
Behavioral/Systems/Cognitive

Functional Organization of Human Motor Cortex:
Directional Selectivity for Movement
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In monkeys, neurons in the hand representation of the primary motor cortex (M1) are often tuned to the direction of hand movement, and
there is evidence that these neurons are clustered according to their “preferred” direction of movement. However, this organizational
principle has yet to be demonstrated in M1 of humans. We conducted a functional magnetic resonance imaging (fMRI) study in which
participants used a joystick to move a cursor from a central origin to one of five equidistant targets. The fMRI signal of individual voxels
was sensitive to the directional aspects of the reaching task and manifested direction-specific adaptation. Furthermore, the correlation
between multivoxel patterns of responses for different movement directions depended on the angular distance between them. We
conclude that M1 neurons are likely to be organized in clusters according to their preferred direction, since only such a coarse-grained
representation can lead to directional selectivity of voxels, encompassing millions of neurons. A simple model that estimates cluster size
suggests that the diameter of these clusters is on the order of a few hundred micrometers.

Introduction
Neurons in the primary motor cortex (M1) of monkeys are
tuned to the direction of limb movement (Georgopoulos et al.,
1982). Single-cell recordings from M1 suggest that these neu-
rons are organized according to their preferred directions (PDs)
(Asanuma and Rosén, 1972; Amirikian and Georgopoulos, 2003;
Ben-Shaul et al., 2003; Georgopoulos et al., 2007). Directional
tuning has also been found in the multiunit activity recorded
from M1 (Stark et al., 2009), as well as from local field potentials
(LFPs) (Mehring et al., 2003; Rickert et al., 2005), which repre-
sent populations at a resolution of �1 mm (Berens et al., 2008;
Rasch et al., 2009). Together these data suggest that in monkeys,
M1 neurons are clustered, to some extent, according to their PDs.
This organizational feature resembles the columnar organization
characteristic of somatosensory cortex (Powell and Mountcastle,
1959), primary visual cortex (V1) (Hubel and Wiesel, 1962), middle
temporal cortex (MT) (Albright et al., 1984), and primary auditory
cortex (Imig and Adrian, 1977).

Obviously, little is known about the properties of neurons in
the homologous area (M1) of humans. A recent study, performed
for clinical purposes, showed that human M1 neurons are also
often directionally tuned (Truccolo et al., 2008). It is less clear,

however, whether the neurons are organized in functionally re-
lated clusters, such that neighboring neurons share similar tuning
properties. To address these issues, we used functional imaging
techniques coupled with multivoxel pattern analysis. This ap-
proach seems, at first, unlikely to reveal functional clustering in
M1, if only because the spatial resolution of functional magnetic
resonance imaging (fMRI) (several millimeters) is much larger
than the size of functional units in the cortex. For example, the
typical diameter of a cortical column in primary visual cortex,
defined on the basis of orientation selectivity, measures hundreds
of micrometers in diameter (Berman et al., 1987). Nevertheless,
recent applications of multivoxel pattern analysis in imaging
studies allowed the detection of columnar organization in visual
areas such as V1 (Kamitani and Tong, 2005) and MT (Kamitani
and Tong, 2006). In this study, we use these analysis methods to
test the hypothesis that neurons cluster according to their direc-
tional preferences in the human M1 cortex. We reasoned that
examination of directional preferences at the voxel level could
support this hypothesis, provided that the number of clusters
within a voxel is small. In this case, random fluctuations in the
number of clusters with preference for a specific direction, to-
gether with the natural tuning characteristics of the neurons,
might determine the directional preference of the voxel as a
whole.

To that end, our participants performed a “center-out
task,” similar to the one performed by monkeys in studies of
M1 (Georgopoulos et al., 1982). During an event-related fMRI
scan, our participants repeatedly moved a cursor from the center
of a screen toward various targets in the periphery by moving a
joystick in the corresponding direction. We found (1) that M1
voxels were selective for the directional aspects of the reaching
task, (2) that the patterns of activation across M1 voxels became
less correlated as the angular difference between movements in-
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creased, and (3) that direction-specific
fMRI adaptation [i.e., repetition suppres-
sion (RS)] occurred when the same move-
ment was repeated in the following trial.
These results support the hypothesis that
human M1 is organized in clusters of neu-
ronal populations with similar PDs of
movement.

Materials and Methods
Participants. Eleven right-handed volunteers
with normal or corrected-to-normal visual
acuity and no neurological or psychiatric his-
tory (5 women and 6 men, aged 18 –35) partic-
ipated in the present experiments. Hadassah
Ein Kerem Medical Center Ethics Committee
approved the experimental procedure. Written
informed consent was obtained from each
participant.

MRI acquisition. The blood oxygenation
level-dependent (BOLD) fMRI measurements
were performed in a whole-body 3T Trio Sie-
mens scanner. The functional MRI protocols
were based on a multislice gradient echo-
planar imaging and a standard head coil. The
functional data were obtained under the opti-
mal timing parameters: TR � 2000 ms, TE �
30 ms, flip angle � 90°, imaging matrix � 80 �
80, voxel size: 2.75 � 2.75 � 3.1 mm. The 30
slices (with a gap of 0.3 mm) were oriented in
the axial direction. The scan covered the whole
brain. Each participant was scanned in one run lasting 20.5 min. The run
was comprised of an acquisition of 616 volumes and contained 250 trials.

Experimental paradigm. Each trial lasted 4 s. The trial began with pre-
sentation of a red circle in the center of the screen (“origin,” radius of
0.7°). Initially, the participants had to hold an MRI-compatible joystick
still, and make no hand movement. After an interval of 500 ms, five
circles (targets, radius of 1°) appeared at the upper half of the screen,
spread around the center at equal distances, between 0° and 180°, 45°
apart. Their distance from the origin was 4.5° of visual angle (Fig. 1). Four
of the circles were blue and one circle was green, signaling the required
future direction of movement. The participants had to keep their hand
still until the “go” signal, in which the red “origin” circle turned into a
white cursor, which occurred 2 s later. They were instructed to respond
by moving the cursor toward the green target, using the joystick (Fig. 1a).
Participants had 1.5 s to reach the target. Upon reaching the target, all
circles disappeared. This served as a cue for the participants to release the
joystick (thereby relaxing the spring), which resulted in the joystick re-
turning to its starting position at the center. There was no explicit failure
signal. If the participants did not reach the target within the 1.5 s time
limit, all circles disappeared and the next trial began (participants failed
to reach the target in 10.6% of the trials). There were also intermittent
null trials in which the red origin and all five blue targets appeared on the
screen for 2– 8 s (thus no target was distinctly marked for movement).
These trials were obviously not followed by a “go” signal. During these
null trials, the participants were instructed not to move the joystick until
the next trial began. The task was programmed with MATLAB version 7.1
(MathWorks), using Psychtoolbox (Brainard, 1997; Pelli, 1997).

This rapid event-related fMRI study consisted of 250 trials, 50 in each
direction. The trial order was counterbalanced (first order) and embed-
ded with null trials of various lengths (2, 4, 6, or 8 s). The different lengths
of the null trials were used to randomize the timing of the movement
trials, which allow a more efficient estimation of activation (Dale, 1999).
Null trials were pseudorandomly embedded between movement trials.
Our constraint was that the total length of all null trials would equal the
total length of each of the five movement conditions (200 s). The trial
sequences were built using optseq software, which chooses the most
efficient sequence (most variable history before each condition) out of

10,000 random sequences sampled. The experiment began and ended
with 16 s of a null event.

We used only five directions of movement, covering only half of the
plane, instead of eight targets covering the entire plane, to achieve as
many trials as possible for each condition to obtain a reliable signal. We
also chose to use targets with rather small angular differences (45°) rather
than spanning the entire plane with larger differences (72°). This was
done to allow us to assess not only the selectivity for a specific direction of
movement, but also the relationship between voxel representations for
similar movements (to neighboring targets).

Data analysis. Preprocessing and defining regions of interest (ROIs)
was done using Brain Voyager QX (Brain Innovation).

The functional images were superimposed on two-dimensional ana-
tomical images and incorporated into the three-dimensional datasets
through trilinear interpolation. Before statistical analysis, head motion
correction and high-pass temporal filtering in the frequency domain
(3 cycles/total scan time) were applied to remove drifts and to im-
prove the signal-to-noise ratio. The complete dataset was trans-
formed into three-dimensional Talairach space with a resolution of
3 � 3 � 3 mm3.

The left M1 ROI was individually defined for each participant as a
cluster within the central sulcus, which showed higher activation during
movement than during rest (general linear model, p � 10 �8; Bonferroni
corrected, p � 0.01). The average size of M1 was 140 � 40 functional
voxels (see supplemental Table 1, available at www.jneurosci.org as sup-
plemental material).

Further analysis was done using Matlab R2007b (MathWorks). We
used linear regression to estimate response amplitudes (� values) for
each functional voxel in each condition, solving an equation of the form
y � Xb � e, where the vector y is the measured voxel time course, the
vector b contains a sequence of the estimated response amplitudes for
each of the five conditions, X is the convolution matrix determined by
the sequence of events, and e is the error (Gaussian noise). The convolu-
tion matrix, X, was designed with predictors of onset times for each trial
and has the dimensions of 614 � 51. X contains a row for each time point
(TR) in the experiment (totaling 614) and 10 columns for each of the 5
conditions (or conditions in the correlation analyses) plus a column of

Figure 1. Experimental design and movement trajectories. a, Trial flow (left to right): each trial started with the presentation
of a red circle at the center of a screen (“origin”). Then, 0.5 s later, five circles appeared in the periphery, four blue circles and one
green circle, which indicated the future movement target position (“target”). The red “origin” changed its color to white 2 s later,
instructing the participant to move the cursor (the white circle) toward the target (green circle). The participant had 1.5 s to
complete the movement. Movements in five directions were counterbalanced across trials. b, Example of trajectories in all five
directions for one of the participants.
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ones for the offset predictor (thus 51 columns). This leads to an indepen-
dent estimation of the response amplitude, for each condition at each
time point (the first point out of the 10 points for each condition is the
time of the beginning of a trial). The vector of response amplitudes, b, is
estimated using the equation b � (X�X )�1X�y and is respectively com-
prised of 10 values (estimated � values) for each condition (one for each
time point between 0 and 18 s after the beginning of the trial). The first
value of b is the mean activation over the entire time course. Importantly,
since we estimated the BOLD activation for each time point separately,
no assumptions were made about the shape of the hemodynamic re-
sponse. Linear regression was significant in �99% of voxels. On average,
the variance explained by the model accounted for 37% of the total
variance.

Coefficient of variation analysis. We used a bootstrap analysis, to test
whether the coefficient of variation (CV) (SD/mean) of the five direc-
tions of movement in each voxel is significantly higher than expected by
mere chance (e.g., had there been no directional selectivity). In this anal-
ysis, we randomly reassigned conditions (directions of movement) to the
trials, while maintaining the original proportions of hand movements
(each condition was assigned to 20% of the trials). The null conditions
were not replaced. We created a new regression matrix, estimated the �
values for the different directions, and assessed the CV, separately for
each assignment. This procedure was repeated 10,000 times, resulting in
a distribution of expected CVs merely due to noise. Next, for each voxel,
we assessed its p value: the fraction of CV values obtained by the boot-
strap method that were greater than the actual CV of that voxel. Finally,
a � 2 test was used to show that the distribution of p values across voxels
(shown in supplemental Fig. 3, available at www.jneurosci.org as supple-
mental material) was significantly skewed to low values (differing from a
uniform distribution, which would be expected by chance).

The CV analysis was used also for the estimation of cluster size (see
Discussion and Fig. 7). For this purpose, since each voxel is expected to
show some variation in its response by chance (as there were limited
repetitions of each direction of movement), we also corrected each voxel’s
CV by subtracting from its actual variance in response (for the various
directions) the mean variance of the bootstrapped activation (XBS) across
iterations:

CV �
� (VarB � mean (VarBBS))

mean	B)
.

In addition to calculating voxel CV, we also calculated the CV as a
measure of the directionality of the LFPs in monkey M1, when mon-
keys performed the same center-out task [courtesy of S. Cardoso de
Oliveira (Cardoso de Oliveira et al., 2001)]. To that end, we used the
peak-to-peak distance (the distance between maximum and mini-
mum) of the mean evoked potential, per direction of movement. CVs
of LFPs were calculated without subtracting bootstrapped variance.
Consequently, the CV is slightly overestimated.

Analysis of spatial patterns of fMRI response. To detect directional se-
lectivity of voxel population spatial patterns, each individual’s data were
split into two datasets, such that each of the 50 trials in each direction was
randomly assigned to one of the datasets. For each voxel, we estimated
the � values and defined the activation for each direction (i.e., activation
value) as the average of the � values measured 6 and 8 s after the begin-
ning of the trial (�4 – 6 s after movement initiation; normally at the peak
activation) (see Fig. 2b). Then, in each dataset and for each voxel, we
subtracted the voxel’s mean activation level (across all directions) to
remove activation differences between voxels that are unrelated to move-
ment direction. Without such a correction procedure, one would get
high correlations between the multivoxel spatial patterns from all com-
parisons, simply because some voxels are more active than others, re-
gardless of the direction of movement.

The above analysis resulted in two matrices, one for each dataset. Each
matrix consisted of 5 columns (one for each direction) with length N equal to
the number of voxels in the ROI. The entries of each row of the matrix were
the 5 activation values of a single voxel for all 5 directions of movement.

Next, we calculated the correlation coefficient (CC) between the col-
umns of the first and the second datasets (each corresponding to the

pattern of activation across all voxels, for a given condition). If the acti-
vation values contain information about the direction of movement, one
should get a higher CC for movements to the same direction (in the two
datasets) than the CC calculated for movements to two different direc-
tions. To address the concern of low-frequency temporal trends in our
data, we repeated this analysis 100 times for each participant; in each
iteration, the data were split differently into two random datasets. The
results shown are the mean CC values across all 11 participants. The resulting
dependence of the CC on the angular difference between the two directions
of movements matched a normal distribution:

yi�h � e�
(xi � �)2

�2 � b.

Analysis of spatial patterns of simulated data. Individual maps often
display a preference for some directions over others. In other words, the
distribution of preferred directions across voxels was not uniform
(though the identity of the most common preferred direction varied
among participants). This naturally raises the concern that the informa-
tion about movement direction could potentially be due to artifacts at a
coarse scale (such as large blood vessels, which may affect the activation
of many voxels). To address this concern, we performed a new analysis in
which we used simulated data. Simulation of the data was done by re-
placing the activation values for each direction (across voxels) with ran-
dom values taken from a normal distribution with the same mean and SD
as the real data for that direction. Now tuning of voxels is due only to the
global bias of one direction over others in the entire ROI. We ran the
multivoxel pattern analysis with the simulated data. Tuning of the mul-
tivoxel pattern would imply that our results do not stem from any orga-
nization at the subvoxel level, but rather from a large-scale variability
between directions (Op de Beeck, 2010). See supplemental Figure 2
(available at www.jneurosci.org as supplemental material) for results.

Movement repetition analysis. In the repetition analysis, the various
conditions were also split according to the angular difference between the
direction of movement in the current trial and the movement direction
in the previous trial. Thus, a condition of 0° means that the movement
was to the same direction as in the previous trial. Beta values were esti-
mated in the same way as in the previous analyses.

To test whether a voxel’s PD (direction eliciting the greatest response)
is the same direction that elicits the greatest repetition suppression (RS),
we divided the trials into 10 conditions. First we divided the trials into
repeated and nonrepeated trials, and then we divided each set of trials
into five conditions according to the direction of movement. The repe-
tition index for each voxel (v) and each direction (d) was defined as
�v,d(nonrepeated)/�v,d(repeated).

Both repetition index and activation index (of nonrepeated trials)
were normalized by subtracting the mean and dividing by the SD across
directions in each voxel to bring the two different signals to a common
scale and then correlated. Pairwise Student’s t test was used to test
whether the CCs in the “same direction” and “different direction” con-
ditions were significantly different.

Results
Participants performed a “center-out” task in a rapid event-
related fMRI experiment. In this task, they had to move a cursor
from the center of a video screen toward one of five equidistant
targets located at the periphery of the screen. On each trial, one of
the five targets had a different color than the rest, to indicate that
it was to be the future target, and the participants later used an
MRI-compatible joystick to move the cursor to that location on
the screen (Fig. 1a). They made a series of center-out movement
trials in the five different directions while being scanned. Null
trials (with no movement) were also embedded in the scan pseu-
dorandomly. Each movement was performed 50 times in a coun-
terbalanced order during the course of a 20.5 min scan. The
participants reached the target correctly on 89.4% of the trials.
The angular deviation of movement was assessed for each trial by
calculating the angle between the actual trajectory at the peak
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velocity and the direct trajectory to the center of the target. The
mean absolute angular deviation was 10.4° (Fig. 1b).

We defined cortical regions involved in the visuomotor reach-
ing task by identifying voxel clusters that exhibited significant
enhanced activity during the task compared with null trials ( p �
10�8; Bonferroni corrected at least p � 0.01). Several ROIs were
defined for each participant, but here we focus on the results from
left M1 (Fig. 2c).

The resulting time course of activation for each voxel, ac-
quired during the scan, was further analyzed using linear regres-
sion to estimate the profile of activation generated by each of the
five directions of movements. An example of a voxel’s time
course of activation and the extracted convolution kernels (he-
modynamic response) to the different directions are shown in
Figure 2. For each voxel, the average of the estimated � values
measured 6 and 8 s after the beginning of the trial (which were
usually the time points of peak activation) served as the extracted
parameter of activation level, for each direction.

Voxel tuning analysis
We began by inspecting the degree of directional tuning in each
voxel. Note that reaching movements were made only to targets
in the upper half of the screen (corresponding to forward joystick
movements). Therefore, we could not use the classical estimation
of tuning, i.e., cosine fits (Georgopoulos et al., 1982), and had to
use other measures instead. For each voxel, we computed the CV,
which is the SD of the voxel’s activation level (across different
directions), divided by its mean activation level (across those

directions). Next, we assessed the probability that each of the
voxels would exhibit directional specificity simply by chance, by
conducting a bootstrap test in which the direction of each move-
ment was randomly reassigned (in the regression matrix). This
analysis revealed that 28% of the voxels in M1 were directionally
selective (i.e., they had a CV greater than 95% of the CV values
obtained by the bootstrap method). A � 2 test showed that the
distribution of p values across voxels (supplemental Fig. 3,
available at www.jneurosci.org as supplemental material) was
significantly skewed to lower values from those expected by
chance (�(9)

2 � 1386; n � 1542; p � 0.001). Note also that since
not all directions of movement were tested, this percentage is
likely to be a lower bound on the percentage of voxels sensitive
to movement direction.

Next, we aligned all the voxels’ activation tuning curves ac-
cording to their PD to obtain an average voxel tuning curve (Fig.
3). This computation allowed us to assess whether the average
voxel’s preference is only for a single, specific PD or whether there
is instead gradual tuning at the voxel level. In the latter case,
movement in directions close to the PD, in angular terms, should
elicit a greater BOLD response than movements far from the PD.
Figure 3b shows that the BOLD signal decreases with angular
distance from the voxel’s PD. A one-way repeated-measures
ANOVA with direction difference as the relevant factor, taking
into account only the BOLD signal for movements with an angu-
lar difference of 45°, 90°, and 135° apart, indicated that this factor
was marginally significant (F(2,20) � 3.29, p � 0.058) (move-
ments with a 0° difference were discarded from this analysis be-

Figure 2. Extraction of the hemodynamic response kernels for the different movement directions. a, The time course of activation of an example voxel. Each color denotes movement in one of
the five directions according to the arrows on the right. The direction of movement was randomized across trials, interspersed with null (no-movement) trials (in gray). In this example only the first
240 s of the session are shown. b, The extracted hemodynamic response kernel for each movement direction (using the deconvolution method). Colors correspond to the movement directions
depicted in a. For each direction, the mean activation level (estimated � value) between the two dashed lines was used as the voxel’s activation value for further analysis. c, Definition of left M1.
ROIs were defined for each participant individually as a cluster of voxels within the central sulcus of the left hemisphere, which showed higher activation during movement than during rest ( p �
10 �8; Bonferroni corrected, p � 0.01).
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cause, due to our alignment procedure,
their BOLD signal is necessarily greater
than the other angular distances; move-
ments with a difference of 180° from PD
were discarded as well because there were
considerably fewer cases than other
directions).

Multivoxel pattern analysis
A different approach to study the tuning
properties of voxels in a given region is to
calculate the correlation between the mul-
tivoxel spatial patterns of activation for
the different directions. Having shown
that voxels show some directional tuning,
one may expect to find greater correlation
between multivoxel spatial patterns of acti-
vations during movements with a smaller
angular difference.

To that end, two non-overlapping
datasets were created by randomly assign-
ing each of the 50 trials in each direction
into one of the two categories. Next, we
used linear regression to estimate the
level of activation of each voxel in each
movement direction separately for each
dataset. Finally, to eliminate differences
in activation between voxels, in each
dataset we subtracted the mean response of
each voxel (across the various direc-
tions). This resulted in two vectors of ac-
tivation (across voxels) for each direction
of movement, corresponding to the two
datasets (see PD maps in supplemental
Fig. 1, available at www.jneurosci.org as
supplemental material). We then calcu-
lated the correlation coefficient (r) be-
tween the activation vectors for each pair
of directions from the two sets. (For ex-
ample, we calculated the correlation be-
tween activation elicited by movements
toward the 90° target in the first set and
movements toward the 180° target in
the second set, or by movements elicited
in the same direction; see examples in
Fig. 4a.)

This resulted in a matrix of correlation
coefficients for all possible comparisons
(Fig. 4b). Next, we averaged across con-
ditions having the same angular differ-
ence (diagonals of the matrix in Fig. 4b)
to obtain the mean correlation (between
patterns) as a function of the angular
distance between the trajectories: the av-
erage correlation tuning curve (Fig. 4c).
As the distance between the directions of
movement increased, the correlation de-
creased (Gaussian fit, r � 0.999).

It is possible that the directional selec-
tivity at the level of representation of voxel
populations could simply be a side effect
of an uneven distribution of PDs across
voxels. To test this, we ran the correlation

Figure 3. M1 voxels show directional tuning. a, Example of individual voxel “tuning curves” showing the BOLD activation of 3
voxels as a function of movement direction. Each tuning curve was normalized such that the mean activation of each voxel across
all directions was zero. In each participant, the “tuning curves” of all individual voxels from M1 were aligned according to their PD,
to generate a “voxel population tuning curve.” This population tuning curve was averaged across participants. b, The resulting
“average voxel” activation as a function of the angular distance from the PD. The peak at the PD is a direct result of the alignment
procedure, but note the smooth tuning preference as the angular distance between directions of movement increases. Error bars
denote SEM across participants.

Figure 4. Multivoxel spatial patterns of activation are more similar for closer movements. a, Example of the patterns of M1
activation in one subject for movements in 90° (top) and 180° (bottom), in the two datasets. These examples (shown mainly for
illustrative purposes) are taken from the axial plane (Talairach coordinates: z � 50) from one of the participants. Blue arrows
denote correlations between movements in the same directions (0.33 and 0.56 for this participant), whereas red arrows denote
correlations between movement in the different directions (�0.43 and �0.31). b, Matrix of the average CCs between the
multivoxel patterns in the two datasets (across all participants), for all possible direction combinations. The main diagonal corre-
sponds to CCs between same directions; the next diagonals (in gray) correspond to the CC between directions 45° apart, etc (in
lighter colors). Red and blue values correspond to the average value (across participants) for the directions in the example
(a). c, The similarity between patterns of voxel activations (measured by the CC) decreases as a function of the angular distance
between the two directions of movements. The grayscale of each data point (diamonds) indicates the appropriate diagonal in b
whose average value is depicted. Error bars denote SEM across participants. The black curve denotes the Gaussian fit to the CCs.

Eisenberg et al. • Functional Organization of Motor Cortex J. Neurosci., June 30, 2010 • 30(26):8897– 8905 • 8901



analysis using simulated data that pre-
served the original uneven distribution
across voxels. We found no tuning of the
correlation coefficients of the patterns of
activation for the simulated data (supple-
mental Fig. 2, available at www.jneurosci.
org as supplemental material). We con-
clude that our results reflect information
based on the direction tuning at the voxel
level, rather than a global bias in prefer-
ence toward some directions over others.

Effect of movement RS
Another way to study the selectivity of
BOLD activation to the direction of move-
ment is to examine the effect of movement
repetition. RS, the reduction in the BOLD
signal following repeated presentation of
the same stimulus, was initially reported in
visual cortex (Grill-Spector and Malach,
2001). It was recently documented for
motor actions as well (Dinstein et al.,
2008). One might therefore expect to find
greater reduction of the BOLD signal in
M1 when the same movement is repeated
across trials. To test this, we categorized
the trials according to their similarity to
the previous trial. Figure 5 shows the av-
erage time course of activation across M1
voxels (Fig. 5a) and the mean BOLD acti-
vation (Fig. 5b) as a function of the angu-
lar difference from the previous trial. The
BOLD activation is lower when the partici-
pant made a movement toward the same
target as in the previous trial (one-way
repeated-measures ANOVA, F(4,40) � 5.58,
p � 0.005, Tukey–Kramer post hoc test,
p � 0.005). This phenomenon seems to be
limited to the same direction, and does
not generalize to near targets (i.e., there is
no statistical difference in the BOLD activa-
tion for the current movement when the
previous movement diverged from it by
45°, 90°, or 135°, F(3,30) � 0.4, p � 0.75).

Is the preferred direction of the voxel
(eliciting the greatest response) also the
direction that elicits the greatest RS? If so,
repeated movements toward the voxel’s
PD (direction with maximum activation)
should lead to greater RS than repeated
movements to other directions. To that end,
we assessed the correlation between the pat-
tern of multivoxel activation for a given di-
rection and the pattern of multivoxel RS for
that direction, as well as for all other direc-
tions (see example for the 45° and 90° movement cases in Fig. 6a).
This resulted in a matrix of correlation coefficients between the rep-
etition suppression and activation level for all possible movement
pairs. Our findings show that the level of activation and RS are pos-
itively correlated for same directions (mean CC � 0.29, SD � 0.09),
and significantly greater than different directions (mean CC �
�0.07, SD � 0.02; t(10) � 10.12, p � 5 � 10 �6). To verify that
our results did not stem merely from use of the same data for

computation of both measures, the nonrepeated trials were
divided into two separate groups: one for computing the rep-
etition index, the other for the activation index. Our results
remained significant (t(10) � 5.01, p � 0.001).

We further tried to assess, on a voxel-by-voxel basis, whether the
direction of movement similarly affected both the voxel’s level of
activation and its repetition index. Had the two measures been un-
correlated, one might expect that 20% of the voxels would show that

Figure 5. RS of the fMRI response in primary motor cortex. a, The various colors denote the mean time course of activation in the
M1 ROI (across participants) for a movement in a given direction when preceded by a movement in the same direction in the
previous trial (blue line) or a different direction (green, red, and cyan denote cases in which the previous trial was 45°, 90°, and 135°
apart from the current trial, respectively). Suppression is seen only for cases of repetition of the same movement. b, The mean level
of activation (measured at time points 6 and 8 s and then normalized such that the mean of each voxel across directions was 0) as
a function of the absolute angular difference between the current movement and the movement in the previous trial. Colors
correspond to the conditions shown in a. Error bars denote SEM between participants.

Figure 6. RS multivoxel patterns are correlated with the activation patterns. a, Example of the patterns of activation (left) and
the repetition index across voxels (right) for movement at 45° (top) and 90° (bottom). These examples are taken from the axial
plane (Talairach coordinates: z � 50) of one of the participants. Blue arrows denote correlations between the two measures for the
same movement (0.59 and 0.61, respectively for the participant in the example), whereas red arrows denote correlations between
the two measures for different movements (�0.26 and�0.09 for this participant). b, The resulting matrix of CCs when comparing
the patterns of activation and the repetition index in all possible directions of movement. The main diagonal corresponds to CCs
between same directions.
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the repetition index was maximal at the voxel’s PD. We found that
this was the case in 30% of the voxels, significantly more than that
expected by chance (t(10) � 4.52, p � 0.0005).

Discussion
In this study, we show that M1 voxels are directionally tuned.
This finding, at first, seems puzzling: based on an estimation of
�50,000 neurons in 1 mm 3 of cortex (Beaulieu and Colonnier,
1983), there are on the order of 1,000,000 neurons in each voxel.
If neuronal PDs are uniformly distributed across the population,
one would expect that any fluctuations in firing rates would av-
erage out, and the overall activity during different movements
would be the same. Thus, no directional preference should be
seen at the voxel level.

The finding that voxels do show selectivity to direction of
movement suggests that the spatial distribution of the neuro-
nal PDs is not random. If neurons sharing the same PD are
clustered in a columnar fashion, a voxel should contain many
fewer independent elements. Under such circumstances, di-
rectional preference at the voxel level may not be that surpris-
ing. A similar preference of voxels in the human cortex has
been seen in areas with known columnar organization in the
monkey, such as V1 (for orientation) (Kamitani and Tong,
2005) and MT (for direction of motion) (Kamitani and Tong,
2006). Our results are also consistent with electrophysiologi-
cal evidence in monkeys suggesting some degree of clustering
of neurons in M1, based on their direction selectivity

(Amirikian and Georgopoulos, 2003;
Ben-Shaul et al., 2003; Stark et al.,
2009).

RS
We find clear evidence for RS in human
M1. This finding provides indirect evi-
dence that the direction of movement is a
key factor determining the response of
neurons in the human motor cortex. A
voxel’s direction tuning is determined by
two factors: the distribution of PDs across
neuronal populations within the voxel
and the average neuronal tuning width.
Anisotropy of the distribution of PDs
(due to the coarse-grained clustering of
neuronal populations with similar PDs
within a voxel) would result in direction
preference at the voxel level. The most
prevalent neuronal PD within the voxel’s
population of neurons will determine the
voxel’s PD. The voxel’s tuning width,
however, is affected both by the average
neuronal tuning width and, possibly, by
spatial correlations (i.e., greater tendency
of a voxel to contain more neurons with
PDs close to the most prevalent PD than
neurons with far PDs).

In principle, RS may be helpful in dis-
tinguishing between the neuronal tuning
characteristics of the voxel population
and the spatial distribution of clusters, as
the degree of RS is thought to be related to
the average properties of single neurons
(Grill-Spector and Malach, 2001). We
find that the repetition effect is narrower
than 45°; a decrease in activation is seen

only for a movement with the same direction as in the previous
trial, while a movement 45° away from the previous one does not
lead to any significant activation suppression. In this case, we
would conclude that the tuning width of the voxel is determined
mostly by spatial correlations. However, this finding is at odds with
the broad tuning of neurons in macaque M1, which are well fit by
a cosine waveform. It is possible that in human M1 the average
neuronal tuning curves are narrower than in primates, as has
been recently found for frequency tuning in auditory cortex
(Bitterman et al., 2008). However, an alternative interpreta-
tion is that the relationship between RS and single-cell prop-
erties for actions is more complicated than the models so far
proposed for sensory inputs (Grill-Spector et al., 2006). It is
also possible that the RS could reflect the tuning properties of
the inputs from other areas (Sawamura et al., 2006), and that
the narrower width of the RS effect is a reflection of the nar-
rower tuning curves in visual or parietal areas or their limited
receptive field size (Heggelund and Albus, 1978; Andersen et al.,
1985).

Estimating cluster size
One central goal in this paper was to roughly estimate the size of
the average direction-selective cluster in M1 from our data. Con-
sequently, we constructed a model with some simplifying as-
sumptions. We assumed that M1 neurons have preference for
one of eight discrete directions (which differ by 45°), and the

Figure 7. Estimating the number of direction-selective clusters within a human M1 voxel. a, A voxel is modeled as having either
10 such clusters (left) or 100 (right). The resulting distribution of their PD within a voxel (assuming a random choice from a uniform
distribution with 8 possible PDs) is then convolved with the average neuronal tuning function (cosine tuning), to obtain the
estimated “tuning curve” of the voxel. The voxels’ CV is then calculated using 5 consecutive directions (of the 8 possible directions,
mimicking our sampling in the fMRI experiment). b, This procedure was repeated for all possible cluster sizes, resulting in a function
describing the mean CV as a function of number of clusters in each voxel (blue curve). Similarly, the expected voxel CV was
calculated for various cluster sizes, under the assumption that the average neuronal tuning curve was narrower than 45° (thereby
avoiding the smoothing effect imposed by the convolution kernel; red curve). The black horizontal line denotes the mean CV
obtained across all participants’ M1 voxels, and the gray shading denotes the mean CV � SD. The points of intersection, corre-
sponding to the estimated number of clusters in a voxel, are 42 and 1208 clusters, for the two assumed neural population tuning
characteristics, respectively.
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direction tuning curve can be approximated by a cosine function
[in which the mean baseline activity and modulation index were
taken from Georgopoulos et al. (1982)]. These neuronal param-
eters were used to describe the tuning properties of an entire
cluster, since a cluster was assumed to contain only neurons with
the same PD. We also assumed that the PDs of the different
clusters are uniformly distributed. However, as the number of
clusters per voxel becomes smaller, random picks from this uni-
form distribution are likely to generate an uneven number of
clusters tuned to each of the eight possible directions (Fig. 7a).
This would lead to a preference for a specific direction at the voxel
level, which would be smoothed to an extent by the characteristic
tuning function of the neurons. One can therefore calculate the
mean CV of each voxel as a function of the number of clusters
within that voxel. The CV thus provides a measure of the modu-
lation in the voxel’s activation for the different directions, as
depicted in Figure 7a for the cases in which there were 10 or 100
clusters in a voxel.

Note that the average voxel’s CV drops sharply as the number
of direction-tuned clusters increases (Fig. 7b, blue and red
curves). The voxel’s CV, however, also depends on the average
neuronal tuning width. If tuning is wide (e.g., cosine tuning, blue
curve), the neurons also respond to other directions besides the
PD. This will obviously dampen variation in firing rates caused by
a nonhomogeneous distribution of PDs. When the average neu-
ronal tuning width was taken to follow a cosine fit, the value
closest to the mean CV obtained in our experiment was �40
clusters per voxel.

It is possible that neuronal tuning is in fact sharper than a
cosine waveform (Amirikian and Georgopulos, 2000). To find
the lower bound on cluster size, we recalculated the expected
voxel CV as a function of the cluster number assuming an
extremely narrow neuronal tuning (�45°) (Fig. 7b, red curve).
In this case, �1200 direction-selective clusters within a voxel
are necessary to account for the variation observed in our
fMRI data.

It should be taken into consideration that our model assumes
no correlation between the tuning curves of neighboring clusters.
Accounting for such correlations might lead to an estimation of a
smaller cluster size. Notwithstanding these limitations, our esti-
mates offer an upper and lower bound (at least in terms of orders
of magnitude) on the size of an individual direction-selective
cluster within human M1. If we further assume that the same PD
is represented across all cortical layers (Hubel and Wiesel, 1962)
and that the human cortex is �2.5 mm thick, one can ignore the
third (depth) dimension of our 3 � 3 � 3 mm 3 voxels. Thus, in
the 3 � 3 mm 2 of voxel surface area, there are �40 clusters per
voxel, which translate to a cluster diameter of �470 �m. On the
other hand, 1200 clusters per voxel (assuming a narrow tuning
curve) would indicate that cluster diameter is �85 �m.

Interestingly, a similar estimation is found when using tun-
ing curves of the average LFP elicited by movements in eight
directions in monkey M1 (de Oliveira et al., 2001) (see Mate-
rials and Methods). The CV in this case was 0.2, which corre-
sponded to 7 or 185 clusters per voxel [assuming cosine or
narrow (�45°) neuronal tuning width, respectively]. Assum-
ing the LFP covers a surface area of 1 mm 2 (Berens et al., 2008;
Rasch et al., 2009), cluster diameter is estimated to be 75–380
�m. Our estimation of the human M1 cluster diameter, in the
range of 85– 470 �m, nicely concurs with the order of magni-
tude of cluster size in the monkey estimated here (using the
above LFP measures) as well as others (Amirikian and Geor-
gopoulos, 2003; Stark et al., 2009).

Finally, it is important to remember that other components in
this study, besides the direction of hand movement, could have
influenced our results. These include the visual effects of target
location, eye movements (which are likely to vary according to
the target position), or visual aspects of the cursor movement.
Therefore, from our current results we cannot unequivocally as-
certain whether the neuronal selectivity is due to limb movement
direction per se, or perhaps visual (or oculomotor) aspects of
directionality. We shall refer to these important issues, in depth,
elsewhere. It is also impossible to distinguish whether the re-
ported activation is due mostly to neuronal activity during move-
ment preparation (“Hold” period) or during the movement
itself. This issue requires further investigation.

Conclusions
We show that the fMRI signal of individual voxels in human
M1 is sensitive to the directional aspects of the reaching task
and manifests direction-specific adaptation. Furthermore, the
spatial patterns of the fMRI response are more correlated as
movement directions are closer. We conclude that human M1
neurons are organized in clusters according to their PD. The
model we constructed to estimate cluster size suggests that
cluster diameter is likely to be of the order of a few hundred
micrometers, which resembles the diameter estimated in
monkeys.
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