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Abstract  26 
We recently defined a component of motor skill learning as “motor acuity”, quantified as a shift in the 27 
speed-accuracy trade-off function for a task. These shifts are primarily driven by reductions in 28 
movement variability. To determine the neural correlates of improvement in motor acuity, we devised a 29 
motor task, compatible with magnetic resonance brain imaging that required subjects to make finely 30 
controlled wrist movements under visual guidance. Subjects were imaged on day 1 and day 5 while 31 
they performed this task, and were trained outside the scanner on intervening days 2, 3 and 4. The 32 
potential confound of performance changes between days 1 and 5 was avoided by constraining 33 
movement time to a fixed duration.  Following training, subjects showed a marked increase in success 34 
rate and a reduction in trial-by-trial variability for the trained but not for an untrained control task, 35 
without changes in mean trajectory. The decrease in variability for the trained task was associated with 36 
increased activation in contralateral primary motor and premotor cortical areas and in ipsilateral 37 
cerebellum. A global non-localizing multivariate analysis confirmed that learning was associated with 38 
increased overall brain activation. We suggest that motor acuity is acquired through increases in the 39 
number of neurons recruited in contralateral motor cortical areas and in ipsilateral cerebellum, which 40 
could reflect increased signal-to-noise ratio in motor output and improved state estimation for feedback 41 
corrections, respectively.  42 
 43 
 44 
 45 46 
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Introduction  47 
Motor skill is a general term that has been used to describe improvement across a wide range of motor 48 
learning paradigms. We recently operationally defined a component of motor skill as the training-49 
related change in the speed-accuracy trade-off function for a task (Reis et al. 2009; Shmuelof et al. 50 
2012). We introduced the term “motor acuity” for this aspect of improvement, both to contrast it with 51 
motor learning tasks that do not emphasize improved motor execution and to draw parallels with 52 
perceptual learning (Censor et al. 2012). Functional imaging has been extensively used to investigate 53 
the neural basis of motor learning in humans, but motor acuity has been relatively neglected. The 54 
emphasis has instead been on finger sequence tasks, like the serial reaction time task (SRTT) (Grafton 55 
et al. 1995; Robertson et al. 2001; Stagg et al. 2011), and on visuomotor adaptation tasks (Diedrichsen 56 
et al. 2005; Inoue et al. 1997; Krakauer et al. 2004). In such tasks, subjects modify the selection of 57 
movements that are already skilled (such as button pressing and straight reaching movements) and so 58 
do not need to improve the acuity of the movements themselves.  59 
 60 
A landmark study by Karni and colleagues was an exception to the emphasis on learning of sequence 61 
order and adaptation in human imaging studies (Karni et al. 1995). In this study a voxel counting 62 
method was used to show that the ability to perform a short finger-opposition sequence faster and more 63 
accurately was associated with an increased number of activated voxels in contralateral primary motor 64 
cortex compared to an unlearned sequence, even when the two sequences were matched for rate and 65 
component movements (Karni et al. 1995). The control of movement frequency is important because 66 
changes in this parameter can lead to activation changes (Jenkins et al. 1997; Orban et al. 2011; Turner 67 
et al. 1998). Since the study by Karni and colleagues, however, an association between activation 68 
changes in contralateral cortical areas and learning has been elusive. Notably, in a recent meta-analysis 69 
of 70 imaging studies of motor learning in humans, the authors found that there was no converging 70 
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evidence for learning-related activation in contralateral primary motor cortex (M1), once motor 71 
execution was controlled for (Hardwick et al. 2013). This conclusion stands in apparent contradiction 72 
with the original result by Karni and colleagues, which was not included in the meta-analysis because a 73 
direct statistical comparison between learning and control tasks was not performed. The conclusion of 74 
the meta-analysis also contradicts single unit and structural studies in non-human animal models that 75 
have consistently shown motor learning-related changes in contralateral motor cortical areas including 76 
M1 (Harms et al. 2008; Nudo et al. 1996; Rioult-Pedotti et al. 2000; Xu et al. 2009).  77 
 78 
A potential explanation for the discrepancy between non-human animal studies that have shown 79 
changes in contralateral motor cortical areas and human functional imaging studies, which for the most 80 
part have not, is the nature of the motor learning tasks used.  We have recently argued that sequence 81 
and adaptation tasks predominantly challenge learning processes upstream of skilled motor execution 82 
itself (Shmuelof and Krakauer 2011). For example, in the SRTT, the kinematics of the movements 83 
themselves are very simple, and only the response time is relevant to the task (Nissen and Bullemer 84 
1987). Similarly, for visuomotor rotation, the movements themselves are no more difficult to execute 85 
than baseline movements and indeed show no changes in variability (Cunningham 1989; Krakauer et 86 
al. 2000). It is notable that the studies included in the meta-analysis reported above were classified as 87 
either SRTT variants or sensorimotor tasks. Two other prominent imaging approaches are tracking 88 
tasks (Grafton et al. 2008; Miall and Jenkinson 2005; Miall et al. 2001) and bimanual coordination 89 
tasks (Kelso 1984) in which subjects learn to make one-dimensional wrist movements at different 90 
frequencies (Puttemans et al. 2005) or phases (Debaere et al. 2004) in each hand. Here again, it is either 91 
tracking error in cursor space or synchronization between two skilled movements that is changing. In 92 
neither case does execution of the movements themselves have to become faster or less variable. The 93 
finger sequence task used by Karni in contrast requires a change in movement kinematics and in 94 
accuracy, and therefore a change in how movements themselves are executed (Karni et al. 1995). 95 
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 96 
With the goal of studying core aspects of motor skill learning that are not captured by adaptation or 97 
sequence tasks, we recently devised a novel visually guided pointing task (“arc pointing task”, APT) in 98 
which subjects control a screen cursor through a narrow semi-circular channel by rotating their hand 99 
about the wrist, using equipment that is compatible with the magnetic resonance (MR) scanner 100 
environment (Shmuelof et al. 2012). This task differs from more widely used finger sequencing tasks in 101 
that it requires precise visually guided pointing movements that are not over-learned (unlike straight 102 
reaching movements), allows for detailed trajectory kinematics to be collected throughout a single 103 
movement, and makes it possible to impose specific kinematics for single movements.  The APT is, to 104 
the best of our knowledge, the first MR compatible task that allows subjects to make 2-dimensional 105 
visually guided movement trajectories with the wrist, analogous to arm reaches, which can be 106 
characterized kinematically.  107 
 108 
In a recent psychophysical study using the APT, we showed that 3 days of practice led to a change in 109 
the speed-accuracy trade-off function for the task, driven predominantly by decreased variability 110 
around a fairly constant mean trajectory (Shmuelof et al. 2012). In the current study we sought to use 111 
functional magnetic resonance imaging (fMRI) to detect a practice-dependent change in brain 112 
activation for the APT while controlling for changes in movement execution. The experiment was 113 
performed over 5 days: subjects were scanned on day 1, trained on the APT outside the scanner on days 114 
2, 3, and 4, and then were re-scanned on day 5. We chose to perform a multi-day study because in our 115 
previous psychophysical study, variability was still coming down after 3 days of training (Shmuelof et 116 
al. 2012) thus we reasoned that we would increase our chances of detecting the neural correlates of this 117 
change by allowing it to be as large as possible. Importantly, performance of the APT on day 1 and day 118 
5 in the scanner was matched for kinematics: subjects performed the task at an enforced slow speed on 119 
both days and generated the same mean trajectories. In this way we were able to separate the neural 120 
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correlates of learning from the neural correlates of the improved motor ability that was achieved 121 
through such learning.  122 
 123 
It is important to clarify here why we chose a task, in which mean kinematics were matched before and 124 
after learning in the scanner. Although motor learning leads to improved motor performance, it is not 125 
possible to assay neural correlates of learning by comparing brain activation at different performance 126 
levels because execution-related changes confound the interpretation. Instead, we recognized that the 127 
core result of motor learning is to change motor ability, i.e. the potential or capacity to perform at 128 
higher levels. Improved motor ability presumably consists of stable changes in neural circuitry that 129 
affect how a given movement is controlled. Hence, these changes should be measurable at any level of 130 
execution. 131 
 132 
We hypothesized that learning-induced changes in motor acuity will be a result of improved 133 
representation of the task in the cortical execution network, achieved through recruitment of additional 134 
neurons. This recruitment hypothesis would be consistent with an overall increase in task-related 135 
activation, as measured using the blood-oxygen-level-dependent signal in fMRI. 136 
 137 
Materials and Methods 138 
Subjects 139 
Thirteen right-handed subjects (8 females, 18-27 years of age), naïve to the task, participated in the 140 
study. All subjects gave a written informed consent and received token compensation to participate in 141 
the study. The study was approved by the Columbia University Institutional Review Board.  142 
 143 
MRI Acquisition 144 



 7

Data were acquired on a Philips Intera 3T scanner using a Philips SENSE head coil. The functional 145 
scans were acquired using a gradient echo EPI, with voxel size of 3x3x3 mm (240x240x120mm 146 
matrix). TR = 2 s, flip angle= 77°, axial slices, TE = 25ms. 40 slices were acquired in an interleaved 147 
sequence at a thickness of 3 mm (no gap). 96 volumes were collected in each experimental run. The 148 
first 2 volumes were discarded to allow magnetization to reach equilibrium.  A single T1-weighted 149 
anatomical scan was also acquired for each subject (MPRAGE, 1 mm^3). The field of view covered the 150 
entire cerebrum and most of the cerebellum. The inferior part of the cerebellum was not covered in 151 
some of the subjects. 152 
 153 
Arc-pointing task outside the scanner 154 
Subjects participated in a protocol consisting of 5 daily sessions in the lab and 2 functional MRI 155 
(fMRI) scans on days 1 and 5. The sessions in the lab were composed of test sessions (days 1 and 5), 156 
where the performance of subjects in the Arc Pointing Task (APT) was assessed at 5 movement times 157 
(MTs), and train sessions (days 2, 3 and 4) where subjects performed the APT at the same MT (see 158 
below). The APT required subjects to guide a cursor from one circle to the other through a semi-159 
circular channel, presented on a monitor, by moving their left (non-dominant) wrist, in a clockwise 160 
direction, without crossing the borders of the channel. The width of the channel was the same as the 161 
targets' diameter (0.7 cm). At the beginning of each trial, one of the two horizontal targets became 162 
white (start circle) and the other red (target). A left white target indicated that subjects had to make a 163 
movement through the upper semi-circular channel to the target, whereas a right white target indicated 164 
that they had to move through the lower semi-circular channel. After a variable delay, the red circle 165 
changed to green, and a tone was played indicating that subjects could start the movement. The cursor 166 
was visible throughout the movement. After the trial, the entire trajectory of the cursor appeared on the 167 
screen. During test and train sessions, subjects were required to make the movements in a predefined 168 
MT range, indicated by a computer-generated demonstration of the cursor moving through the channel 169 
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in the required MT, which was presented at the beginning of each session block. Valid movements 170 
(inside the channel, and within MT range for the constrained blocks) were followed by a pleasant 171 
sound, and rewarded with symbolic coins in proportion to the MT. During days 2-4 subjects trained by 172 
making movements in a single constrained speed range (Train sessions, 520-780 ms). On days 1 and 5, 173 
subjects’ overall speed-accuracy trade-off function was sampled by testing their performance at 5 174 
different MTs (Test sessions, 240-420 ms, 400-600 ms, 640-960 ms, 800-1200 ms, 1200-1800 ms), 175 
presented in different blocks. Test and train sessions in the lab lasted approximately one hour. For more 176 
detailed information, see (Shmuelof et al. 2012). 177 
 178 
Arc-pointing task inside the scanner 179 
Subjects were scanned before the test sessions in the lab on days 1 and 5. During the scans, subjects 180 
performed movements with their non-dominant left wrist, while lying in a supine position (Fig. 1A). 181 
They viewed, through video goggles (Resonance Technology, Los Angeles, CA), the same display of 182 
targets and cursor as in the behavioral sessions. A Qualysis (Gothenburg, Sweden) infrared camera, 183 
positioned inside the MRI room, recorded the wrist pointing direction as the position of a spherical 184 
reflective marker on the index finger's proximal interphalangeal joint (the hand was closed in a fist), at 185 
a sampling rate of 100 Hz. Subjects moved the screen cursor horizontally and vertically by pointing 186 
with their closed fist (Fig. 1B). Each subject’s forearm was placed in a splint to prevent forearm 187 
supination, so that the screen x and y positions were mapped, respectively, to wrist flexion-extension 188 
and radial-ulnar deviation. A laptop computer (Apple, Cupertino, CA) was used to control the visual 189 
display and to collect cursor position data with custom software.  190 
 191 
Study design inside the scanner 192 
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Subjects performed three experimental runs (Localizer, Trained and Untrained) in the scanner on day 1 193 
and two (Trained and Untrained) on day 5 (Fig. 1C). To obtain maximum sensitivity to task effects, a 194 
block design was used. Horizontal (Trained) and vertical (Untrained, control) versions of the APT (see 195 
below) were performed in separate runs before and after training. Six movements were performed in 18 196 
s blocks (repeated 6 times), at a slow speed (1.5 s per movement). Movement blocks were interleaved 197 
with 12 s rest periods.  198 
 199 
During rest periods, subjects were instructed to relax their wrist and wait for the visual cue indicating 200 
the beginning of the next block. During the movement blocks, subjects performed semi-circular 201 
movements through a channel (0.7 cm wide) between two circular targets (0.7 cm diameter) separated 202 
by 4.4 cm. These dimensions refer to the position of the reflective marker as recorded by the motion 203 
capture camera. In each trial, subjects moved the cursor from one target to the other in a curved 204 
clockwise motion, attempting to keep the cursor within the arc channel (Fig. 1B). The "go" signal for 205 
each movement was a visual cue (target color changed from red to green). The instruction to the 206 
subjects was to move the cursor between the targets without crossing the boundaries of the channel, 207 
and to maintain the required MT. 208 
 209 
During movement blocks, subjects received online feedback of cursor position, but no further 210 
information about their success or failure, or about their movement speed. To control for MT across 211 
sessions, subjects had a short training session before the experimental run, where feedback about MT 212 
was given.  213 
 214 

< < < < <  Figure 1  > > > > > 215 
 216 
Tasks 217 
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Subjects performed three types of movement task. The Trained task consisted of APT movements as 218 
described above with the two targets arranged along a horizontal line, in the same configuration as 219 
during the behavioral training in the lab. The Untrained task differed in the target arrangement, which 220 
was vertical (rotated in 90°), and was never practiced outside of the scanner. In both tasks, movements 221 
were always made in a clockwise direction (Fig. 1B). In addition, subjects performed a Localizer task 222 
on day 1, which served as a functional localizer to identify brain areas involved in planning and 223 
execution of visually guided left wrist reaching movements. Subjects had to guide a cursor between a 224 
start target (diameter 0.7 cm) presented at the center of the screen and targets (diameter 0.7 cm) 225 
presented 3.5 cm to the left and to the right of the start target by making a sequence of straight out-and-226 
back visually guided movements. As for the APT experiments, this task had a block design: 6 out-and-227 
back movements were performed in each 18 s block.  228 
 229 
Imaging analysis 230 
Preprocessing and computing activation maps were all performed using Brain Voyager QX 1.10 (Brain 231 
Innovation, Maastricht, The Netherlands). Before statistical analysis, head motion correction using 232 
trilinear interpolation, high-pass temporal filtering in the frequency domain (three cycles/total scan 233 
time) and spatial smoothing (FWHM = 8mm) were applied to remove drifts and to improve the signal-234 
to-noise ratio. The first two functional images of each run were discarded to allow for stabilization of 235 
the signal. Functional images were incorporated into the three-dimensional datasets through trilinear 236 
interpolation and transformed into Talairach space and Z-normalized. Group analysis was performed 237 
using a random-effects multi-subject General Linear Model (GLM). Regressors were defined as a 238 
boxcar function peaking during each block, convolved with a two-gamma hemodynamic response 239 
function. The Task-by-Day interaction analysis was performed using Brain Voyager QX 240 
ANOVA/ANCOVA module. 241 
 242 
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 243 
 244 
Voxel-based analysis  245 
We constrained the voxel-based analysis to the execution network for visually guided wrist movement 246 
using a mask generated from the multi-subject contrast map of the functional localizer scan obtained 247 
during performance of the Localizer task on Day 1 (straight reaching movements>rest, p<0.05). To 248 
correct for multiple comparisons, a cluster threshold of 112 contiguous functional voxels was used for 249 
the mask contrast and a cluster threshold of 19 contiguous functional voxels was used for the rest of the 250 
contrasts. The thresholds were computed using a Brain Voyager QX Cluster-level Statistical Threshold 251 
Estimator plugin by running 1000 iterations of a Monte-Carlo simulation to estimate the probability of 252 
getting a cluster of a given size by chance (taking into account the number of activated voxels and 253 
spatial smoothing).  254 
 255 
 256 
Global Ranking analysis 257 
We designed a non-parametric analysis to capture global changes in activation following training. This 258 
analysis was based on individual unmasked and unsmoothed images. For each voxel, the contrast for 259 
the day effect comparing the Trained and Untrained tasks was computed based on first level standard 260 
General Linear Model (Friston et al. 1994) images computed in SPM5 261 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm5) following slice time correction, high pass filter (5 262 
cycles per scan) and image normalization to a standard brain using 4th degree B-spline interpolation.  263 
Ranks (integers representing orderings for all contrast estimates in the ROI) were calculated regardless 264 
of condition for each subject.  The sum of the ranks across conditions is the sum of the integers from 1 265 
to the number of voxels in the image (V) times the number of conditions (C), which is equal to 266 
C*V(C*V+1)/2. This ranking procedure is identical to calculating a Wilcoxon rank sum statistic. The 267 
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subject-specific proportion of the rank values devoted to each condition was then calculated and 268 
subsequently averaged over subjects within conditions. The average proportion in the first condition 269 
was retained as a test statistic. A low value of this statistic generally represents lower activation 270 
contrast values for this condition relative to the other and vice versa for a high value. A null 271 
distribution was obtained by permuting the condition labels within subjects and recalculating the 272 
statistics values. The result is a robust non-parametric test of contrast differences using the ensemble of 273 
voxels rather than separate interaction tests per voxel.  274 
 275 
Behavioral analysis 276 
Custom routines written within the Igor software package (Wavemetrics, Lake Oswego, OR) were used 277 
to compute error rate, MT, peak speed, and average trajectory. Cursor position data was low-pass 278 
filtered (zero-lag, 3rd-order Butterworth filter, cutoff frequency 14 Hz). A trial was considered an error 279 
if the cursor’s radial position exceeded the channel’s boundaries or if the cursor did not reach the target 280 
by the end of the trial duration (1.5 s). Error rate is the fraction of error trials out of all trials. Error rate, 281 
MT and peak speed comparisons were performed using paired t-tests for the behavioral data from the 282 
scanner and an ANOVA for the behavioral data obtained in the laboratory. For average trajectory and 283 
variance calculations, we discarded from each movement the first and last 10° of cursor position, 284 
corresponding to the area within the initial and final targets (polar coordinate angle relative to an origin 285 
midway between the two targets). Trajectories were then interpolated to 200 points, using linear 286 
interpolation. Correction for multiple comparisons when comparing the averaged trajectories and the 287 
trial-by-trial variability measures was conducted using a Random field Gaussian distribution correction 288 
for temporal correlation in the data (Shmuelof et al. 2012). This analysis focused on the time-289 
normalized radial position of the cursor, which was the task relevant control variable, using paired t-290 
tests run repeatedly for every normalized time point (n = 200). To correct for the probability of false 291 
positives due to multiple comparisons, we addressed temporal correlations in the data that resulted 292 
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from temporal smoothing. Corrected thresholds were thus computed based on the estimated number of 293 
truly independent samples present within the sampled vector using random field theory (Worsley et al. 294 
1992).  295 
 296 
Results 297 
 298 
Subjects showed improvement in the Trained APT both in and outside the scanner 299 
Subjects showed a significant improvement in APT performance across the tested range of movement 300 
times MTs when assessed outside the scanner after 3 days of training (comparison of performance on 301 
days 1 and 5, p<0.001, Fig. 2A). Consistent with our previous report (Shmuelof et al. 2012), the 302 
improvement generalized to MTs not experienced during training.  303 
 304 
During the imaging sessions on days 1 and 5, subjects performed both the Trained (horizontal arc, Fig. 305 
1B) and Untrained tasks (vertical arc).   The Untrained task was introduced to control for a possible 306 
order effect: putative learning-related imaging effects for the Trained task on day 5 might instead be a 307 
non-specific effect of performing the same task twice in the scanner regardless of training. If activation 308 
changes were merely due to an order effect, comparable activation changes would be seen from day 1 309 
to day 5 for the Untrained task.  Subjects showed improvement in accuracy for the Trained APT 310 
performed in the scanner from day 1 to day 5 (p = 0.007, Fig. 2B) with no associated change in MT (p 311 
= 0.38, Fig 2B), peak movement speed (p = 0.362), and mean trajectory (p>0.05 throughout the 312 
trajectory, see methods). Crucially, the Trained task showed a decrease in trial-by-trial variability, with 313 
a maximal F value of 16.278 (p<0.001, Fig. 2C,E). The improvement in performance in the scanner is 314 
consistent with the behavioral results obtained outside the scanner (Fig. 2A). The observed reduction in 315 
variability is consistent with our previous behavioral work that showed reduction in trial-by-trial 316 
variability following training in the APT (Shmuelof et al. 2012). The Untrained  task did not show 317 
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changes in movement speed, MT, mean trajectory, and mean variability across days (p = 0.29, and p = 318 
0.31, and p>0.05, respectively, Fig 2B).  319 
 320 
There was a significant difference in the degree of improvement for the Trained compared to the 321 
Untrained task (p = 0.049, Fig 2B). The small improvement for the Untrained task, although not 322 
significant (p=0.15), likely reflects partial generalization from the horizontal to the vertical task. It 323 
should be emphasized that we were looking for neural and behavioral differences between the Trained 324 
and Untrained tasks; such differences are not dependent on an absence of changes for the Untrained 325 
task.  326 
 327 

< < < < <  Figure 2  > > > > > 328 
 329 
Skill learning was associated with changes in contralateral motor cortical areas and the ipsilateral 330 
cerebellum 331 
The functional imaging data were analyzed using a General Linear Model (Friston et al. 1994). We 332 
were specifically interested in learning-related activation changes in brain areas associated with 333 
execution of wrist movements. Therefore the voxel-wise analysis was constrained to the execution 334 
network for visually guided pointing movements of the left wrist.  We used a localizer scan based on 335 
straight reaching movements of the left wrist on day 1 to identify the wrist movement network (Fig. 336 
3A, Table 1). Notably, the mask was constructed based on the averaged contrast image from the 337 
Localizer scan using a low threshold of p=0.05 (cluster-size correction of 112 functional voxels), 338 
resulting in an inclusive mask of the execution network for wrist reaching movements. 339 
 340 
Separate contrast maps were generated for a comparison between task-related activation patterns for 341 
days 1 and 5 (p<0.01, cluster size correction of 19 contiguous functional voxels) within the task mask 342 
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(Fig. 3A, Table 1) for the Trained (Fig. 3B, Table 1) and Untrained (Fig. 3C) tasks. Training on the 343 
horizontal APT was associated with increased activation in contralateral primary motor cortex (M1), 344 
contralateral dorsal premotor cortex (dPMC) and contralateral anterior intraparietal cortex (AIP), 345 
supplementary motor cortex (SMA) and in the ipsilateral cerebellum (Fig. 3B, Table 1). There were no 346 
significant reductions in activation following training within the task mask. For the Untrained vertical 347 
APT, there were no significant activation increases or decreases (Fig. 3C).   348 
 349 

< < < < <  Figure 3  > > > > > 350 
 351 
 352 

In order to quantitatively test whether acquisition of skill could be associated with a net global increase 353 
in activation across all voxels in the unmasked brain, we designed a non-parametric ranking procedure 354 
to compare the distributions of activation for all unthresholded voxels before and after training (see 355 
Methods).  For every subject, day 5 and day 1 activation values for the Trained task from every voxel 356 
were ranked together. The proportion of ranks for day 5 activation values was then computed and 357 
compared to a null distribution, obtained by permuting condition labels within subjects. The average 358 
proportion of ranks across subjects for day 5 observations was 0.52, which was significantly higher 359 
than chance (p=0.03, see Methods), indicating a global increase in activation for the Trained task 360 
following training. A similar analysis for the Untrained task did not indicate a global change in 361 
activation following training (0.5, p=0.68). 362 
 363 
Increases in activation were greater for the Trained task  364 
While the voxel-wise and ROI results showed that the Trained horizontal APT was associated with 365 
significant changes in activation and the Untrained vertical APT was not, these results are not 366 
sufficient to establish a selective learning effect for the Trained APT as compared to the Untrained 367 
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APT. To reach this conclusion it is necessary to show a significant day-by-task interaction 368 
(Nieuwenhuis et al. 2011).  There were significant day-by-task interactions for the voxel-wise analysis 369 
in contralateral dPMC, in SMA and in the ipsilateral cerebellum (Fig. 3D, Table 1).  370 
 371 
Given the low sensitivity of the voxel-based analysis, we also used a global multivariate approach to 372 
show a day-by-task interaction for activation across all unthresholded and unmasked voxels.  For the 373 
global interaction measure we used the same ranking analysis as described above, but this time ranked 374 
according to day 5-day 1 activation values in each voxel for both the Trained and Untrained tasks 375 
together. The average proportion of ranks across subjects for the Trained task turned out to be 0.53, 376 
indicating that voxels changed more for the Trained than the Untrained task. Permutation analysis 377 
shows that average proportion of ranks is significantly different than the null distribution (p=0.03). 378 
Figure 4 demonstrates the shift of the distribution of the day5-day1 activation pattern for the Trained 379 
task compared to the Untrained task for a single subject.  380 

 381 
< < < < <  Figure 4  > > > > > 382 

 383 
In summary, when kinematics were successfully constrained on day 1 and day 5 (same MT and average 384 
trajectory) for both the Trained horizontal APT and the Untrained vertical APT, there were significant 385 
learning-related increases in activation for the Trained task in contralateral motor cortical areas and in 386 
the ipsilateral cerebellum. Corroborating these results, a global test of activation across all voxels 387 
showed that there was greater activation overall for the Trained task compared to the Untrained task.  388 
 389 
 390 
  391 
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Discussion 392 
We sought to dissociate brain activation related to motor learning from brain activation related to motor 393 
execution. We were specifically interested in the neural correlates of decreased movement variability 394 
(improved motor acuity) when controlling visually guided cursor trajectories with the wrist. We found 395 
learning-related increases in activation in contralateral motor cortical areas and in the ipsilateral 396 
cerebellum, when the task was performed with matched kinematics on the pre- and post-training days.    397 
 398 
We have recently suggested that it is motor acuity that requires learning-related changes in contralateral 399 
primary and premotor cortical areas (Krakauer and Mazzoni 2011; Shmuelof and Krakauer 2011). 400 
Studies of motor learning in rodents have consistently shown changes in contralateral M1 after practice 401 
on visually guided pellet prehension tasks (Greenough et al. 1985; Kargo and Nitz 2004; Kleim et al. 402 
2002; Xu et al. 2009). These changes, which take days to weeks to develop, include expansion in motor 403 
maps, long-term potentiation, and synaptogenesis.  In one study, rats were trained on a pellet 404 
prehension task over 12 days. Over the first 6 days, pellet retrieval success rates were associated with 405 
changes in the action selected and changes in the ratio of muscle activation for a particular EMG 406 
pattern. Reduction in the variability of the muscle recruitment pattern only occurred over days 7 to 12 407 
and it was only this reduction in variability that correlated with improvements in signal-to-noise ratio 408 
(SNR) in M1 cells (Kargo and Nitz 2004). This result is entirely consistent with our results: the APT 409 
was designed to emphasize variability reduction over action selection.  This result also provides a 410 
potential explanation for why so many human imaging studies have not shown learning-related changes 411 
in contralateral motor cortical areas after controlling for execution. The kind of learning seen in the 412 
first 6 days in the rat study is probably what is being emphasized in most human studies, namely 413 
adaptation and action selection rather than motor acuity.  414 
 415 
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In previous work we have shown that training on the APT at slow speeds leads to improvements at 416 
untrained fast speeds (Shmuelof et al. 2012). We suggested that this generalization supports a 417 
representation of skilled movements that can be scaled across a range of difficulty (speed) levels. This 418 
idea is supported by our present result that learning-related activation was detectable even when 419 
performing at a slow speed. One possibility is that specific arrangements of controllers in M1 can be 420 
learned and associated with task-specific synergies. A fairly simple scalar input control onto these 421 
cortical representations could then allow these synergies to scale across speeds (d'Avella et al. 2008; 422 
Overduin et al. 2012). The degree of task specificity of these synergies is yet to be determined. The 423 
lack of a significant task-by-day interaction in M1 may support a partial overlap between learned 424 
synergies for the two tasks performed with the same effector. Thus we would conjecture that the non-425 
significant interaction effect for the trained versus untrained task in M1 is due to generalization rather 426 
than a lack of learning-related changes in this region. 427 
 428 
We found that training in the APT was associated with increases in activation in motor cortical areas 429 
and the cerebellum without any significant decrease in activation (Fig. 2B). In contrast, previous 430 
studies of motor learning that have focused on average activity changes, as we did here, have shown 431 
both increases and decreases in activation in several brain areas (Kelly and Garavan 2005; Petersen et 432 
al. 1998; Steele and Penhune 2010; Wu et al. 2004). Increased accuracy and precision in motor 433 
performance with training is presumably driven by increased signal-to-noise (SNR) in brain 434 
representations. There is evidence from the perceptual learning literature that there are at least two 435 
cortical mechanisms for increasing SNR (Reed et al. 2011; Yang et al. 2009). Training-related 436 
improvements in frequency discrimination in rats are first associated with auditory cortex map 437 
expansion and then with map renormalization (Reed et al. 2011). The expanded representation may 438 
improve encoding through summation over more units, while selective stabilization of specific 439 
dendritic spines during the renormalization phase may be associated with improved encoding through 440 
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selection of the most informative units, i.e. through reduction in the noise correlations between task-441 
related units (Bejjanki et al. 2011). Increased accuracy and precision in motor performance with 442 
training, as for perceptual learning, is presumably also driven by increased SNR in brain 443 
representations. It may be that the reported bi-directionality of brain activation responses in motor 444 
learning tasks (Dayan and Cohen 2011; Hardwick et al. 2013) reflects the fact that the SNR can be 445 
improved by either increases in the number of neurons recruited for a task or selection of a subset of 446 
neurons specifically tuned to the task. The former would lead to increases in average activation and the 447 
latter to decreases. The relative balance of these competing mechanisms for a learned representation 448 
may be dependent on a variety of factors that include the task itself and the time spent practicing the 449 
task. Thus we propose that in our task, motor acuity was associated with an increase in the number of 450 
neurons recruited. It is possible that with more prolonged training we would have seen activation return 451 
to day 1 levels (Puttemans et al. 2005; Reed et al. 2011; Xu et al. 2009).  It should be noted that 452 
although statistical maps cannot distinguish increased extent (more voxels) from increased intensity 453 
(increased activation of same number of voxels), the latter would decrease, not increase, SNR.   454 
 455 
A new approach to the study of learning is to use multi voxel pattern analysis (Cox and Savoy 2003; 456 
Kamitani and Tong 2005).  Using this approach it has been shown that improvement in perceptual 457 
orientation discrimination was associated with increased orientation discrimination in the BOLD signal 458 
taken from visual areas, without any changes in average activation in the same areas (Jehee et al. 2012). 459 
In the motor domain, it has recently been shown that those areas that showed the largest learning-460 
related increases in classification accuracy of four separate trained finger sequences were in areas that 461 
showed no changes in average activation (Wiestler and Diedrichsen 2013).  Areas that did show a 462 
change in average activation for the direct contrast between trained versus untrained sequences, showed 463 
decreases in activation (bilateral PMd and along the intraparietal sulcus) and no increases. How to 464 
reconcile these results with our and other studies (in multiple species) that suggest a predominant role 465 
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for contralateral motor cortical areas for skill? In the study by Wiestler and Diedrichsen, subjects 466 
executed sequences faster by overlapping presses of each individual finger (Wiestler and Diedrichsen 467 
2013). There was no measure of precision of either the individual finger presses or of the two-finger 468 
transitions. Thus it could be argued that subjects were learning to choose the specific finger transitions 469 
needed for each sequence through a better representation of each sequence, i.e., faster selection of the 470 
required transitions. The ability to quickly execute any particular transition may, however, already have 471 
been at ceiling before learning even begun. The decrease in mean activation in this case could be a 472 
result of the reduction in the cognitive effort required to select the right sequence of finger presses. 473 
Indeed, such automatization effects in sequence learning have been shown to be associated with 474 
reduction in activation in cortical motor areas (PMD, SMA and parietal regions) (Puttemans et al. 475 
2005; Wu et al. 2004). Thus sequence tasks may for the most part emphasize action selection over 476 
action execution.  In our task, in contrast, it is clear to subjects from the outset what action is needed, 477 
down to the sub-movements, and it is the variability of this single action that needs to be reduced with 478 
training. An increase in neural bandwidth may only be needed when speed and accuracy of a particular 479 
action increases and not when the only difference is whether the actions are released in parallel rather 480 
than serially.    481 
 482 
It is important to avoid the error of reverse inference when speculating about the meaning of the 483 
activations observed in an imaging study (Poldrack 2006). Our main prediction was that contralateral 484 
motor cortical areas would show a learning effect if the task emphasized the requirement for motor 485 
acuity.  That said we were agnostic as to whether we would see a learning effect in the ipsilateral motor 486 
cerebellum or not; we observed increased activation in lobule V of the anterior lobe, which has been 487 
shown to be involved in visuomotor rotation learning (Donchin et al. 2012). The cerebellum is a critical 488 
structure for adaptation; returning behavior to baseline levels in the setting of external perturbations 489 
and maintaining a calibrated forward model of an ever-changing plant (Barash et al. 1999; Tseng et al. 490 
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2007). What is not clear is the degree to which the cerebellum is involved in improving motor acuity. 491 
We have recently shown  that feedback responses improve from day 1 to day 5 in the APT (Shmuelof 492 
et al. 2012). Such improved feedback responses could occur through improved state estimation by the 493 
cerebellum.  In this framework, the decrease in variability seen with learning could be due to more 494 
precise feedback corrections enabled by the cerebellum and increased SNR via increased neuronal 495 
recruitment in motor cortical areas. The learning-related activation we observed in the cerebellum was 496 
medial to the previously reported hand area in superior cerebellar cortex (lobules V and VI) (Grodd et 497 
al. 2001; Kuper et al. 2012; Rijntjes et al. 1999). Indeed we saw cerebellar activation in this hand area 498 
in our Localizer task (Figure 3A). Changes in activation associated with learning a new internal model 499 
also occur outside the cerebellar hand area (Imamizu et al. 2000). The results of this previous study and 500 
our current study suggest that both acquisition of a new forward model and improvement of state 501 
estimates in an existing forward model may depend on the same cerebellar representation.  502 
An alternative explanation for our results could be that the activation differences are driven by 503 
differences in observed errors before and after training. Indeed both motor cortical areas and the 504 
cerebellum have been shown to have error-related activation (Diedrichsen et al. 2005; Imamizu et al. 505 
2000; Schlerf et al. 2012). Critically, however, in these cases, activation increases as errors increase 506 
and, in the case of the cerebellum, occurs in the hand area.  Here we show that activation increased 507 
with training as errors decreased and this activation was medial to the previously reported error-related 508 
cerebellar hand area activations.  509 
 510 
Conclusion 511 
We show that improvements in motor acuity over days are associated with learning-related increases in 512 
activation in areas within the baseline execution network: contralateral motor cortical areas and the 513 
ipsilateral cerebellum. A global non-localizing analysis confirmed that learning was associated with net 514 
increases in activation. Thus the observed decreases in movement variability could be accounted for by 515 
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a learning-related increase in the number of neurons recruited for the task. We conclude that when 516 
humans perform a task that in many ways can be considered an analog for visually guided reaching, 517 
learning-related changes occur within the execution network in a manner analogous seen in rodent and 518 
non-human primate models (Nudo et al. 1996; Xu et al. 2009).  519 
 520 
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 665 
Captions of figures 666 
Table 1  667 
Execution and Learning related brain activation. Summary of activation loci for execution and learning 668 
related contrasts.  669 
Figure 1 670 

a. Experimental setup in the MRI scanner. Subjects performed the same APT task while lying 671 
supine, and moving their left wrist. The position of the marker was captured by the infrared 672 
camera that was positioned in the scanner room. Subjects received feedback through goggles. 673 

b. Sample hand paths from the Trained (top) and Untrained (Bottom) tasks, recorded in the 674 
scanner, before (grey) and after (black) training. The task was to move the cursor in a clockwise 675 
direction from one circle to the other through a circular channel, without crossing the channel’s 676 
boundaries. Day 1 trajectories show greater trial-to-trial variability than day 5 trajectories for 677 
the Trained task but not for the Untrained task.  678 

c. Experimental protocol. Subjects participated in a 5 day protocol, which was composed of 5 679 
daily sessions in the lab and 2 MRI scans on days 1 and 5.  After the MRI sessions a speed-680 
accuracy tradeoff functions (SAF) for the APT was derived for each subject.  681 

 682 
Figure 2 683 

a. Performance in the sessions in the lab before (grey, day 1) and after (black, day 5) training. 684 
Error-rate (fraction of movements outside the channel) is plotted against average movement 685 
time for the five imposed MTs. This plot illustrates the group's speed-accuracy tradeoff function 686 
(SAF) and its change after practice. Subjects showed reduction in error rate in all measured 687 
speeds, i.e., a shift across the SAF to a higher level of performance. Error bars denote SEM. 688 
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b. Performance measures from the Trained (T) and Untrained (UT) tasks (performed in the 689 
scanner).  Error rate reduction following training for the Trained (solid bars) and Untrained 690 
tasks (empty bars, left). Subjects did not modulate MT in both tasks following training 691 
(middle). Improvement was greater for the Trained task (right). Error bars denote SEM. 692 

c. Average trial-by-trial variability from day 1 (gray) and day 5 (black) scanning sessions of the 693 
Trained task. Averaged variability is plotted against normalized time. Following training, there 694 
is a reduction in variability mainly during the first half of the movement. Error bars denote 695 
SEM. 696 

d. Average trial-by-trial variability from day 1 (gray) and day 5 (black) scanning sessions for the 697 
Untrained task. Averaged variability is plotted against normalized time. Variability for the 698 
Untrained task does not change with time. 699 

e. Comparison of variability measures across days. Day effect (F values) as a function of 700 
normalized time. Dotted horizontal line represents the threshold (corrected for multiple 701 
comparisons) above which F values are statistically significant. Significant changes in 702 
variability can be seen for the Trained task (solid line) but not for the Untrained task (dashed 703 
line).  704 

  705 
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Figure 3 706 
a. BOLD activation increase associated with the wrist localizer task. Voxel-based and ROI 707 

analyses were masked by mean activation pattern for straight reaching movements with the left 708 
wrist (Localizer scan, wrist movements>baseline). Average activation patterns are shown on 709 
inflated brain surfaces. Average activation in the cerebellum is shown on a coronal slice (y=-710 
50). Reaching movement with the wrist was associated with a broad increase in activation in 711 
both hemispheres, in visual and motor areas and in the cerebellum.  712 

b. Contrast map for the Trained task. Subjects were scanned while performing the Trained, 713 
horizontal arc task before and after training (on days 1 and 5). A contrast analysis between day 714 
1 and day 5 activation patterns within the task mask (subset a) is shown. Increase in activation 715 
following training is shown in red-yellow colors, decrease in activation is shown in blue-green 716 
colors (color coding is shown in bottom right corner of the figure). Training in the APT was 717 
associated with increased activation in the right primary motor, premotor and supplementary 718 
motor cortices. Reduction of activation following training was not detected. 719 

c. Contrast map for the Untrained, vertical arc task. A contrast analysis for the Untrained task 720 
within the task mask did not result in any significant change in activation. 721 

d. Task by training interaction analysis. An interaction analysis (using ANCOVA) between 722 
training (day 1 versus day 5) and task (Trained versus Untrained) within the task mask resulted 723 
in significant activation in premotor dorsal and supplementary motor cortex. 724 

  725 
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Figure 4 726 
Sample of the global interaction analysis from a single subject. Distribution of the training effect (day 727 
5–day 1) of all voxels for the Trained (black) and Untrained (grey) tasks. The Trained distribution is 728 
shifted to the right of the Untrained indicating fewer negative values and more positive values relative 729 
to the untrained.  730 
  731 
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Wrist movement  day 1> baseline  (Localizer task, p<0.05, cluster size correction)  

 
lPMC 10763 33 -13 52 6.45

SMA 10506 4 -8 54 7.25

rM1 24365 25 -23 48 10.65

rAIP 12858 22 -56 48 9.72

lAIP 13167 -20 -62 54 11.37

rLOG 18251 43 -70 7 10.43

lLOG 23615 -44 -71 3 13.99

rPut 7092 22 4 6 6.52

lPut 4427 -26 1 0 4.78

rCBL - lob VI 14729 31 -59 -18 10.43

lCBL - lobe VI 21287 -29 -53 -18 12.82

lCBL - lobe V 18534 -2 -59 -12 10.62

 

Trained task day 5 > day 1 (p<0.01, cluster size correction) 

rM1 2811 19 -21 63 3.29

rdPMC 1378 23 -8 57 4.11

SMA 5006 -4 -14 54 7.53

rAIP 596 -44 -37 47 2.06

lCBL - lob V 1340 2 -50 -9 4.70



 

 

Task by Day Interaction (p<0.01, cluster size correction) 

 

rdPMC 1619 11 -14 66 3.71

SMA 1065 -4 -14 54 4.57

lCBL - lob V 2104 -5 -47 -12 5.02


	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1

