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Quantum entanglement is an information resource; it plays an important role in many proto-
cols for quantum-information processing, including quantum computation, quantum cryptogra-
phy, teleportation, super-dense coding, and quantum error correction protocols. Moreover, mul-
tipartite entanglement offers a means of enhancing interferometric precision beyond the standard
quantum limit and is therefore relevant to increasing the precision of atomic clocks by decreas-
ing projection noise in spectroscopy. But it turns out that even entanglement of two two-level
(qubit) systems is not well understood! In this case, there is a Peres-Horodecki criterion for
determining whether a mixed states are entangled, but the physical meaning of this criterion
is not understood. Recently, we have been able to express the criterion in terms of invari-
ant parameters in the density matrix. For the purpose of discussion here, let us consider only
qubits. For two uncorrelated qubits, call them A and B, we can write the density matrix as
a tensor product, ρAB = ρAρB, where the individual qubit density matrices can be written as
ρJ = 1

2 (1 + nJ · σJ), where J = A,B, the σJ are Pauli matrices for particle J and the Bloch
vectors are nJ = 〈σJ 〉 = TrσJρJ . For two correlated qubits,

ρAB =
1

4

[

(1 + nA · σA) (1 + nB · σB) + σA · CAB · σB

]

, (1)

where the tensor CAB specifies the qubit correlations,

CAB
ij ≡ 〈σi,Aσj,B〉 − 〈σi,A〉〈σj,B〉 = 〈σi,Aσj,B〉 − ni,A nj,B. (2)

The density matrix ρAB is a 4×4 Hermitian matrix with trace unity, so 15 parameters are required
to parameterize it. The 3 components of nA, the 3 components of nB , and the 9 components Cij

of the 3×3 matrix C, where we no longer explicitly show subsystem superscripts, are sufficient
for this purpose. Our bipartite correlation measure for an n-level and m-level system is based
on the (n2 − 1)×(m2 − 1) correlation matrix C:

EC ≡
n2

<

4(n2
< − 1)

TrCCT =
n2

<

4(n2
< − 1)

∑

i,j

CijC
T
ji , (3)

where n< = min(n,m). EC =
n2

<

4(n2

<−1)
Tr (ρAB − ρAρB)2 is a nonnegative real number.

The correlation matrix C quantifies the correlation and the entanglement of bipartite states.
For pure two-qubit states, the number of nonzero singular values (NSVs) of C is zero for non-
entangled states (C vanishes), and is three for entangled states. For classically-correlated states
with two terms in the sum, only one NSV occurs, two NSVs occur for three terms, three NSVs
occur for four or more terms, and for entangled (i.e., quantum-correlated) mixed states there are
three NSVs. These cases are summarized in Fig. 1. Entangled mixed states can be differentiated
from classically-correlated states with 3 NSVs by applying the Peres-Horodecki (PH) partial
transposition condition [which corresponds to changing the sign of ny,B and the matrix elements
CAB

iy that multiply σy,B in (1), and determining whether the resulting ρ is still a genuine density
matrix — if it is, the state is classically correlated] to the density matrices with 3 NSVs. The only

categories that cannot be distinguished without use of the PH condition are the mixed-entangled
and the classically correlated states with ≥ 4 terms.

In order to better understand the present-day lack of physical intuition regarding entangle-
ment, it is enlightening to consider the Werner two-qubit density matrix composed of a sum
of a singlet state and the maximally mixed state, ρW = p|Ψ−〉〈Ψ−| + 1−p

4 1, where |Ψ−〉 is
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Figure 1: Classification of two-qubit states. Categories can be experimentally distinguished by
measuring nA, nB, and using Bell measurements to determine the C matrix.

the singlet, or the more general Werner two-qubit density matrix, ρGW = p |ψ−〉〈ψ−| + 1−p
4 1,

where |ψ−〉 = (2cosh(2θ))−1/2 (e−θ| ↑↓〉 − eθ| ↓↑〉). ρGW reduces to ρW for θ = 0. For ρGW ,
nA = −nB = p tanh(2θ) ẑ, and

CGW = −p





sech(2θ) 0 0
0 sech(2θ) 0

0 0 1 − p+ p sech2(2θ)



 . (4)

The PH entanglement criterion shows that this state is entangled if p[(1+2sech(2θ)] ≥ 1. Figure
2 plots the PH criterion limit and the correlation measure, EC(p, θ) =

∑

i d
2
i = 1 − p + (2p2 +

p)sech2(2θ), for the generalized Werner state. Note that the PH criterion is not obtainable from
C alone, but can be obtained using the invariant parameters ξ ≡

∑

i di −
nA·C·nB

nA·nB
and nA · nB.

More explicitly, p[1 + 2sech(2θ)] = −ξ +
√

ξ2/4 − nA · nB, so the PH condition reads

−
ξ

2
+

−ξ +
√

ξ2 − 4nA · nB

2
≥ 1 , (5)

which can be written as the condition: the largest root of the quadratic equation, (x + ξ/2)2 +
ξ(x + ξ/2) + nA · nB = 0, is greater than unity. Thus, mixed state entanglement is determined
not only by C but by additional invariant characteristics of the density matrix, i.e., invariant
characteristics composed of the parameters C, nA and nB used to form the density matrix
(whereas the correlation is determined only in terms of C).

Figure 2: EC(p, θ) versus p and θ for the generalized Werner density matrix ρGW , and the
Peres-Horodecki entanglement criterion limit, p[1 + 2sech(2θ)] = 1, drawn on the p-θ plane and
projected onto the EC surface.
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