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Abstract 25 

Faster relearning of an external perturbation, savings, offers a behavioral linkage between motor 26 

learning and memory. To explain savings effects in reaching adaptation experiments, recent 27 

models suggested the existence of multiple learning components, each shows different learning 28 

and forgetting properties that may change following initial learning. Nevertheless, the existence of 29 

these components in rhythmic movements with other effectors, such as during locomotor 30 

adaptation, has not yet been studied. Here, we study savings in locomotor adaptation in two 31 

experiments; in the first, subjects adapted to speed perturbations during walking on a split-belt 32 

treadmill, briefly adapted to a counter-perturbation and then readapted. In a second experiment, 33 

subjects readapted after a prolonged period of washout of initial adaptation. In both experiments 34 

we find clear evidence for increased learning rates (savings) during readaptation. We show that 35 

the basic error-based multiple timescales linear state space model is not sufficient to explain 36 

savings during locomotor adaptation. Instead, we show that locomotor adaptation leads to changes 37 

in learning parameters, so that learning rates are faster during readaptation. Interestingly, we find 38 

an inter-subject correlation between the slow learning component in initial adaptation and the fast 39 

learning component in the readaptation phase, suggesting an underlying mechanism for savings. 40 

Together, these findings suggest that savings in locomotion and in reaching may share common 41 

computational and neuronal mechanisms; both are driven by the slow learning component and are 42 

likely to depend on cortical plasticity. 43 

  44 



Introduction 45 

Our motor system is known for its ability to rapidly adapt to changes in the environment and 46 

changes of its own (Scheidt et al. 2000; Thoroughman and Shadmehr 2000). It was suggested that 47 

such adaptation depends on an error-based process which gradually updates one’s controller based 48 

on the discrepancy between forward model predictions and sensory inputs (e.g., sensory prediction 49 

errors) (Shadmehr and Mussa-Ivaldi 1994). For example, when humans start to walk on split-belt 50 

treadmill imposing different speeds to each leg, the sensory consequences of the motor commands 51 

are different than expected, causing kinematic (Reisman et al. 2005) and kinetic (Mawase et al. 52 

2013) motor errors. Exposed to such perturbation, subjects gradually modulate the walking speed 53 

of each leg to adapt to the speed imposed by the treadmill.  Interestingly, this learning process led 54 

to the formation of a motor memory that can be recalled later (Malone et al. 2011; Shadmehr and 55 

Brashers-Krug 1997). 56 

Faster relearning of the same perturbation when introduced again (i.e. savings) receives great 57 
attention in the motor control community since it reflects the formation of a new motor memory. 58 

Initial attempts to model adaptation to an external perturbation were based on state space models 59 
composed of a fast and one or multiple slow processes (Lee and Schweighofer 2009; Smith et al. 60 

2006). However, these linear multiple-rate state space models could not explain savings that occur 61 
after a prolonged period of washout (Krakauer et al. 2005; Zarahn et al. 2008), and across days 62 
(Robinson et al. 2006).  Instead, a recently non-linear state space model (Zarahn et al. 2008) and 63 

context-dependent models (Ingram et al. 2011; Lee and Schweighofer 2009) were suggested to 64 
better explain a variety of phenomena reported in the motor adaptation literature, including 65 
savings. While evidence for savings has been accumulated from different systems [saccades, arm 66 

reaching, and locomotion (Kojima et al. 2004; Krakauer et al. 2005; Malone et al. 2011)] and 67 

across paradigms [saccades, visuomotor and force filed adaptation (Kojima et al. 2004; Krakauer 68 
et al. 2005; Smith et al. 2006; Zarahn et al. 2008)], adaptation and savings were mainly modeled 69 
based on reaching and saccades adaptation results, and to the best of our knowledge, was never 70 

modeled for locomotor adaptation. The generalization of adaptation models which were 71 
constructed based on reaching experiments to locomotor adaptation is questionable, as the two 72 

behaviors differ greatly in terms of neuronal substrates, the nature of the behavior, and the role of 73 
visual feedback: locomotion is rhythmic, depends greatly on central pattern generators located in 74 

the spinal cord and shows adaptation at the spinal cord level (Heng and de Leon 2007), whereas 75 
reaching movements are discrete, guided by visual input and depend on cortical substrates.  76 
Recently, savings in locomotor adaptation was reported in a set of psychophysical experiments 77 
(Malone et al. 2011). In these studies savings across days was found even after a washout of initial 78 
learning, suggesting that savings in locomotion reflect enhanced learning and not residual state 79 

components. Nevertheless, locomotor adaptation was never formally modeled using state space 80 
models, and the nature of parameter changes following initial adaptation has not been examined 81 

yet.  82 

Commonalities between the computational components leading to adaptation and savings of 83 

reaching and locomotor adaptation may shed light on the neuronal and mechanistic basis of motor 84 

savings. 85 



Here we investigate the computational basis of locomotor adaptation by comparing the 86 

performance of a linear dual-rate state space model with state space models with changing 87 

parameters (Zarahn et al. 2008), under the hypothesis that locomotor adaptation leads to changes 88 

in learning parameters that would last beyond the decay of the hidden state of the system. 89 

Furthermore, we were interested in the relationship between the initial and second adaptation 90 

phases, hypothesizing that the magnitude of savings will be correlated with the learning achieved 91 

during the initial exposure to adaptation. Recent results suggest that long term retention (savings) 92 

is affected by the slow learning process (Joiner and Smith 2008), and that the slow process may 93 

be sensitive to reward whereas the fast process is not (Huang et al. 2011). Furthermore, Berniker 94 

and Kording (2011) recently suggested that the fast and slow processes represent assignment of 95 

the source of the error to internal and external perturbations, respectively. All these perspectives 96 

suggest that savings may be the outcome of a slow learning and slow decaying process. By fitting 97 

slow and fast learning components to the adaptation and readaptation phases independently we can 98 

investigate the relationship between the above learning parameters. 99 

The current study has two main aims. The first is to study the nature of savings in locomotor 100 

adaptation by comparing linear and non-linear state space models. The second aim was to explore 101 

the relationship of the slow and fast learning components before and after learning. 102 

      103 

Materials and Methods 104 

Subjects. Forty subjects (23 males, 17 females, mean age 25.9±2.7 years) participated in the current 105 

study. All subjects were naïve to our paradigm, without neurological history and without known 106 

disturbances in walking. Subjects signed the informed consent form as stipulated by the 107 

Institutional Helsinki Committee.  108 

 109 

Apparatus and general experimental procedure  110 

Subjects were instructed to walk on a custom split-belt force treadmill (ForceLink BV, Clemborg, 111 

The Netherlands), which has two separate belts and an embedded force plate (Fig. 1A). The speed 112 

and the direction (forward vs. backward) of each treadmill belt were controlled independently. The 113 

belt’s speed could be in one of two conditions, either moving together at same speed (tied-belts) 114 

or moving separately at different speeds (split-belts).  115 

Subjects were positioned in the middle of the split-belt treadmill with one foot on each belt. They 116 

were instructed to look straight forward, preventing the usage of available visual feedback from 117 

the environment regarding the speeds of the belts. For safety, all subjects wore a safety harness 118 

that was suspended from the ceiling, two emergency stop buttons were available during the 119 

experiment and two adjustable side bars were available to prevent falls. The safety harness and the 120 



side bars did not support the subjects during the experiments. Custom software written in C# 121 

(Microsoft Visual Studio, Washington State, USA) was used for controlling the speed of the belts 122 

and the timing of the experiments.  123 

Center of pressure (COP) data was sampled and recorded using Gaitfors® software (ForceLink 124 

BV, Clemborg, The Netherlands). The system recorded the COP data at 500 Hz using 1-dimension 125 

force sensors from a single large (160x800 mm) force plate embedded in the treadmill. COP is 126 

defined as the projection of the resultant vertical force vector on the ground plane (Benda et al. 127 

1994). Determining the two coordinates (x and y) of the COP is based on measuring the force 128 

component from each force transducer placed on the corner of the force platform (Besser et al. 129 

1993). The system was also able to determine representative gait events such as initial contact (IC) 130 

and toe off (TO) for each leg independently (Roerdink et al. 2008). In this study, our primary 131 

adaptation measurement was COP symmetry which has previously been shown as a robust 132 

adaptation index (Mawase et al. 2013). COP symmetry was defined as follows:  133 

(1)   𝐶𝑂𝑃 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =
Left COP length−Right COP length

Left COP length+Right COP length
 134 

where left COP length was calculated as the y (anterior-posterior) distance in the COP profile 135 

between consecutive left TO and right IC and right COP length was calculated as the y distance 136 

between consecutive right TO and left IC (Fig. 1B). The difference was then normalized to the 137 

sum of the right and left COP length.  138 

Our aim was to understand what drives adaptation and savings during locomotion. Predominantly, 139 

we aimed to test the learning process that underlies locomotor adaptation. To answer this question, 140 

we began with reanalyzing previously collected data from Mawase et al. (2013) (experiment 1). 141 

We followed up with two additional experiments (experiments 2 and 3) in which we tested the 142 

best variation of the linear state-space model (SSM) that explains savings during locomotor 143 

adaptation. 144 

 145 

Experiment 1: Adaptation-Washout (AW) paradigm 146 

For experiment 1, we reanalyzed data of ten subjects (6 males, 4 females, mean age, 25.8±3.4 147 

years) from a dataset previously reported by Mawase et al. (2013). For all subjects, the self-148 

identified dominant leg was the right leg. Leg dominance was determined by asking each subject 149 

about the leg he/she uses to kick a ball. All subjects completed three blocks: baseline, adaptation 150 

and washout (Fig. 1C left panel). During the baseline block, subjects walked with both belts at 151 

same speed for 6 minutes. They started with the “slow” speed, then at “fast” speed, and finally at 152 

“slow” speed for 2 minutes at each speed. We define “slow” and “fast” speeds to be 0.5 m/s and 1 153 

m/s respectively. During adaptation, subjects walked with the belts of the split-belt treadmill 154 

moving at different speeds for each leg for 15 minutes. The belt of the left (non-dominant) leg 155 



moved always at the slow speed while the belt of the right leg moved at the fast speed. During 156 

washout, the belts were set again to move together at the slow speed (0.5 m/s) for 5 minutes.  157 

The aim of reanalyzing the AW experiment was to test whether the traditional single/dual rate 158 

SSM (Smith et al. 2006), designed to study reaching adaptation, could also account for locomotor 159 

adaptation. In particular, the purpose was to test whether the models can capture the shape of the 160 

error reduction and the after effect curves seen following removal of the perturbation (i.e. 161 

washout).  162 

  163 

Experiment 2: Adaptation-Counterperturbation-Readaptation paradigm 164 

Seventeen naïve subjects (10 males, 7 females, mean age 26.1±1.8 years) participated in 165 

experiment 2. For sixteen subjects, the self-identified dominant leg was the right leg. Subjects in 166 

the counterperturbation experiment completed four walking blocks: baseline, adaptation, 167 

adaptation to counterperturbation and readaptation (Fig. 1C middle panel). All subjects 168 

experienced 2 minutes of baseline walking on tied-belts. They walked one minute at “slow” speed 169 

(0.6 m/s) followed by another one minute at “fast” speed (1.2 m/s). All subjects were then adapted 170 

to split-belts (belts split at 0.6 and 1.2 m/s; slow belt under dominant leg) for 10 minutes. Subjects 171 

were then briefly adapted with opposite split-belts (belts split at 1.2 and 0.6 m/s; fast belt under 172 

dominant leg) for 30 seconds. All subjects were then readapted to the split-belts presented at the 173 

first adaptation block, again for 10 minutes, (belts split at 0.6 and 1.2 m/s; slow belt under dominant 174 

leg).  175 

 176 

Experiment 3: Adaptation-Washout-Readaptation paradigm 177 

Thirteen naïve subjects (7 males, 6 females, mean age 25.7±1.9 years) with right dominant leg 178 

participated in experiment 3. Subjects in the washout experiment completed four walking blocks: 179 

baseline, adaptation, washout and readaptation (Fig. 1C right panel). All subjects experienced 2 180 

minutes of baseline walking on tied-belts. Then they walked one minute at “slow” speed (0.6 m/s) 181 

followed by another one minute at “fast” speed (1.2 m/s). All subjects were then adapted to split-182 

belts (belts split at 0.6 and 1.2 m/s; slow belt under dominant leg) for 8 minutes. Subjects were 183 

then washed out with the slow tied-speed (belts tied at 0.6 m/s) for 8 minutes. All subjects were 184 

then readapted to the same split-belts presented in the first adaptation block (belts split at 0.6 and 185 

1.2 m/s; slow belt under dominant leg) for 8 minutes. 186 

 187 



Figure 1. Experimental 188 

design and protocols. A. 189 

Subjects walked on a 190 

split-belt force 191 

treadmill with two 192 

separated belts and an 193 

embedded force plate 194 

(white plate). Red trace 195 

represents the COP 196 

profile for one gait 197 

cycle. B. Schematic 198 

example for one COP 199 

profile for one cycle. 200 

Left COP length was 201 

calculated as the y 202 

(anterior-posterior) 203 

distance in the COP 204 

profile between 205 

consecutive left TO and right IC and right COP length was calculated as the y distance between 206 

consecutive right TO and left IC. C. Left panel - protocol of experiment 1: baseline (6 min), adaptation 207 

(15 min) and washout (5 min). During the baseline block, subjects walked with both belts at same 208 

speed (tied-belts) [0.5:0.5 m/s (2 min), 1:1 m/s (2 min) and 0.5:0.5 m/s (2 min)]. During adaptation, 209 

subjects walked with different speeds (split-belts) (0.5:1 m/s). During washout, subjects walked on 210 

tied-belts at slow speed condition (0.5:0.5 m/s). Middle panel- protocol of experiment 2: baseline (2 211 

min), adaptation (10 min), counterperturbation (30 sec) and readaptation (10 min). During the 212 

baseline block, subjects walked on tied-belts [0.6:0.6 m/s (1 min), 1.2:1.2 m/s (1 min)]. During 213 

adaptation, subjects walked on split-belts (0.6:1.2 m/s; slow belt under dominant leg). During 214 

counterperturbation, the belts were set to the opposite split-belts pattern (1.2:0.6 m/s).  All subjects 215 

were then re-exposed to the same split-belts, as in the adaptation block, again for 10 min, (0.6:1.2 216 

m/s; slow belt under dominant leg). Right panel - protocol of experiment 3: baseline (2 min), 217 

adaptation (8 min), washout (8 min) and readaptation (8 min). Speed condition in each block of 218 

experiment 3 was similar to experiment 2. 219 

 220 

Modeling 221 

Different variations of the SSM have been recently suggested to explain adaptation and savings 222 

during force field (Donchin et al. 2003; Smith et al. 2006), object rotation (Ingram et al. 2011) and 223 

visuomotor (Lee and Schweighofer 2009; Zarahn et al. 2008) perturbations. Most of these models 224 

assume linear time invariant (LTI) properties of the parameters (Donchin et al. 2003; Ingram et al. 225 

2011; Lee and Schweighofer 2009; Smith et al. 2006) while the rest model assumes varying 226 

parameters that change with experience (Berniker and Kording 2011; Zarahn et al. 2008). All of 227 

these error-based models suggest that trial-by-trial adaptation occurs by updating the appropriate 228 



internal models (i.e. states) to reflect the behavior of the perturbation. However, the varying 229 

parameter model suggests that motor adaptation occurs by updating the parameters along with the 230 

states.  In the current study, we compare the prediction of three variations of the proposed SSM 231 

during locomotor adaptation: (1) dual-rate linear time invariant SSM (Smith et al. 2006), (2) 232 

single-rate varying parameters SSM (Zarahn et al. 2008), (3) dual-rate varying parameters SSM 233 

(Zarahn et al. 2008). The equations of the models took the following forms: 234 

(a) Dual-rate SSM: 235 
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 237 

(b) Single-rate varying parameters SSM 238 
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(c) Dual-rate varying parameters SSM 241 
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In a given trial n , )(ne is the motor error, )(nf is the external perturbation (defined as the 243 

difference between left and right belt speeds) and )(ny  is the net motor output on the same trial 244 

(i.e. the state of the learner). )( pA  and )( pB are the forgetting and learning rate constants that 245 

change with an experience p , respectively. Experiments 2 and 3 contain three experience phases: 246 

adaptation-counterperturbation-readaptation in experiment 2 and adaptation-washout-readaptation 247 

in experiment 3. D is a compliance scalar with units of seconds per meter.  The dual-rate SSM 248 

suggests that the net motor output has two inner states )(nx f  and )(nxs , where )(nx f  is the fast 249 

process that reacts rapidly to motor error but has weak memory retention and )(nxs is the slow 250 

process that reacts slowly to motor error but significantly exhibits strong retention. To this end, it 251 

contains five free constant parameters ( DBABA
ssff
,,,, ). In the single-rate varying parameters 252 

SSM, there is only single learning process )(nx , which has varying forgetting and learning 253 

parameters )( pA  and )( pB , respectively. This model contains seven free parameters [254 



DBABABA
adaptationadaptationonDeadaptationDeadaptatiadaptationadaptation

,,,,,,
ReRe

] and [255 

DBABABA
adaptationadaptationWashoputWashoutadaptationadaptation

,,,,,,
ReRe

] for experiment 2 and 3, respectively. 256 

Finally, the dual-rate varying parameters SSM, which has 13 free parameters, suggests that the net 257 

motor output has a single state in the fast process and a single state in the slow process for each 258 

experience phase (i.e. adaptation/ counterperturbation/ washout/ readaptation). In addition, the 259 

motor output/perturbation [i.e. )()(1)()( nfnenfny  ] represents the predicted amount of 260 

adaptation in each trial.   261 

We searched for the best model that simultaneously accounts for adaptation and savings during 262 

locomotion. Model selection was performed by the Akaike Information Criterion (AIC) (Akaike 263 

1974), computed for the single subject data. For each candidate model, the AIC value reflects the 264 

combination of fitting amount along with the number of free parameters, and the optimal model is 265 

identified by the minimum value of AIC. Thus, the difference in AIC values of two candidate 266 

models would provide strong indication toward the best fitting model.   267 

(2) )ln(2 LnkAIC   268 

where k  is the number of free parameters, n  is the number of data points and L  is the maximized 269 

value of the likelihood function for the estimated model. Under the assumption that the model 270 

errors are independent and identically normally distributed (i.i.d), we can rewrite the criterion as 271 

follow: 272 

(3) )ln(2 2

r
nkAIC   273 

where 
r

 is the standard deviation of the residual errors between the actual and predicted data.  274 

AIC analysis is critical for our study to account for the increase in number of free parameters 275 

introduced in the varying parameters SSM models.   276 

We estimated the parameters of the models by using the fmincon routine performed by Matlab that 277 

maximized the log likelihood. In all experiments, the estimated error of each model was fitted to 278 

the individual subject’s data. In experiment 2 and 3, the estimated error was fitted simultaneously 279 

to all three phases. Thereafter, we calculated the mean and the standard error for each parameter 280 

in each experiment phase for further comparison analysis. 281 

For each adaptation and readaptation phase and for each individual subject, we quantified the 282 

initial error as the motor error of the first trial and mid-error as the average of the trials 2-30. This 283 

method has previously been shown as a robust savings measurement index (Malone et al. 2011). 284 

Following the definition of savings by previous works as an increase in the rate of error reduction 285 

following initial learning (Huang et al. 2011; Malone et al. 2011; Zarahn et al. 2008), we fit a 286 

single exponential function, which has the form ceany bn   /)( , to each subject's data to 287 

estimate the rate of error reduction. Moreover, savings was also quantified as the difference 288 

http://en.wikipedia.org/wiki/Likelihood_function


between mid-errors across the two adaptation blocks. In addition, we defined “initial bias” as the 289 

difference between initial errors across the two adaptation blocks.  290 

Statistical Analysis. Statistical analysis of the data was performed using the Matlab software with 291 

Statistics Toolbox (The MathWorks Inc., Natick, MA, USA). We used repeated measure analyses 292 

of variance (ANOVARM) to compare differences between AIC values of the models in experiment 293 

2 and 3. When significant differences were found, post hoc analyses were performed. The Shapiro-294 

Wilk W test with alpha level of 0.05 was used to assess the t-test assumption of normality on the 295 

AIC difference values across subjects. When the p-value was greater than the chosen alpha level, 296 

paired t-test was used to compare the difference in AIC between models. Otherwise, non-297 

parametric Wilcoxon matched-pair signed-rank test was used for comparison. Correlation between 298 

learning parameters (i.e. Bf and Bs) and motor errors were evaluated using the Pearson correlation 299 

coefficients. The free parameters and their confidence intervals of the single exponential function 300 

were estimated using the Matlab software with Curve Fitting Toolbox. Two-tailed t-test was used 301 

to compare initial error and mid error in experiment 2 and 3. Significance level was set to 0.05. 302 

 303 

Results 304 

Experiment 1- Learning processes in locomotor adaptation  305 

We first sought to test the hypothesis whether basic LTI single-rate or dual-rate learning process 306 

could explain the fundamental principles of locomotor adaptation time course, i.e. the error 307 

reduction during the perturbation block and, predominantly, the after effect during the washout 308 

block. To this end, we reanalyzed our previous published data (Mawase et al. 2013). Fig. 2A shows 309 

the learning process during adaptation to speed perturbation using the split-belt system. During the 310 

baseline phase (i.e. zero perturbation), COP symmetry (i.e. motor error) values were close to zero, 311 

mean error at the baseline phase across subjects was 0.007± 0.042 (mean ± SD), which indicates 312 

a symmetric pattern of locomotion. During early adaptation, there was a significant positive value 313 

of the error. The mean error over the first two trials was 0.56± 0.077 (mean ± SD). This positive 314 

value of error decreased slowly throughout the adaptation phase, reaching an error rate of 0.128± 315 

0.046 over the last 10 trials. In the early post-adaptation phase (washout), there was a clear negative 316 

after-effect, indicated by mean error of -0.57± 0.079 over the first two trials. This reverse pattern 317 

gradually returned to baseline values, reaching error value of -0.067± 0.047 over the last 10 trials. 318 

We fit the single-rate SSM as well as the dual-rate SSM to the trial series of the motor error for 319 

each subject from experiment 1. The single-rate model has one state, whereas the dual-rate model 320 

proposed that the motor output has two independent states, a fast state that reacts rapidly to motor 321 

error but has strong forgetting rate, and one slow state that reacts slowly to motor error but 322 

significantly exhibits strong retention (See Materials and Methods). Since there is only one 323 

adaptation phase in experiment 1, the single-rate LTI model is identical to the single-rate varying 324 



parameters model. The two SSMs models were computed separately for each subject and 325 

simultaneously to all phases of the experiment. The across-subject averages of the parameter 326 

estimates from the single-rate SSM were A=0.9939±0.0017 (mean ± SEM), B=0.0153±0.0047 and 327 

D=1.0944±0.1429, and the across-subject averages of the parameter estimates from the dual-rate 328 

SSM were Afast=0.6885±0.1367 (mean ± SEM), Aslow=0.9979±0.0009, Bfast=0.0.1781±0.0827, 329 

Bslow=0.0094±0.0023 and D=1.3958±0.1115. To qualitatively illustrate the time courses of the 330 

different SSMs during experiment 1, we fitted the two models to the across-subject averaged data 331 

(Fig. 2A). As shown in Fig. 2A, the two models did a responsible job of explaining adaptation and 332 

after-effect during the first experiment. 333 

 334 

Figure 2. Group data and 335 

model prediction during 336 

experiment 1.  A. Across-337 

subject averaged COP 338 

symmetry (gray points) 339 

in each gait cycle and the 340 

fitted LTI single-rate SSM 341 

(blue line) and dual-rate 342 

SSM (red line). B. Across-343 

subject averaged Akaike 344 

Information Criterion 345 

(AIC) for the single-rate 346 

SSM (blue bar) and for the dual-rate SSM (red bar), respectively. Error bars indicate SEM.  347 

 348 

To select the best model, we used the Akaike Information Criterion (AIC) to account for the 349 

different number of parameters in each model. For each candidate model, the AIC value reflects 350 

the combination of the goodness of fitting along with the number of free parameters. That is, the 351 

AIC difference between two candidate models would provide strong evidence in favor of the 352 

model with the lower AIC value. To assess the normality assumption of the t-test on the AIC 353 

difference values across subjects, we used the Shapiro-Wilk W test. We found that the W value 354 

was insignificant at alpha level of 0.05, suggesting that the assumption of normality of the AIC 355 

distribution is valid (W=0.92, p>0.39). Figure 2B shows the mean AIC across subjects for each 356 

model. The AIC of the dual-Rate SSM (-4112.9± 140.6, mean ± SEM) was comparable to the AIC 357 

of the single–rate model (-4091.4± 136.5, mean ± SEM). The t statistic reveals that no difference 358 

was observed in the AIC of the two models (two-tailed paired t-test, t(9)=1.83, p=0.11), indicating 359 

that both models fit well the behavioral data of the first experiment. However, neither savings nor 360 

anterograde interference can be examined in this type of experimental paradigm. Therefore, we 361 

designed two additional experiments to test these phenomena.   362 



Experiment 2- Savings in counterperturbation paradigm  363 

In the second experiment, we sought to quantify within-day savings effects, and to find whether 364 

the single-rate or the dual-rate SSM, which showed a good fit to single phase locomotor adaptation, 365 

can also explain the faster relearning phenomenon (e.g., savings). To this end, we asked subjects 366 

to relearn the same split-belt perturbation after a brief counterperturbation period that erased the 367 

initial adaptation (Fig. 3A). During counterperturbation phase, the error of the last 5 strides was 368 

on average -0.64±0.04 (mean± SEM), which is not significantly different (t(16)=0.986, p=0.3385) 369 

from the magnitude of the -0.6 counter perturbation (defined as the difference between left (0.6 370 

m/sec) and right (1.2 m/sec) belt speeds). This result indicates that subjects had completely erased 371 

their initial adaptation but did not start adapting to the counterperturbation. Subjects exhibited 372 

strong savings during relearning of the same perturbation. Mid-error during readaptation, 373 

computed based on strides 2-30 (0.22± 0.04, mean ± SEM), was significantly lower (two-tailed 374 

paired t-test, t(16)=8.96, p<0.0001) than the mid-error during adaptation (0.47± 0.03). That is, 375 

following initial adaptation, subjects learned the perturbation significantly faster (Fig. 3B), 376 

indicating the existence of savings. Furthermore, we measured the effect of savings by estimating 377 

directly the learning rates during adaptation and readaptation before and after adaptation. Indeed, 378 

the learning rate of the exponential function in the readaptation block (0.28±0.1 trial-1) was higher 379 

(t(16)=2.24, p<0.05) than the learning rate of the initial adaptation block (0.04±0.008 trial-1) (Fig. 380 

3C). We could not find evidence for initial bias; analyzing the error of the first trial revealed that 381 

there was no deference in COP symmetry between adaptation and readaptation (t(16)=1.66, 382 

p=0.12) (Fig. 3D). 383 

Three alternative models of the behavioral data in experiment 2 were compared. The first was the 384 

LTI multiple timescales (i.e. LTI 2-Rate), which has two states, one fast and one slow (See 385 

Materials and Methods). The second was the single-rate varying parameters SSM (i.e. VP 1-Rate), 386 

which has a single learning process that has forgetting and learning parameters that could vary 387 

across phases. The last one was the dual-rate varying parameters SSM (i.e. VP 2-Rate), which has 388 

single state in the fast process and single state in the slow process with varying forgetting and 389 

learning parameters. The varying parameter models were fitted for each phase separately, namely: 390 

one fit for adaptation, one for counterperturbation and one for the readaptation phase. The three 391 

SSMs models were computed separately for each subject and simultaneously to all three phases of 392 

the experiment. The across-subject averages of the parameter estimates are provided in Table 1. 393 

To qualitatively illustrate the time courses of the different SSMs during experiment 2, we fitted 394 

the three models to the across-subject averaged data (Fig. 3A). As shown in Fig. 3A, the LTI 2-395 

Rate SSM did a responsible job of explaining adaptation and savings during readaptation. 396 

Although the VP 1-Rate SSM did a good job explaining adaptation, it explained poorly savings 397 

during readaptation, yielding too rapid readaptation. VP 2-Rate SSM fit well the averaged data 398 

overall.  399 

To select the best model, we again used the Akaike Information Criterion (AIC) to account for the 400 

different number of parameters in each model. The Shapiro-Wilk W test on the AIC differences 401 



across subjects reveals that none of the W values was significant, suggesting weak evidence to 402 

reject the null hypothesis of normally distributed population (p>0.47). Inset shows the mean AIC 403 

across subjects for each model. ANOVA showed main effect of model on AIC measures 404 

(F2,16=4.87, p<0.05). The AIC of the VP 1-Rate SSM (-4776.2± 23.0, mean ± SEM) was 405 

significantly lower (two-tailed paired t-test, t(16)=3.46, p<0.01) than that of the LTI 2-Rate SSM 406 

(-4710.0± 30.9). The AIC of the VP 2-Rate SSM (-4770.9± 21.6) tended toward being favored 407 

(two-tailed paired t-test, t(16)=1.95, p=0.069) over the LTI 2-Rate SSM.     408 

To summarize experiment 2, the models with changing parameters between adaptation and 409 

readaptation explain the performance of single subjects better than the canonical two-rate state 410 

space model.  411 

Figure 3. Group data and 412 

models predictions during 413 

experiment 2.  A. Across-414 

subject averaged COP 415 

symmetry (gray points). 416 

Colored lines represent the 417 

fits of the SSM models: green 418 

line represents the 419 

prediction of the LTI dual-420 

rate SSM, blue line represents 421 

the prediction of the varying 422 

parameters single-rate SSM 423 

and red line represents the 424 

prediction of the varying 425 

parameters dual-rate SSM. Inset shows the across-subject averaged Akaike Information Criterion 426 

(AIC) for each model, respectively. B. Mid errors averaged across subjects during adaptation (light 427 

gray bar) and readaptation (dark gray bar). C. Average learning rate of a single exponential fit to 428 

individual subject data from adaptation (light gray bar) and readaptation (dark gray bar). D. Initial 429 

errors averaged across subjects during adaptation (light gray bar) and readaptation (dark gray bar). 430 

Error bars indicate SEM.    431 

 432 

Experiment 3- Savings in washout paradigm  433 

In the third experiment, we examined whether completely erasing the learned pattern by exposing 434 

subjects to a prolonged washout period would affect future locomotor savings, and whether one of 435 

the candidate SSM models could account for that. To this end, we asked subjects to relearn after a 436 

prolonged washout period (Fig. 4A). Comparing the mean errors of the last 5 strides of the washout 437 

phase (0.011±0.03, mean± SEM) and the mean errors of the last 5 strides of the baseline phase 438 

(0.014±0.01, mean± SEM) showed no significant differences in error rates (two-tailed paired t-439 

test, t(12)=0.08, p>0.9), indicating that subjects had completely returned to their baseline 440 



performance. Subjects demonstrated strong savings when they were re-exposed to the same 441 

perturbation for the second time. The mid-error during readaptation (0.36± 0.04, mean ± SEM) 442 

was significantly lower (two-tailed paired t-test, t(12)=9.04, p<0.0001) than the mid-error during 443 

adaptation (0.59± 0.04, mean ± SEM). Therefore, savings (i.e. the difference between the mid-444 

errors) is significantly evident in the Adaptation-Washout-Readaptation experiment (One sample 445 

t-test, t(12)=9.04, P<0.001)(Fig. 4B). Estimating the learning rate of a single exponent function 446 

revealed similar results. We found that the estimated learning rate of the exponential function in 447 

the readaptation phase (0.06±0.01 trial-1) was higher (t(12)=3.5, p<0.01) than the time learning 448 

rate of the initial adaptation (0.04±0.004 trial-1) (Fig. 4C). Consistently with experiment 2, 449 

analyzing the error of the first trial revealed that there was no difference in COP symmetry between 450 

adaptation and readaptation (t(12)=1.94, p=0.08) (Fig. 4D). 451 

Similarly to experiment 2, the three suggested SSMs models were computed separately for each 452 

subject and simultaneously in all three phases of the experiment. The across-subject averages of 453 

the parameter estimates are also provided in Table 1. To qualitatively illustrate the time courses of 454 

the different SSMs during experiment 3, we fitted the three models to the across-subject averaged 455 

data (Fig. 4A). As shown in Fig. 4A, the LTI 2-Rate SSM and the VP 1-Rate SSM could not 456 

capture the savings phenomenon during readaptation, whereas the VP 2-Rate SSM fit the averaged 457 

data very well overall.  458 

Figure 4. Group data and 459 

models predictions during 460 

experiment 3.  A. Across-461 

subject averaged COP 462 

symmetry (gray points). 463 

Color lines represent the fits 464 

of the SSM models: green line 465 

represents the prediction of 466 

the LTI dual-rate SSM, blue 467 

line represents the 468 

prediction of the varying 469 

parameters single-rate SSM 470 

and red line represents the 471 

prediction of the varying 472 

parameters dual-rate SSM. Inset shows the across-subject averaged Akaike Information Criterion 473 

(AIC) for each model, respectively. B. Mid errors averaged across subjects during adaptation (light 474 

gray bar) and readaptation (dark gray bar). C. Average learning rate of a single exponential fit to 475 

individual subject data from adaptation (light gray bar) and readaptation (dark gray bar). D. Initial 476 

errors averaged across subjects during adaptation (light gray bar) and readaptation (dark gray bar). 477 

Error bars indicate SEM.    478 

The inset in Fig. 4A shows the mean AIC across subjects for each model. To assess data normality, 479 

we used the Shapiro-Wilk W test on the AIC differences across subjects. We found two out of 480 



three W values were insignificant (p>0.08), indicating that these differences are probably normally 481 

distributed. However, the W value of the AIC differences between VP 2-Rate and VP 1-Rate was 482 

significant (P=0.02). To this end, we follow with non-parametric Wilcoxon matched pair signed-483 

rank test to compare the difference between VP 2-Rate with VP 1–Rate. ANOVA showed main 484 

effect of model on AIC measures (F2,12=15.64, p<0.01). We found the AIC of the VP 2-Rate SSM 485 

(-4911.5± 30.7, mean ± SEM) was significantly lower (two-tailed paired t-test, t(12)=4.692, 486 

p<0.001) than that of the LTI 2-Rate SSM (-4690.0± 32.9). Additionally, the AIC of the VP 2-487 

Rate SSM was significantly lower (Wilcoxon matched pair signed-rank test, p=0.01) than that of 488 

the VP 1-Rate SSM (-4867.3± 29.6).  489 

To summarize experiment 3, the dual rate model with changing parameters between adaptation 490 

and readaptation after a prolonged period of washout explains the performance of single subjects 491 

significantly better than the canonical LTI dual rate model and the varying parameters single rate 492 

model. 493 

Parameter changes associated with savings 494 

Following the initial stages of model selection, showing that VP 2-Rate SSM explains savings 495 

effects better in experiment 3, we asked which parameters change following initial learning in both 496 

experiments. Figure 5A shows the slow and fast state estimates from the VP 2-Rate SSM to the 497 

across-subject averaged data during experiment 2. Both learning rates (i.e. Bf and Bs) and 498 

forgetting rates (i.e. Af and As) changed following adaptation. Analyzing the across-subject 499 

averages of the parameter estimates reveals that the forgetting rate of the fast state (i.e. Af) in 500 

adaptation (0.43± 0.1, mean ± SEM) was significantly lower (two-tailed t-test, t(32)=2.384 501 

p<0.05) than the forgetting rate of the fast state in readaptation (0.71± 0.06) (Fig. 5B), whereas the 502 

change of the forgetting rate of the slow state (i.e. As) was not significant (two-tailed t-test, 503 

t(32)=1.526 p=0.14) across blocks (0.99± 0.01 and 0.97± 0.02 in adaptation and readaptation, 504 

respectively) (Fig. 5C). Moreover, the learning rate of the fast state (i.e. Bf) in adaptation (0.1± 505 

0.04) was significantly increased (two-tailed t-test, t(32)=3.291, p<0.01) during readaptation 506 

(0.33± 0.06) (Fig. 5D), as well as the learning rate of the slow state (i.e. Bs) in adaptation (0.024± 507 

0.01, mean ± SEM) was significantly increased (two-tailed t-test, t(32)=2.223, p<0.05) during 508 

readaptation (0.08± 0.03) (Fig. 5E).  509 

Figure 5. Adaptation of the slow and 510 

fast components of the varying 511 

parameters dual-rate SSM during 512 

experiment 2. A. The net (dashed 513 

black line), slow (dark gray line) and 514 

fast state (light gray line) estimates 515 

from the VP 2-Rate SSM to the 516 

across-subject averaged data. B. 517 

Forgetting rates of the fast process 518 

(i.e. Afast) averaged across subjects 519 



during adaptation (light gray bar) and readaptation (dark gray bar). C. Forgetting rates of the slow 520 

process (i.e. Aslow) averaged across subjects during adaptation (light gray bar) and readaptation (dark 521 

gray bar). D. Learning rates of the fast process (i.e. Bfast) averaged across subjects during adaptation 522 

(light gray bar) and readaptation (dark gray bar). E. Learning rates of the slow process (i.e. Bslow) 523 

averaged across subjects during adaptation (light gray bar) and readaptation (dark gray bar). Error 524 

bars indicate SEM.  525 

A similar picture is seen in experiment 3 (Fig. 6A), where both learning and forgetting rates of the 526 

slow and fast learning components have changed. The forgetting rate of the fast state (i.e. Af) in 527 

adaptation (0.20± 0.1, mean ± SEM) was significantly lower (two-tailed t-test, t(24)=3.182 528 

p<0.01) than the forgetting rate of the fast state in readaptation (0.61± 0.08) (Fig. 6B), the 529 

forgetting rate of the slow state (i.e. As) in adaptation (0.996± 0.001) was also significantly higher 530 

(two-tailed t-test, t(24)=2.305 p<0.05) than the forgetting rate of the slow state in readaptation 531 

(0.987± 0.02)(Fig. 6C). Moreover, the learning rate of the fast state (i.e. Bf) in adaptation (0.07± 532 

0.04) was significantly increased (two-tailed t-test, t(24)=2.714, p<0.05) during readaptation 533 

(0.22± 0.04) (Fig. 6D), and the learning rate of the slow state (i.e. Bs) in adaptation (0.013± 0.002, 534 

mean ± SEM) was also significantly increased (two-tailed t-test, t(24)=2.23, p<0.05) during 535 

readaptation (0.04± 0.01) (Fig. 6E). From the fits of the averaged date presented in Fig 6A, it seems 536 

that the adaptation process could be captured by only a single slow state with no contribution of a 537 

fast state. Nevertheless, learning rates from the single-subject fits of the fast components of the 538 

adaptation phase tend to be higher than zero (t(12)=2.1, p=0.06 for Af and t(12)=1.9, p=0.08 for 539 

Bf ), suggesting that across subjects, the fast component did play a role in the initial adaptation 540 

block.  541 

Figure 6. Adaptation of the slow and 542 

fast components of the varying 543 

parameters dual-rate SSM during 544 

experiment 3. A. The net (dashed 545 

black line), slow (dark gray line) and 546 

fast state (light gray line) estimates 547 

from the VP 2-Rate SSM to the 548 

across-subject averaged data. B. 549 

Forgetting rates of the fast process 550 

(i.e. Afast) averaged across subjects 551 

during adaptation (light gray bar) and readaptation (dark gray bar). C. Forgetting rates of the slow 552 

process (i.e. Aslow) averaged across subjects during adaptation (light gray bar) and readaptation (dark 553 

gray bar). D. Learning rates of the fast process (i.e. Bfast) averaged across subjects during adaptation 554 

(light gray bar) and readaptation (dark gray bar). E. Learning rates of the slow process (i.e. Bslow) 555 

averaged across subjects during adaptation (light gray bar) and readaptation (dark gray bar). Error 556 

bars indicate SEM. 557 

 558 



Although initial bias did not reach significance levels, there was a trend towards a decrease in 559 

initial error in readaptation compared to adaptation in both experiments (Fig 3D and 4D). In order 560 

to obviate a possible bias influence on the estimation of learning parameters in our models during 561 

the readaptation phase, we have added a free parameter in our varying parameters model that 562 

represents an initial bias (e.g., a possible bias effect) during re-adaptation. Consistent with our 563 

previous results, we found similar changes in learning parameters following initial learning. 564 

Adding this additional parameter did not affect the AIC results favoring the VP models. Thus, our 565 

suggested model is robust for possible bias effects.  566 

 567 

Correlation of Savings, adaptation and learning parameters   568 

Previous attempts to explain savings used a linear time invariant model with two learning 569 

components (LTI 2-Rate SSM), showing that the slow forgetting of the slow learning component  570 

can account for various savings phenomena (Smith et al. 2006). Nevertheless, consistently with 571 

the results of Zarahn et al. (2008), we show here that also in locomotor adaptation, models with 572 

varying parameters account better for savings effects in adaptation-counterperturbation-573 

readaptation and adaptation-washout-readaptation paradigms, suggesting that different learning 574 

parameters are expressed before and after learning. Still, the fact that learning parameters change 575 

through learning does not mean that they are independent; it could be that the changes in 576 

parameters following learning are correlated with their initial values. Such dependency will be 577 

indicative of the mechanisms that give rise to savings. We therefore investigated the correlation of 578 

error rates and learning parameters as seen in the inter-subject correlation patterns between 579 

adaptation and readaptation blocks. We started by examining the inter-subject correlation of the 580 

initial and middle error rates in the adaptation and readaptation phases. We found that both initial 581 

errors and middle errors in readaptation significantly correlated with middle errors in the 582 

adaptation phase (all comparisons reveal 0.60≤r≤0.76 and 0.0007≤p≤0.029, Fig. 7A and 7B), 583 

indicating that early readaptation is correlated with on subjects’ behavior during the initial 584 

adaptation phase. We then moved to examining the correlation pattern of the estimated learning 585 

parameters that could potentially provide a refined estimation of the source of correlation that we 586 

have seen in error rates. We found that out of the 4 possible pairs of learning rate correlations (slow 587 

and fast adaptation rates vs. slow and fast readaptation rates) in each experiment, only the slow 588 

adaptation and fast readaptation learning parameters were significantly correlated in both 589 

experiments [r=0.56, P=0.019 (Pearson correlation test) for experiment 2 (Fig. 7C, top panel) and 590 

r=0.73, P=0.0043 for experiment 3 (Fig. 7C, bottom panel), respectively]. In both tests there are 4 591 

comparisons which require correcting for false positive rates. Applying these corrections using 592 

Bonferroni correction result in significant effect for the slow adaptation and fast readaptation 593 

learning parameters for experiment 3 and a marginal result for experiment 2 (p=0.019 where the 594 

corrected threshold was 0.0125). Nevertheless, the consistency of results in the two experiments, 595 

and across the two measurements (of error rates and learning parameters) suggests that the 596 

correlation between readaptation learning and the slow initial adaptation is not spurious. 597 



Another concern about the current correlation results is that while the correlations between middle 598 

errors in adaptation and readaptation epochs were significant, the correlations of the slow learning 599 

parameters (i.e. Bs) in both these periods were not. At this point we cannot tell whether this 600 

apparent inconsistency is a due to the fact that the middle error correlations is driven by the 601 

correlation between the slow and fast learning parameters in the adaptation and readaptation 602 

epochs respectively, or due to our limited sensitivity to detect the correlations between the slow 603 

learning parameters in the two epochs. 604 

Figure 7. Correlation of 605 

the errors and learning 606 

parameters during 607 

experiment 2 and 3. A. 608 

Cross-correlation 609 

between middle errors in 610 

adaptation and middle 611 

errors in readaptation 612 

during experiment 2 (top 613 

panel) and experiment 3 614 

(bottom panel). B. Cross-615 

correlation between 616 

middle errors in 617 

adaptation and initial 618 

errors in readaptation 619 

during experiment 2 (top 620 

panel) and experiment 3 621 

(bottom panel). C. Cross-622 

correlation between the 623 

slow adaptation 624 

parameter (i.e. Bslow1) and 625 

fast readaptation learning parameter (i.e. Bfast3) estimate from the VP 2-Rate SSM during experiment 626 

2 (top panel) and experiment 3 (bottom panel).    627 

  628 

Discussion 629 

Using the split-belt treadmill paradigm, we examined the learning mechanisms underlying 630 

adaptation and savings during the learning of a novel locomotor task. In the first experiment, we 631 

reanalyzed our previous results (Mawase et al. 2013) to establish the computational model of the 632 

basic learning process within a simple adaptation paradigm. However, the data from the first 633 

experiment missed an important phenomenon of motor learning: savings. Therefore, we designed 634 

two additional experiments to test for savings effects. Based on several experimental paradigms 635 

developed for reaching adaptation (Krakauer et al. 2005; Smith et al. 2006; Zarahn et al. 2008), 636 



we chose the adaptation-counterperturbation-readaptation (i.e. experiment 2) and the adaptation-637 

washout-readaptation (i.e. experiment 3) protocols to test the underlying learning process for 638 

savings. We found that while multiple-rate SSM can account for initial error reduction and 639 

aftereffects of the simple adaptation paradigm (i.e. experiment 1), it failed to explain savings in 640 

the second and the third experiments. Instead, we found that allowing the parameters of the dual-641 

rate state space learning process to change following initial learning can successfully explain 642 

savings effects seen in both protocols. This supports the hypothesis that locomotor adaptation leads 643 

to changes in the fast and slow learning parameters that would last beyond the decay of the hidden 644 

state of the motor system. Furthermore, analyzing the inter-subject variability provides a 645 

suggestive causal relationship between the slow and fast learning components before and after 646 

learning, respectively. Particularly, we found that the fast relearning rate depends on the slow 647 

learning rate during adaptation, suggesting that the magnitude of savings will be proportional to 648 

the learning achieved during the prolonged exposure to adaptation. Together, these findings shed 649 

new insights into the formation of motor memory.  650 

Our model-comparison results are consistent with a recent study where savings effects in reaching 651 

visuomotor adaptation paradigms were examined (Zarahn et al. 2008). Zarahn et al. (2008) 652 

suggested a non-linear time invariant SSM to properly account for savings during the readaptation 653 

phase. This non-linear behavior underlies the metalearning process by allowing changes in the 654 

learning parameters in an experience-dependent manner. A key aspect of the model is that 655 

consequent adaptation phases are associated with adjustable learning and forgetting rates. We 656 

found significantly different learning and forgetting parameters across the phases of an adaptation 657 

experiment (Fig.5 and Fig. 6). Suggestive changes in learning parameters can also be seen in a 658 

recent locomotor adaptation study, where Malone et al. (2011) found that different adaptation 659 

structures affect significantly the retention of the motor memory during readaptation on the 660 

subsequent day. The faster relearning rate on the subsequent day provides evidence of the 661 

involvement of a non-linear learning process in locomotor adaptation. While Malone’s results were 662 

not modeled, we show here that indeed a LTI model cannot account for several within-day savings 663 

phenomena, and provide a suggestive underlying mechanism for this effect. 664 

Recently, context-dependent linear models with either single or multiple slow states have been 665 

suggested to explain savings during visuomotor rotation (Lee and Schweighofer 2009), force-field 666 

adaptation (Pekny et al. 2011) and object rotation (Ingram et al. 2011). According to the context-667 

dependent learning approach, motor adaptation occurs through a fast and a slow contextual 668 

learning process that are updated simultaneously by the same motor errors.  Savings occur by 669 

switching back to a previously learned internal model (slow process). A noticeable limitation of 670 

the context-dependent model is that it does not account for consolidation after learning 671 

(Criscimagna-Hemminger and Shadmehr 2008) or adaptation across days (Kording et al. 2007). 672 

The fact that all the slow states decay with time needs to be refined, as subjects clearly retain across 673 

days (Malone et al. 2011). Furthermore, the changes in the fast learning process following 674 

adaptation suggest that savings cannot be explained only by the changes in slow learning 675 



processes, and requires modification of the fast process as well, a property that does not exist in 676 

the current context-dependent learning approach. Together, our behavioral and computational 677 

results strongly lead to the conclusion that savings occurs through changes in learning parameters 678 

(meta-learning) and not by switching between hidden learning states.   679 

Although individuals learn differently a given motor task in terms of learning rates,  most of the 680 

previous studies focused on averaged learning rates measured across subjects, leaving the inter-681 

subject variability completely unexplored. In the current study, we studied the relationship 682 

between the slow and fast learning components before and after learning. Using VP-2 SSM 683 

parameters, we found a significant correlation between the slow learning rate during adaptation 684 

and the fast learning rate during readaptation (Fig. 7). These results are also found when looking 685 

at the correlation between initial and middle errors during adaptation and during readaptation 686 

phases. Thus, the magnitude of savings for each subject was proportional to the learning achieved 687 

by the slow learning process. These findings suggest that even though the varying parameters 688 

model accounted for our result better than the fixed parameter model, learning parameters during 689 

adaptation and readaptation are not independent, and may be subjected to a higher learning process 690 

that modulates the learning parameters following learning. Our interpretation of the positive 691 

correlation between the fast state during readaptation and the slow state during initial adaptation 692 

is that savings is predominantly the outcome of a slow learning and slow decaying process of initial 693 

adaptations. This conclusion is consistent with recent works that emphasize the role of the slow 694 

process in long term retention (Joiner and Smith 2008), in estimation of the source of error 695 

(Kording et al. 2007) and in savings in force filed adaptation (Smith et al. 2006)  696 

Despite multiple differences between reaching and locomotor adaptation, we found that learning 697 

in both behaviors can be explained using the same VP models, and in both paradigms, savings 698 

depend on the slow learning process. Thus, a reasonable conjecture is that the two learning 699 

behaviors also share a similar neuronal basis. Two predominant brain areas are likely to be 700 

involved in adaptation learning: cerebellum and motor cortex (Shmuelof and Krakauer 2011). 701 

Several studies suggested that the cerebellum is involved in error based learning (Atkeson 1989; 702 

Diedrichsen et al. 2005; Kawato et al. 1987; Miall et al. 2007;), and damage to the cerebellum 703 

hampers the ability to adapt to external perturbations based on sensory prediction errors (Ilg et al. 704 

2008; Maschke et al. 2004; Morton and Bastian 2006; 2004, Tseng et al. 2007). Recently, Jayaram 705 

et al. (2012) used a non-invasive transcranial magnetic stimulation (TMS) to show that the 706 

cerebellum excitability is modulated during locomotor adaptation. Furthermore, Galea et al. (2011) 707 

found that non-invasive stimulation using tDCS over the cerebellum enhances error-reduction 708 

during visuomotor reaching adaptation task. Interestingly, this stimulation did not affect 709 

subsequent savings. Thus, the cerebellum is needed for adaptation learning in reaching and 710 

locomotion, and is likely to affect the rate of the learning. The motor cortex, on the other hand, has 711 

been shown to be involved in retention of adaptive patterns (savings), but not directly in adaptation, 712 

as patients with stroke in the motor systems can adapt (Reisman et al. 2007; Scheidt et al. 2000; 713 

Scheidt and Stoeckmann 2007). In the same study of Galea et al. (2011), stimulation over the 714 



primary motor cortex did not change the learning rate of reaching adaptation, but increased its 715 

subsequent savings (Galea et al. 2011). Taken together, while the cerebellum is likely to be vital 716 

for the fast learning process, we speculate that the savings in our study depend on primary motor 717 

cortex processes that are likely to affect behavior through the slow learning process. The fact that 718 

we did find correlations between the slow learning process and the fast relearning process, suggests 719 

that the two learning processes are not independent. It remained to be seen whether the 720 

enhancement of the fast process is retained in the cerebellum or is the result of the feedforward 721 

control over the locomotion pattern controlled by the cortex or by the controller itself, located in 722 

the cortex and the spinal cord. 723 

We conclude that adaptation and savings in locomotion occur through modulation of learning 724 

parameters in a dual-rate model. These changes are consistent with results in reaching adaptation, 725 

suggesting a common mechanism for savings, which is likely to depend on the motor cortex. It 726 

would be interesting to investigate our within-day savings results with savings across days to 727 

further elucidate the dynamics of parameter changes following initial adaptation. 728 
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Tables   822 

Table 1. Across-subject averages of the SSM parameters during phase 1 (i.e. adaptation) and 823 

phase 3 (i.e. readaptation) of experiment 2 and 3. VP Dual-Rate represents the varying 824 

parameters dual-rate SSM and VP Single-Rate represents the varying parameters single-rate 825 

SSM. Values are mean with SEMs in parentheses. N/A parameter not applicable for that 826 

model. 827 
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