∗, T) +O (T) (equation 15).

The complexity of the plan merging step, and more specif-
ically the VE algorithm, depends on the scope size of each
factor; that is, the number of variables to which each fac-
tor is connected. The total complexity has an exponen-
tial dependency in the scope size of the factors and it is
of the order of O ((K + L) · dm) where m is the maximal
scope size of factors and d is the maximal number of val-
ues of each variable. For a detailed complexity analysis
of the VE algorithm on a factor graph, see (Revach 2018;
Koller and Friedman 2009).

We now present an analysis of the overall time complex-
ity for several representative cases. We start with a very
sparse case, where there are 2 · L agents, each of which is
involved in only one cooperation constraint, i.e., K = 2 · L.
The response function computation time complexity is dom-
inated by 2 ·T (V∗, T) +O (T) and is linear in the span of
the time horizon. Each timing variable does not depend on
any of the other variables. The time complexity of elim-
inating a single variable is dominated by O (T); i.e., it is
also linear in the span of the time horizon. The overall
complexity is K · [2 ·T (V∗, T) +O (T)] + L · O (T) =
2·K · T (V∗, T) + 3

2 · K · O (T). Because of the inherent
decoupling in this case, this is equal to solving L = K

2 in-
dependent problems.

In a dense case we consider two agents with L ≥ 2 co-
operation constraints between them (i.e., each agent is in-
volved in L constraints). The time complexity of the re-

sponse function computation is exponential in L. As all
the timing variables belong to the same factors, they are
therefore dependent. The time complexity of the plan merg-
ing is also exponential in L, but it is not the dominat-
ing part. The overall complexity is dominated by 2 · L ·(
T
2 ·T (V∗B, T) +O

(
TL
))

.
We now consider an hierarchical case, where each con-

straint involves two agents and the factor graph is a bal-
anced N -tree with depth M . There are NM agents (factors)
that are represented as leaf nodes in the tree, and K − NM

agents that are not represented as leaf nodes. Here, K is
equal to K =

∑M
m=0N

m; therefore, the total number of
cooperation constraints is equal to L = K − 1. Each of the
leaf agents is involved in only one cooperation constraint;
therefore, the complexity of computing their response func-
tion is just linear: NM · (2 ·T (V∗, T) +O (T)). An agent
that is not a leaf node in the tree is involved in N + 1 co-
operation constraints. Therefore, the complexity of com-
puting their response function is

(
K −NM

)
· (N + 1) ·(

T
2 ·T (V∗B, T) +O

(
TN+1

))
. In the case of a tree, the plan

merging is executed bottom up from the leaf nodes to the
root node. Every factor that is not a leaf generates an N + 1
cliques (see Koller and Friedman 2009) of timing variables
(i.e., all the variables on which the factor depends). There-
fore, the complexity of plan merging is dominated by the
size and number of cliques. The complexity of eliminating
a clique by a VE algorithm is dominated by O

(
TN+1

)
, and

the number of cliques is equal to CL = K − NM . Note
that the process of eliminating cliques in the same level of
the tree can be distributed and parallelized.

Finally, we define a coupling measure ρ for the system as
the maximal number of constraints in which each agent is
involved,

ρ = max
k

Lk, k = 1, . . . ,K (18)

where Lk is the number of constraints in which agent gk is
involved. An upper bound for the complexity is linear in K,
polynomial in T , and exponential only in ρ:

O
(
K · ρ ·

(
T

2
·T (V∗B, T) + T ρ

))
(19)

4 Experiments
In this section we present the results of basic experiments
performed using DIPLOMA, in order to validate its cor-
rectness and test its time complexity. We compare the al-
gorithm’s performance against a centralized DP algorithm
solving the underlying MMDP. We use the same DP algo-
rithm for calculating J ∗ (σI , σ, τ) and V∗ (σ, σ∗, τ) in algo-
rithm 2. All simulations were performed on an Intel i7-8700
CPU @ 3.20Ghz machine with 16.0 GB RAM.

We ran our simulations on a simple grid world example
where several agents have to travel from an initial location
to a goal location in T time steps while collecting as many
boxes as possible. Each box has its own reward and asso-
ciated agent, and some boxes can be picked by two agents
together in order to gain a double reward. In order for agents
to pick a box together, they have to meet at the box location
at the same time. Agents can move up, left, or right, and

collect the reward upon moving up from their box location.
Our goal is to find an optimal joint plan such that the group
reward is maximized. Note that in this example we use re-
ward instead of cost used in the model; however, replacing
between the two is trivial by taking negative rewards. This
problem is depicted in figure 2 for a grid of 10×10 and four
agents (K = 4). This problem is quite simple but can repre-
sent scheduling problems, box-pushing, search-and-rescue
and more.

Figure 2: A box collecting problem on a 10 × 10 grid with
four agents (K = 4), denoted by four different colors. All
agents start in the bottom row and have to arrive to the cor-
responding warehouse at the top row within T time steps.
Each agent can only pick boxes of its color. Agents can co-
operate in three different locations (L = 3), illustrated by a
two-colored box. For instance, in the box located in (0, 2),
the red agent can pick the box alone and receive a reward of
3, or it can pick it with the assistance of the blue agent and
receive a reward of 6.

We ran our simulation on a fixed grid size of 10 ×
10
(
|S| = 100K

)
, a fixed horizon of T = 20 time steps, and

different values for number of agents (K), and constraints
(L). For every value of K we generated 20 random envi-
ronments (with a random number of constraints) and mea-
sured the runtime of the centralized reference algorithm and
DIPLOMA. Figure 3 demonstrates how our proposed algo-
rithm scales in the number of agents, and depends on the
coupling measure ρ (see equation 18). We also compare the
runtime of our algorithm using the VE algorithm for the plan
merging step, compared to a brute-force (BF) optimization.
Elimination ordering for VE was determined by a simplified
min-neighbors criteria (Koller and Friedman 2009). The ref-
erence algorithm does not depend on the coupling measure
(i.e., number of constraints), but for K = 3, has a run-
time higher by two orders of magnitude than DIPLOMA.
A value of K = 4 makes it practically infeasible to run.
DIPLOMA, on the other hand, scales well in the number
of agents and depends mostly on the coupling level. Fur-
thermore, using VE optimization for the plan merging step
(compared to a brute-force optimization), reduces runtime

significantly when the coupling measure increases.

5 Extension to Asymmetric Interactions
In this paper we focus on simple symmetric interactions be-
tween agents, i.e., meeting constraints where all agents must
arrive at the same time for the group to benefit from the
interaction. Our model, however, can be extended to in-
clude asymmetric and more complex temporal constraints,
enabling a compact representation of such constraints. Fur-
thermore, it enables the development of efficient planning
algorithms that exploit the linear time complexity of solv-
ing an MDP. This can be done by applying the group in-
teraction cost C−` to a specific interacting agent, called the
affected agent, and embedding an activation function of the
form f` : T × T` → {0, 1} into the affected agent’s im-
mediate cost. The activation function defines a set of time
instances where the interaction cost is applicable.

As an example, one can consider a scenario where a fa-
cilitating agent can arrive at a certain state in time τ ∈ T =
{1, ..., 10}, which opens a 10 time steps window following
time τ , allowing the second agent to receive an additional re-
ward for each time step (within this time window) in which
it is in a related state. If we formulate this interaction using a
distinct constraint for each possible state-time pair, we need
102 = 100 constraints, and thus checking about 2100 ≈ 1030

different combinations of constraints. By formulating this
interaction with an SCC, using a step activation function,
we would have only 10 constraints. We would need to check
only 210 = 1024 ≈ 103 combinations of constraints of the
first agent, and for each one, solve a single induced MDP for
the second agent. Thus, we obtain an improvement of many
orders of magnitude in this simple case.

A detailed formulation and implementation of this exten-
sion is presented in (Revach 2018), including an efficient
asymmetric planning algorithm using a step activation func-
tion.

Another rather trivial extension to asymmetric interac-
tions is to use a different interaction timing for every inter-
acting agent in a constraint. Since we calculate the agents’
response for each τ ∈ {0, . . . , T } (see algorithm 5), we can
choose a different value of τ for each agent in the plan merg-
ing step.

6 Discussion and Future Work
In this paper, we address the problem of fully cooperative
multiple agents high-level planning problems in determin-
istic environments. We focus on problems where interac-
tions between agents are symmetric and sparse, and present
a framework for representing all interactions as soft cooper-
ation constraints (SCC). This framework enables a compact
representation of temporal constraints and can be further ex-
tended and generalized to include more types of constraints.
Considering the SCC formulation, only those agents that
are subject to the same cooperation constraint are coupled,
forming a dependency only in a specific context.

The SCC model presented is quite general and useful in
practice, and can express constraints used in realistic scenar-
ios. The main use case is coordination of high-level actions

Figure 3: Simulation results for K = 2 (a), K = 3 (b), and K = 4 (c) on a logarithmic scale. The centralized reference
planner does not depend on the coupling measure (i.e., number of constraints in the problem), but scales poorly on the number
of agents, and for K = 4 is practically infeasible. DIPLOMA algorithm achieves an improvement of 2 orders of magnitude,
and depends on the coupling level.

among autonomous agents. Example problems are the coor-
dination of rescue or military forces, the Mars rover explo-
ration (discussed in Becker et al. 2004) or the coordinated
target tracking (discussed in Kumar and Zilberstein 2009).
We can extend several combinatorial optimization problems,
such as the vehicle routing problem (VRP) or the multi-
ple traveling salesman problem, to include potential meet-
ings between agents that provide additional rewards for the
group. An SCC can also express a conflict (or collision) con-
straint (specifically in multi-agent path finding problems) by
setting a positive or infinite interaction cost (see section 2),
and using the extended formulation presented in section 5.
In a similar way, we can also represent resource constraints,
such as ”use at most 1 of this resource at the same time”,
by adding constraints to states where the resource is used by
agents.

Using this model, we are able to describe an efficient al-
gorithm, DIPLOMA, which is both complete and optimal.
The proposed algorithm is a two-step algorithm: a dynamic
programming-based planning step and an optimization step.

In the first step, each agent plans independently and com-
putes its response function to the associated constraints with
respect to interaction timing variables. We show non-trivial
and efficient algorithms for computation, which can also be
distributed and parallelized. The time complexity per agent
strongly depends on the span of the time horizon and the
number of cooperation constraints relevant to this particular
agent.

In the second step, we use a variable elimination algo-
rithm on a factor graph to find the optimal assignment to
timing variables. The algorithm exploits the internal struc-
ture of the problem and independence among agents to effi-
ciently solve the min-sum optimization problem.

A theoretical time complexity analysis is presented, show-
ing that the overall algorithm is linear rather than exponen-
tial in the number of agents, polynomial in the span of the
time horizon, and dependent on the number of interactions
among agents.

Simulations show that the algorithm is efficient compared
to a standard solution and scales well in the number of

agents.
An immediate direction for future research is the exten-

sion to more expressive interaction constraints, as discussed
in section 5. Other possible directions for future research in-
clude generalizing the formulation of constraints by expand-
ing the state and time domains of each constraint, defining
types of agents (rather than specific agents) in a constraint,
approximate methods for computing the response functions,
and simulating a real-world large-scale MAP problem.

7 Acknowledgements
We thank our two anonymous reviewers for their useful and
constructive comments.

References
Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. V.
2004. Solving transition independent decentralized markov
decision processes. Journal of Artificial Intelligence Re-
search 22:423–455.
Boutilier, C. 1996. Planning, learning and coordination in
multiagent decision processes. In Proceedings of the 6th
conference on Theoretical aspects of rationality and knowl-
edge, 195–210. Morgan Kaufmann Publishers Inc.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
planning for loosely coupled multi-agent systems. In Pro-
ceedings of the Eighteenth International Conference on Au-
tomated Planning and Scheduling, 28–35.
Fioretto, F.; Pontelli, E.; and Yeoh, W. 2018. Distributed
constraint optimization problems and applications: A sur-
vey. Journal of Artificial Intelligence Research 61:623–698.
Guestrin, C.; Koller, D.; and Parr, R. 2002. Multiagent plan-
ning with factored mdps. In Advances in neural information
processing systems, 1523–1530.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. Cambridge, MA: MIT
Press.
Kumar, A., and Zilberstein, S. 2009. Constraint-based dy-
namic programming for decentralized POMDPs with struc-
tured interactions. In Proceedings of the International Joint

Conference on Autonomous Agents and Multiagent Systems,
AAMAS.
Larrosa, J., and Dechter, R. 2003. Boosting search with vari-
able elimination in constraint optimization and constraint
satisfaction problems. Constraints 8(3):303–326.
Loeliger, H.-A. 2004. An introduction to factor graphs.
IEEE Signal Processing Magazine 21(1):28–41.
Melo, F. S., and Veloso, M. 2011. Decentralized MDPs with
sparse interactions. Artificial Intelligence.
Nair, R.; Varakantham, P.; Tambe, M.; and Yokoo, M. 2005.
Networked distributed pomdps: A synthesis of distributed
constraint optimization and pomdps. In AAAI, volume 5,
133–139.
Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A
general, fully distributed multi-agent planning algorithm. In
Proceedings of the International Joint Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS.
Oliehoek, F. A.; Spaan, M. T.; Vlassis, N.; and Whiteson,
S. 2008. Exploiting locality of interaction in factored dec-
pomdps. In Int. Joint Conf. on Autonomous Agents and
Multi-Agent Systems, 517–524.
Oliehoek, F. A.; Whiteson, S.; and Spaan, M. T. 2012. Ex-
ploiting structure in cooperative bayesian games. In Un-
certainty in Artificial Intelligence - Proceedings of the 28th
Conference, UAI 2012.
Revach, G. 2018. Planning for cooperative multiple agents
with sparse interactions. Master’s thesis, Technion - Israel
Institute of Technology, Haifa, IL.
Scharpff, J.; Roijers, D. M.; Oliehoek, F. A.; Spaan, M. T.;
de Weerdt, M. M.; et al. 2016. Solving transition-
independent multi-agent mdps with sparse interactions. In
AAAI, 3174–3180.

