Date: 24/01/16

Tool name: PECVD

Tool location: FAB1

Tool purpose: a – Silicon, Silicon Oxide, Nitride and Carbide films deposition

Process gases: Ar, N₂, N₂O, SiH₄, NH₃, SF₆, C₂H₄

Process range temperatures: $250^{\circ} - 300^{\circ}$ C

Samples type: silicon, glass, sapphire, alumina substrates

Samples size: up to 6" wafers

Thickness range: from nanometric scale up to 1um (at once, without clean)

Recipe structure: stabilization with gases on, RF on, deposition, purge

Main work instructions:

1. Check that the gases of interest are on.

- 2. Check that the rouging pump is on.
- 3. Press *Exit* button to switch the machine to operation mode .
- 4. Wait till the machine has come to *Vacuum Ready* status.
- 5. Use *Edit Recipe* line to view, create, copy/delete recipes .
- 6. Press a red button on the panel to vent the chamber.
- 7. Load the sample on the chuck (remember it's very hot!).
- 8. Close the door gently and press the green button on the panel to start pumping.
- 9. Wait for the *Vacuum Ready* status.
- 10. Press the *Operation* button on the screen, choose the process of interest, type the current date with a run number and click on *Run*. The machine starts performing the process. Verify on graphs that all process parameters (RF power, gas flows, working pressure, N₂ reactor pressure have reliable, expected values). It should ends with purge step.
- 11. Wait for the *Vacuum Ready* status.
- 12. Press the red button on the machine panel.
- 13. Open the chamber door, take out the sample, close and vacuum the machine.

Important:

- Never put inside any sample with resist or some kind of organic materials.
- Never use *Abort Process* button to stop the process, press *Go To* and switch to *Purge* instead.
- The end point detector is out of use.
- Don't change the parameters in original recipe copy it first.
- Run *Clean_Si* procedure after the silicon deposition process and *Clean_SiO₂* after silicon oxide deposition.