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Abstract
In sensorimotor adaptation paradigms, participants learn to adjust their behavior in response to an external perturbation.
Locomotor adaptation and reaching adaptation depend on the cerebellum and are accompanied by changes in functional con-
nectivity in cortico-cerebellar circuits. In order to gain a better understanding of the particular cerebellar projections involved in
locomotor adaptation, we assessed the contribution of specific white matter pathways to the magnitude of locomotor adaptation
and to long-term motor adaptation effects (recall and relearning). Diffusion magnetic resonance imaging with deterministic
tractography was used to delineate the inferior and superior cerebellar peduncles (ICP, SCP) and the corticospinal tract (CST).
Correlations were calculated to assess the association between the diffusivity values along the tracts and behavioral measures of
locomotor adaptation. The results point to a significant correlation between the magnitude of adaptation and diffusivity values in
the left ICP. Specifically, a higher magnitude of adaptation was associated with higher mean diffusivity and with lower anisotropy
values in the left ICP, but not in other pathways. Post hoc analysis revealed that the effect stems from radial, not axial, diffusivity.
The magnitude of adaptation was further associated with the degree of ICP lateralization, such that greater adaptation magnitude
was correlated with increased rightward asymmetry of the ICP. Our findings suggest that the magnitude of locomotor adaptation
depends on afferent signals to the cerebellum, transmitted via the ICP, and point to the contribution of error detection to locomotor
adaptation rate.
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Introduction

Motor adaptation is the process by which subjects learn to
adjust their movements to changes in environmental de-
mands. Theoretical frameworks suggest that adaptation is
achieved by updating internal models of the environmen-
tal dynamics based on sensory prediction errors (see [1]
for review). For example, when subjects are introduced to
a split-belt treadmill, where one leg is forced to move
faster than the other, they gradually learn to adjust their
stance and swing times in order to overcome the external
perturbation and improve their dynamic balance. Then, if
the perturbation is unexpectedly removed, subjects will
typically show aftereffects—a mirror image of the previ-
ously learned gait cycle [2], indicating the adjustment of
their internal model to the perturbation [1, 3, 4].
Adaptation underlies the successful interaction between
the nervous system and changes in the environment [5].
Here, we examine the neural pathways that are associated
with locomotor adaptation.
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Converging experimental evidence points to the cerebel-
lum as a key structure in the process of motor adaptation.
Patients with cerebellar lesions present an impaired ability to
adapt their movements during motor adaptation tasks such as
visuomotor adaptation [6, 7], adaptation to a force field [8],
and locomotor adaptation [9]. By using transcranial direct
current stimulation (tDCS) in healthy adults, it has been
shown that a temporary change in the activity of the cerebel-
lum significantly influences the adaptation of reaching move-
ments [10, 11]. Neuroimaging studies have found a significant
increase in cerebellar activity not only at the beginning of the
adaptation phase [12, 13] but also after learning has been
acquired [14], as well as when subjects are asked to recall
the previously learned motor skill [15]. Despite the converg-
ing results regarding the involvement of the cerebellum in
adaptation, the interactions between the cerebellum and the
cortical and subcortical motor systems have yet to be fully
elucidated. In the current study, we examine the anatomical
connections of the cerebellum with extra-cerebellar brain re-
gions and assess their unique contribution to different compo-
nents of motor adaptation.

Adaptation can be seen in multiple behaviors, including
walking. Locomotor adaptation is essential for maintaining
balance when walking in different terrains, speeds, and trajec-
tories. This type of adaptation can be tested with the split-belt
treadmill. During the split-belt walking test, participants learn
to adapt to the split-belt perturbation by changing the duration
of their left and right strides and regaining symmetry between
their lengths [2, 16]. In addition to the short-term process of
adaptation, split-belt walking is also accompanied by long-
term behavioral changes manifested in measures of recall—
the retrieval of a previous successful action, and relearning—
an increased sensitivity to errors when the same perturbation is
introduced again [10, 15, 17].

The magnitude of adaptation to the split-belt manipulation
has been shown to depend on cerebellar activity [18], which
has been repeatedly shown to encode movement errors
[19–21]. These “error detection” signals, originating in the
inferior olivary neurons, are carried to the cerebellar cortex
by the climbing fibers. Hence, the olivo-cerebellar connec-
tions may have a central role in the initial phase of adaptation,
where adequate error detection is crucial. In contrast, long-
term components of locomotor adaptation were previously
associated with cerebro-cerebellar loops. Specifically, bymea-
suring resting-state fMRI before and after exposure to the
split-belt manipulation, Mawase et al. [17] showed that recall
is correlated with baseline thalamocortical connectivity,
whereas relearning is correlated with baseline cerebellar-
thalamic connectivity.

Connectivity between the cerebellum and other parts of the
nervous system is based solely on three white matter path-
ways: the inferior cerebellar peduncle (ICP), middle cerebellar
peduncle (MCP), and superior cerebellar peduncle (SCP) [22].

The ICP is mainly composed of cerebellar afferent fibers feed-
ing signals from the spine and the olivary nucleus into the
cerebellum. The ICP also conveys efferent signals from the
cerebellum towards the vestibular nuclei. The MCP is mainly
composed of afferent fibers carrying input information from
the cerebral cortex via the pontine nuclei to the contralateral
cerebellar cortex. Finally, the SCP is mainly composed of
efferent fibers that carry information from the deep cerebellar
nuclei to the contralateral cortex via the thalamus, decussating
at the level of the inferior colliculi [22].

In the current study, we adopted a hypothesis-driven ap-
proach, focusing on three specific tracts that are suspected to
mediate locomotor adaptation. We tested the hypothesis that
locomotor adaptation, which is an error-driven process, is as-
sociated with microstructural properties of the ICP, connecting
the inferior olive and the cerebellum. This hypothesis is based
on the widely accepted view that complex spikes discharge,
emerging from the inferior olive, encode errors in motor per-
formance [19]. We further hypothesized that recall is associ-
ated with the corticospinal tract (CST), transmitting signals
from the motor cortex to the skeletal muscles via the thalamus
[23] and that relearning is associated with the SCP connecting
the cerebellum and the thalamus. These latter two hypotheses
are based on functional connectivity findings associating
long-term components of locomotor adaptation with changes
in the functional connectivity of cortico-cerebellar circuits
[17]. To test our hypotheses, we introduced subjects with the
split-belt treadmill task, which enabled us to estimate their
performance during adaptation, recall, and relearning. We
used diffusion magnetic resonance imaging (dMRI) and
tractography to delineate the ICP, CST, and SCP in each indi-
vidual’s native space. We then analyzed the relations between
diffusivity parameters extracted from each tract and the corre-
sponding behavioral measure. We thus used static, structural
properties of specific white matter tracts to predict dynamic,
functional changes that accompany locomotor adaptation. By
using this approach, we aim to pinpoint the role of specific
white matter pathways in locomotor adaptation and to extend
the current knowledge regarding the neuroanatomical basis of
this error-driven learning procedure.

Methods

Participants

Seventeen healthy adults (eight females and nine males; mean
age 27.94, age range 23–40 years) were recruited as part of a
multimodal MRI study on locomotor adaptation. Functional
MRI results from this study have already been published [17].
However, this is the first analysis of diffusion MRI data col-
lected as part of this study (data collected in 2014). The par-
ticipants did not have a history of neurological diseases and/or
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psychological disorders. This study was approved by the
Helsinki committee of Soroka Medical Center, Beer-Sheva,
Israel. All participants were naïve to the purpose of the study
and had no prior experience with the behavioral paradigm.

Behavioral Procedure

A split-belt treadmill paradigm was used to assess locomotor
adaptation (Fig. 1). The split-belt treadmill (ForceLink,
Clemborg, The Netherlands) consists of two independent
belts, one under each leg, which can be set independently to
move at the same speed or at different speeds. In this study,
participants took part in three treadmill sessions on three con-
secutive days (Fig. 1a). On the first day, participants
underwent 20 min of baseline walking, in which the two belts
moved at the same speed (0.7 m/s). On the second day, par-
ticipants were exposed to a split-belt condition for 20 min, in
which each belt was set to move at a different speed, forcing
the participants to adjust their steps to the imposed perturba-
tion. For all participants, the non-dominant leg was forced to
move two times faster than the dominant leg (1.4 m/s vs.
0.7 m/s), as previously done in cerebellar patient studies [9].
To determine leg dominance, we instructed the participants to
kick a ball 3 times and to report their leg selection. This task
was chosen based on previous results showing that daily tasks,
such as kicking a ball, show stable foot preference [24].

On the third day, participants performed three consecutive
blocks of treadmill walking: the first block consisted of split-
belt walking for 10min, assessing recall of the learned pattern.
In the second block, participants returned to baseline walking
for 10 min, washing out the previously adapted walking pat-
tern. Finally, the third block consisted of another 20-min ses-
sion of split-belt walking, in order to assess relearning. The

specific parameters chosen here (e.g., time intervals between
the blocks, etc.) have effectively produced significant recall
and relearning effects in this dataset, as shown before [17].

Quantifying Components of Locomotor Adaptation

Motor adaptation can be thought of as an error-driven learning
process in which the agent is directed to minimize motor er-
rors [25]. Hence, the relevant measure of learning in motor
adaptation paradigms is the change in motor errors throughout
the task. It has been previously proposed that locomotor ad-
aptation is driven by kinematic errors, which are reflected in
the asymmetry of the left and right step-length [2]. During
walking on the split-belt treadmill, participants learn to adapt
to the perturbation by minimizing the asymmetry between
their steps [2, 16, 17]. Here, in order to quantify the short-
and long-term components of locomotor adaptation, we first
measured step asymmetry in each bipedal gait cycle (Fig. 1b).
Then, we summarized the measure of step asymmetry at three
key points along each day of the task to evaluate the motor
errors at the initial, middle, and late phase of the adaptation.
Finally, by using the summarized errors, we calculated three
behavioral components of locomotor adaptation: (1) adapta-
tion magnitude—representing a short-term process of error
reduction; (2) recall—refers to the retrieval of previous motor
patterns from memory; (3) relearning—describes the perfor-
mance when participants are re-exposed to the same perturba-
tion after a washout period (Fig. 1b).

Step asymmetry was defined as the normalized difference
between the length of the left and right steps in each bipedal
cycle. To calculate the length of each step, we recorded the
dynamics of the walking behavior by using force sensors that
were embedded in the treadmill (sampled at 500 Hz). The

Fig. 1 The split-belt task. a Experimental design. Subjects participated in
three split-belt walking sessions over three consecutive days. Solid black
line indicates the right leg. Gray-dashed line indicates the left leg. See text
for details. b Definition of behavioral measures. Shown is the perfor-
mance of a representative subject on the split-belt treadmill task. Gray
circles represent the participant’s step asymmetry in each stride.

Adaptation magnitude on day 2 was calculated as the difference in step
asymmetry between initial errors (yellow circles with red contour) and
late errors (yellow). Recall was defined as the difference between the
initial errors on day 2 (yellow circles with red contour) and day 3 (full
red circles). Relearning was defined as the difference between mid-errors
in day 3 and mid-errors on day 2 (blue)
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length of each step was measured as the distance between the
point where one foot touched the belt, to the point where the
toe of the opposing foot lifted off the belt. The left step length,
for example, was measured as the distance between the initial
contact of the left leg with the belt, to the point where the toe
of the right foot lifted off the belt. Hence, our measure of step
asymmetry was calculated as follows:

Step asymmetry

¼ left step length−right step length
left step lengthþ right step length

Motor errors were quantified as the size of step asymmetry:
when the value of step asymmetry was zero, it indicated no
motor errors, and as this value grew larger (in absolute value),
it indicated larger motor errors. Motor errors were further
summarized at three points along each split-belt session at
each day of the experiment (Fig. 1b): initial errors were quan-
tified as the mean step asymmetry at the first two strides; mid-
errors were quantified as the mean step asymmetry at strides
3–50; asymptotic performance was calculated as the mean
step asymmetry at the last 50 strides. These data epochs were
selected to be consistent with [17] and similar to previous
studies investigating locomotor adaptation with the split-belt
treadmill paradigm in humans [26, 27].

The short- and long-term behavioral components of loco-
motor adaptation were calculated based on the initial errors,
mid-errors, and asymptotic performance (Fig. 1b). Adaptation
magnitude was defined as the difference between the initial
error in day 2 (yellow circles with the red contour in Fig. 1b)
and the asymptotic performance in day 2 (yellow),
representing the reduction in motor errors throughout the sec-
ond day of the experiment. Recall was calculated as the dif-
ference between the initial errors on day 3 (full red circles) and
the initial errors on day 2 (yellow circles with red contour),
representing how well participants remember the previously
acquired motor pattern. Relearning was estimated as the
signed difference between the mid-errors during re-
adaptation of day 3 (blue) and mid-errors during adaptation
of day 2 (blue), representing how fast the participants can re-
learn the task after a short wash-out session [17].

MRI Data Acquisition

MRI scans were performed on a 3T Philips Achieva MRI
scanner at the Soroka Medical Center. The MRI protocol in-
cluded standard anatomical and diffusion imaging sequences,
as detailed below. FunctionalMRI scans were also included in
the scan protocol but are not reported here (see [17]). The
structural MRI scans (i.e., T1 images and diffusion-weighted
images) were acquired on the first day of the experiment (i.e.,
day 1), immediately after the baseline walking session. These
baseline diffusivity measures of the white matter tracts were

then used to predict specific aspects of locomotor adaptation
that take place on day 2 and day 3.

T1 Image Acquisition

High-resolution T1 anatomical images were acquired using a
3D fast spoiled gradient-echo (FSPGR) sequence, with a spa-
tial resolution of 1 × 1 × 1 mm (TR = 8165 ms, TE = 3.74 ms,
256 × 256 acquisition matrix), covering the entire cerebrum
and cerebellum.

Diffusion-Weighted Image Acquisition

A standard diffusion MRI (dMRI) protocol was applied by
means of a single-shot spin-echo diffusion-weighted echo-pla-
nar imaging (DW-EPI) sequence (60 axial slices, 2 mm thick,
with a 0.2 mm gap; matrix size = 128 × 128, with a voxel size
of 1.75 × 1.75 × 2 cubic mm). dMRI data were acquired along
32 non-collinear gradient directions (b = 800 s/mm2) and one
reference volume (b = 0 s/mm2). During the dMRI scan, par-
ticipants were asked to lie still, and their head motion was
minimized by placing cushions around their heads.

Imaging Data Analysis

Software

Data analysis was conducted using Matlab 2012b (The
Mathworks, Natick, MA). For data preprocessing, the open-
sourced ‘mrDiffusion’ package was used (https://github.com/
vistalab/vistasoft / tree/master/mrDiffusion). Tract
identification and quantification were implemented with the
AFQ toolkit [28].

Data Preprocessing

Diffusion MRI data were preprocessed in native space for
each individual separately, following a published pipeline
[29–31]. This pipeline included a rigid transformation of the
volume anatomy to the anterior commissure-posterior com-
missure (AC-PC) orientation, motion- and eddy-current cor-
rection of the diffusion-weighted echo-planar imaging (DW-
EPI) data, alignment of DW-EPI data to the volume anatomy
with the corresponding recalculation of the diffusion direc-
tions, resampling and tensor fitting. T1 images were rotated
to the AC-PC plane following manual identification of the
anterior and posterior commissures. Diffusion-weighted im-
ages were corrected for eddy-current and head motion distor-
tions by using a 14-parameter constrained non-linear co-reg-
istration algorithm based on the expected pattern of eddy-
current distortions [32]. Additionally, diffusion data were
aligned to the anatomical volume by registering the b0 images
to the T1 image using a rigid body mutual-information
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maximization algorithm (as implemented in SPM5 [33]). The
combined transform, resulting from both eddy-current correc-
tion and anatomical alignment, was applied to the raw diffu-
sion data, and the diffusion data were resampled at 2 × 2 × 2
cubic mm isotropic voxels. Gradient directions were adjusted
according to the same transformation [34].

Diffusion tensors were fit to the registered diffusion data
using a least-squares algorithm. Then, using tensor decompo-
sition, we extracted the three eigenvectors and eigenvalues of
the tensor, and in each voxel calculated fractional anisotropy
(FA), mean diffusivity (MD), axial diffusivity (AD), and radial
diffusivity (RD). FAwas calculated as the normalized standard
deviation of the eigenvalues. MD was calculated as the aver-
age of the three eigenvalues. AD was defined as the eigenval-
ue of the first eigenvector (diffusivity along the principal ei-
genvector). RD was defined as the average diffusivity of the
second and third eigenvalues.

Tract Identification and Segmentation

In each individual’s native space, we identified three white
matter pathways involved in the transmission of signals rele-
vant for locomotor adaptation: (1) the left ICP, connecting the
spine and the olivary nucleus with the left cerebellar cortex;
(2) the left SCP, connecting the left cerebellar nuclei and the
right thalamus; (3) the right CST, connecting the right thala-
mus with the right primary motor cortex (Fig. 2a–c). We lim-
ited our tracts of interest within the cerebellar-thalamic-
cortical loop to those which are associated with the left leg.
This decision is based on previous findings showing that the
change in step length throughout the adaptation is more

profound for the leg that moved on the faster belt (for exam-
ple: see [35] Fig. 7A, [36] Fig. 5D). Moreover, it was previ-
ously shown that locomotor adaptation modulates the resting-
state functional connectivity of the cerebellar-thalamic-
cortical loop associated with the fast leg [17]. To identify these
tracts and quantify their diffusion parameters, we used the
AFQ package [28], implemented in Matlab (The
Mathworks, Natick, MA), which consists of the following
steps: (1) whole-brain fiber tractography, (2) region-of-
interest (ROI)-based tract segmentation and cleaning, (3)
quantification of diffusion parameters along the tract.

Awhole-brain fiber group was tracked using a determinis-
tic streamline tractography (STT) algorithm [37, 38] with a
fourth-order Runge–Kutta path integration method and 1-mm
fixed step size. To segment the tracts, we used a multiple-ROI
approach in which the whole-brain fiber group was intersected
with predefinedROIs using logical operations. The ROIs were
first defined on a T1 template, and then back-transformed to
each participant’s native space (see [39] Fig. 3, for the position
of the ROIs of the left ICP and the left SCP; see [40], Fig. 4,
for the position of the ROIs of the right CST). After tract
segmentation, an automated cleaning procedure was applied
to remove outlier streamlines from each individual’s tract. For
the cerebellar peduncles, fibers were removed if they were
longer than 1 standard deviation from the mean fiber length
and spatially deviated more than 4 standard deviations from
the core of the tract [39]. For the CST, fibers were removed if
they were longer than 4 standard deviations from the mean
fiber length and spatially deviated more than 5 standard devi-
ations from the core of the tract [28]. Finally, diffusion prop-
erties were calculated at equidistant nodes along the tract (30

Fig. 2 Tracts of interest. a–c Tracts of interest identified in a single
subject. The left ICP (a; yellow), left SCP (b; blue), and right CST (c;
red) are visualized with their corresponding ROIs. The tracts are overlaid
on a T1 sagittal image. d–f FA tract profiles of the left ICP (d; yellow), the

left SCP (e; blue), and the right CST (f; red). Group-averaged FA profiles
are plotted for equidistant locations between two defining ROIs, from the
inferior ROI to the superior ROI. Boundaries of the 25th and 75th per-
centiles are indicated by gray shading
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Fig. 3 Adaptation magnitude is correlated with white matter
microstructure in the ICP. a The left ICP is shown in a single
participant, overlaid on a midsagittal T1 image of the same individual.
Colored overlay represents Spearman’s r values between adaptation
magnitude and FA in each node along the core of the tract. The black

arrow points to the significant cluster (p < 0.05, FWE corrected). The
color bar for panels a and c appears below panel c. b For each
participant, the mean FA value of the significant cluster in panel a is
plotted against the adaptation magnitude of the same individual (r2 =
0.34). c, d Same as in a and b, respectively, but for MD values (r2 = 0.48)

Fig. 4 Non-significant correlations in the SCP and CST. a The left SCP is
shown in a single participant, overlaid on a midsagittal T1 image of the
same individual. Colored overlay represents Spearman’s r values between
relearning and FA in each node along the core of the tract. b The right

CST is shown in a single participant, overlaid on a midsagittal T1 image
of the same individual. Colored overlay represents Spearman’s r values
between recall and FA in each node along the core of the tract. c, d Same
as in a and b, respectively, but for MD values
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nodes for the shorter cerebellar peduncles, and 100 nodes for
the CST; [28, 39]) (Fig. 2d–f; S1).

Statistical Analysis

Brain-Behavior Correlations

Spearman’s rank-order correlations were calculated to assess
the associations between an individual’s diffusion data and
locomotor adaptation. Specifically, we used correlation anal-
yses to test the link between (1) the left ICP and adaptation
magnitude, (2) the left SCP and relearning, and (3) the right
CST and recall (see Introduction for the motivation and hy-
potheses guiding these analyses). Neurocognitive correlations
were calculated using two different approaches. First, we cal-
culated the average diffusivity (FA or MD) of the core of the
white matter tract and assessed the correlation between the
mean tract diffusivity and its corresponding behavioral mea-
sure. Second, to gain further sensitivity, we assessed the cor-
relations between behavioral measures and local diffusivity
parameters at different points along the tract (see [28] for
detailed motivation and methods). To this end, we divided
the tracts to equidistant nodes placed along the central portion
of the tract. Both analyses were restricted to the core of the
tracts, enclosed between the two ROIs, and excluding tract
endings, because the extreme segments of the tracts are ex-
tremely variable across individuals.

We assessed the correlation between the diffusivity values
and corresponding behavioral measures in each of the nodes.
Significance was corrected for multiple comparisons using a
nonparametric permutation method, yielding a family-wise
error (FWE) corrected alpha value of 0.05 [41]. To be consid-
ered a significant cluster of nodes, the cluster should satisfy
two criteria: (1) each node in the cluster correlated with the
behavioral measure at a level of p < 0.05 (uncorrected) and (2)
the number of adjacent nodes composing the ones that was
larger than a critical cluster size, FWE corrected at p < 0.05
[28, 41]. Significant clusters were further examined by calcu-
lating the correlation between the relevant behavioral variable
and the mean cluster-AD or mean cluster-RD. In addition,
Spearman’s partial correlations were performed to account
for additional factors that could contribute to significance,
including initial errors and asymptotic performance.

To further verify that the brain-behavior correlations in the
significant cluster of nodes were not randomly generated, we
applied two random sampling methods: bootstrapping and
resampling. These non-parametric methods were applied
while taking into account the relatively small sample size.
Using bootstrapping, we resampled the mean values (mean
FA or mean MD) in the significant cluster 1000 times and
calculated the standard error (SE) of the distribution of corre-
lation coefficients with the behavioral parameter. In the shuf-
fling analysis, we randomly shuffled the behavioral data 1000

times across all participants, while the diffusivity parameters
were fixed. After each shuffle, we recalculated Spearman’s
correlation between the shuffled behavioral measure and the
diffusion parameter and created a distribution of the correla-
tions calculated over the 1000 shuffles. Then, we calculated
the likelihood (p(shuffle)) of the original correlation value under
this random distribution of correlations.

Laterality Index

Laterality indices (LIs) were calculated for each tract of each
participant, in order to assess tract properties in the context of
the contralateral tract. LI was calculated as the normalized
difference between diffusivity properties of the left and right
homologs of each tract, using the following standard formula
(see [42] for a similar approach):

Ll ¼ left−rightð Þ
left þ rightð Þ

Thus, positive LIs indicate left lateralization while negative
LIs indicate right lateralization. LIs were calculated over dif-
ferent tract parameters: mean tract-FA, the total number of
streamlines, and the volume of each tract (3 LIs for each tract
for each participant) [42]. Tract volume was defined as the
number of voxels occupied by all streamlines for a particular
fiber tract, divided by the volume of the whole-brain fiber
group.

To assess the significance and direction of hemispheric
lateralization for each tract, we used the non-parametric
Wilcoxon signed-rank test (alpha = 0.05) under the null hy-
pothesis that medians are equal to zero. Spearman’s correla-
tion was calculated between the degree of lateralization and
the behavioral components of locomotor adaptation.

Results

Tract Identification

The ICP, SCP, and CST were successfully identified in all
participants (N = 17). The identified tracts of interest matched
previously published results, both in terms of the position of
the tracts, their general shape, and the quantitative diffusivity
values estimated along each tract (see Fig. 2 and Fig. S1 and
compare with Figs. 3, 4, and 5 in [43] and Fig. 2 in [28]).

Brain-Behavior Correlations

To estimate the association between behavioral measures of
locomotor adaptation and white matter properties, we first
calculated Spearman’s rank-order correlations between each
behavioral measure and its corresponding mean tract
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diffusivity parameter (tract-FA or tract-MD). Mean tract-FA
and mean tract-MD were calculated across all nodes, for each
tract and for each individual. These analyses did not detect any
significant correlation in the examined tract-behavior pairs
(i.e., left ICP and adaptation magnitude, left SCP and
relearning, right CST and recall, p > 0.1).

Averaging diffusivity along the tract is prone to wipe out
the microstructural variability across the trajectory of the tract.
Estimating diffusion profiles provides enhanced sensitivity for
detecting localized brain-behavior correlations. Thus, we ex-
amined the associations between the relevant behavioral mea-
sures and local diffusivity values along the tract (see
Methods). In accordance with our hypothesis, a significant
correlation (p < 0.05, FWE corrected) was found between ad-
aptation magnitude and diffusivity in the left ICP (see Fig. 3).
For FA, a significant correlation (p < 0.05, FWE corrected)
was detected in nodes 11–16 (r = − 0.58 ± 0.12, ± SE values
derived using a bootstrap analysis, see Methods). For MD, a
significant correlation (p < 0.05, FWE corrected) was detected
in nodes 10–16 (r = 0.69 ± 0.11).We further verified that these
correlations were unlikely to be generated randomly, using a
non-parametric shuffling analysis. Indeed, we found that the
likelihood of achieving these correlation values under a ran-
dom distribution (driven from the data via 1000 shuffles) was
p(shuffle) = 0.013 for FA and p(shuffle) = 0.001 for MD.

To verify the specificity of the correlation between adapta-
tion magnitude and diffusivity in left ICP, we repeated this
analysis in the other two pathways, assessing the correlation
of adaptation magnitude with diffusivity in the left SCP and in
the right CST. These correlations were non-significant (see
Fig. S2). In contrast with our hypotheses, however, the corre-
lations between the right CST and recall and between the left
SCP and relearning were non-significant (Fig. 4).

To further examine the microstructural factors underlying
the association between the left ICP and adaptation magni-
tude, we calculated the mean-AD and mean-RD values within
the cluster of nodes that showed significant correlations with
adaptation magnitude (i.e., nodes 11:16, where both FA and

MD correlated significantly with adaptation magnitude). A
significant positive correlation was found between that clus-
ter ’s mean-RD and adaptation magnitude (r = 0.81,
p < 0.0001). In contrast, the correlation between adaptation
magnitude and the mean-AD in this cluster was non-
significant (r = 0.20, p = 0.43) (Fig. 5).

To account for additional factors that could contribute to
significance, we calculated Spearman’s partial correlations be-
tween adaptation magnitude and diffusivity values within the
significant cluster of nodes while controlling for the effects of
initial errors and asymptotic performance. While the correla-
tion between MD in the left ICP and adaptation magnitude
remains significant when we partial out the effect of asymp-
totic performance, the other three partial correlations were
non-significant (see Table S1). This is likely due to the fact
that adaptation magnitude covaried with both the initial and
the asymptotic asymmetry (Fig. S3), such that subjects with
higher adaptation magnitude had larger asymmetry at the ini-
tial phase of adaptation and smaller asymmetry at the end of
adaptation.

Lateralization Analysis

Since locomotor adaptation involves a change in the gait cycle
in order to improve the symmetry between the left and right
strides, we expect pathways in both the left and the right
hemispheres to contribute to the adaptation process.
Therefore, we expected that hemispheric asymmetry will be
associated with behavioral measures of locomotor adaptation.
We tested the degree of lateralization by using Wilcoxon
signed-rank test under the null hypothesis that the examined
tracts are not lateralized [44]. Indeed, no significant lateraliza-
tion was detected in any of the examined tracts (Table S2).
Next, we assessed the association between the degree of lat-
eralization in each tract and its corresponding behavioral mea-
sure, using Spearman’s correlations. This analysis revealed a
significant correlation between adaptation magnitude and the
individual degree of FA-lateralization in the ICP (r = − 0.78,

Fig. 5 The correlations in the ICP are explained by radial diffusivity
(RD). a The left ICP is shown in a single participant, overlaid on a
midsagittal T1 image of the same individual. The location of the
significant cluster of nodes is indicated by a textured overlay. b No
significant correlation was found between adaptation magnitude and the

mean AD values extracted from nodes 11–16 of the left ICP (r2 = 0.04,
p = 0.4321). c A significant correlation was found between adaptation
magnitude and the mean RD values extracted from nodes 11–16 of the
left ICP (r2 = 0.66, p < 10−4)
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p < 0.001; FDR corrected for 3 comparisons) (Fig. 6).
Specifically, individuals who showed rightward lateralization
of the ICP demonstrated higher magnitude of adaptation dur-
ing the split-belt walking. Individual lateralization in the SCP
and the CST was not significantly correlated with relearning
and recall, respectively.

Discussion

The aim of the current study was to assess the interactions
between the structural properties of the motor system and
behavioral components of locomotor adaptat ion.
Correlations were found between the magnitude of adaptation
and microstructural properties of the left ICP—one of the
major afferent cerebellar pathways. Specifically, we found that
greater adaptation magnitude is associated with higher MD
and lower FA in the left ICP. These correlations are tract-spe-
cific: they were not present in other examined tracts. Post hoc
analysis revealed that these correlations are driven by radial,
not axial, diffusivity. Adaptation magnitude was further asso-
ciated with the degree of lateralization in the ICP, such that
participants with rightward lateralization of the ICP showed
higher adaptation magnitude. Additionally, no significant cor-
relations were found between our long-term measures of lo-
comotor learning (i.e., recall and relearning) and the pre-
defined tracts of interest.

The cerebellum has long been known as an important struc-
ture for motor adaptation in general, and for adaptation of
walking in particular [9, 18, 45, 46]. Previous studies in the
visuomotor domain have implicated cerebellar white matter in
the process of adaptation. For example, a tract-based spatial
statistics (TBSS) analysis in healthy subjects has shown that
the rate of adaptation during a visuomotor rotation task is
associated with microstructural properties of cerebellar white
matter [47]. Furthermore, lesions to the ICP have been asso-
ciated with impaired learning during prism adaptation [6]. Our
findings, linking the microstructural properties of the ICPwith

the magnitude of adaptation, are consistent with these studies,
and further highlight the importance of the ICP in locomotor
adaptation.

The involvement of the ICP in motor adaptation can be
interpreted in terms of error encoding. The ICP comprises
olivo-cerebellar fibers that communicate signals from the in-
ferior olive into the cerebellar cortex. These neuronal projec-
tions, also known as climbing fibers, form strong excitatory
synapses on Purkinje cells, which in turn elicit complex spike
responses. Complex spike discharge has been previously
shown to encode movement errors (for review, see [48]).
With respect to walking behavior, complex spike discharge
has been shown to increase with perturbations applied during
locomotion in the cat [21, 49, 50]. These signals have been
suggested to provide a teaching signal which is capable of
modifying future cerebellar activity in order to correct motor
behaviors [25, 51]. In line with this view, our findings support
the role of the olivo-cerebellar fibers in transmitting error sig-
nals during locomotor adaptation and suggest that the variabil-
ity in the magnitude of adaptation is affected by the strength of
the error signal that the Purkinje cells receive.

To account for the contribution of additional factors to the
correlation between the left ICP and adaptation magnitude,
such as the initial errors and asymptotic performance, we cal-
culated Spearman’s partial correlations within the significant
clusters. We found that the correlation between MD in the left
ICP and adaptation magnitude remains significant when we
partial out the effect of asymptotic performance, but not when
we partial out the effect of the initial error (Table S1). Partial
correlations with FA in the left ICP were both non-significant.
Thus, it is possible that the correlation with adaptation mag-
nitude in the left ICP may be explained by variability in the
initial error. Indeed, adaptationmagnitude and initial errors are
highly correlated (Fig. S3). This correlation, however, does
not necessarily indicate that participants with large adaptation
magnitude are more perturbed by the treadmill. Alternatively,
we suggest that the perturbation may have affected all partic-
ipants in a similar way, and the variability observed within the

Fig. 6 Adaptation magnitude is associated with ICP lateralization.
Individual lateralization of tract-FA values in the ICP (yellow), SCP
(blue), and CST (red) is plotted against the participants behavioral scores
on adaptation magnitude, relearning, and recall, respectively. A signifi-
cant negative Spearman’s correlation was found between adaptationmag-
nitude and individual degree of FA-lateralization (r2 = 0.61, p < 0.001;

FDR corrected), such that individuals who showed increased rightward
lateralization of the ICP also demonstrated higher magnitude of adapta-
tion. No significant correlations were found between the degree of later-
alization in the SCP and relearning (r2 = 0.09, p > 0.2), or the degree of
lateralization in the CST and recall (r2 = 0.01, p > 0.6)
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initial errors may reflect an early adaptation process that oc-
curs within the first two gait cycles.

To demonstrate this effect, we measured the association
between our estimates of the first reaction to the perturbation
and our measure of initial error. The first reaction to the per-
turbation was defined as the center-of-pressure (COP) position
where the subject lifted his right (unperturbed) leg for the first
time after the onset of the perturbation. This event is the first
point where the reaction to the perturbation could be mea-
sured. Indeed, the position of this event changed significantly
following perturbation onset (non-parametric Wilcoxon
signed-rank test revealed a significant difference (p < 0.005)
between the “first reaction” event and the comparable event in
the baseline epoch).

To estimate the association between the “first reaction” to
the perturbation and initial error, we calculated Spearman’s
correlation. This correlation was non-significant (r = 0.39,
p = 0.11) (Fig. S5A). This finding suggests that the initial error
may not, in fact, reflect the first reaction to the perturbation.
Furthermore, to rule out the possibility that adaptation occurs
already at “first reaction”, we calculated a second correlation
between the initial error and the difference between “first re-
action” and the comparable baseline event. This correlation
was also non-significant (r = 0.0662, p = 0.8021) (Fig. S5B).
Taken together, these analyses suggest that the variable we
term initial error does not reflect the first reaction to the per-
turbation or a differential effect of the perturbation on the
subjects, but rather, an early phase of adaptation.

Importantly, if initial error reflects an early adaptation pro-
cess, then our measure of adaptation magnitude does not cap-
ture the entire process of adaptation, but rather focuses on the
slow and steady adaptation process, which is typically associ-
atedwith the function of the cerebellum [52, 53]. Furthermore,
the negative correlation that we found between initial error
and adaptation magnitude (Fig. S3) suggests that participants
with low adaptation magnitude may have adapted very quick-
ly to the perturbation and that adaptation magnitude reflects a
relative balance between the early and the late adaptation pro-
cesses rather than a summarizing measure of the entire adap-
tation process. Future locomotion and reaching adaptation
studies that include probing of the different underlying com-
ponents of adaptations (slow and fast, implicit and explicit,
etc.) are essential for further characterizing the adaptation pro-
cesses that are associated with ICP connectivity.

The involvement of the left ICP in motor adaptation can be
further interpreted in terms of its lateralization. Human motor
behavior is lateralized, as can be seen in hand, leg, or eye
dominance. This lateralization is usually associated with lat-
eralization of the neural substrates (for example, see [54]). In
the current study, increased rightward lateralization of the ICP
was associated with increased magnitude of adaptation (Fig.
5). The rightward lateralization of the ICP may affect the re-
action to the perturbation that was introduced primarily to the

left leg (typically the non-dominant leg that walked on the fast
belt). To properly test this hypothesis, future studies will be
necessary in which perturbation is applied to the dominant and
the non-dominant legs at different phases of the experiment.
Adaptation rates may then be compared as a function of dom-
inance, and the association between the behavioral and neural
asymmetry may be assessed.

Adaptation magnitude was found to be negatively correlat-
ed with FA and positively correlated with MD in the left ICP.
Despite the common interpretation of FA as an index of
“white matter integrity” or “connectivity strength”, the rela-
tionships between the anatomical features of the tissue and FA
or MD are quite complex [55]. FA is affected by various
biological factors, including myelin content, axonal diameter,
axonal density, directional coherence, and fiber orientation
[56]. Some of these factors contribute to the efficiency of
information transfer while acting to reduce FA values. For
example, increased axonal diameter contributes to enhanced
conduction velocity, but it is associated with decreased FA and
increased RD [57–59]. Here, the negative association between
FA and Adaptation Magnitude stemmed from a positive rela-
tionship with RD. This finding suggests that participants who
showed a larger difference in step asymmetry have larger wa-
ter mobility within the tissue in more than one direction, as in
the case of enlarged axonal diameter. Because thicker axons
contribute to better transfer of information, the enlarged axo-
nal diameter may also contribute to better performance.
Indeed, negative correlations between FA and task perfor-
mance have been repeatedly documented in the past [30, 31,
44].

Another plausible interpretation of the negative correlation
between adaptation magnitude and FA in the left ICP, and its
positive correlation with MD is based on the strong negative
correlation between adaptation magnitude and initial errors
(Fig. S3A). As stated above, initial error may reflect an early
adaptation that takes place within the first two cycles follow-
ing the perturbation onset. Thus, small initial error indicates
that the subjects adapted to a substantial portion of the pertur-
bation in the first two cycles. Hence, an alternative explana-
tion for the observed correlations is that they are driven by the
early adaptation process. Indeed, we found that initial errors
are negatively correlated withMD in the left ICP (Fig. S4), but
the correlation with FAwas non-significant. Since it has been
shown that FA effects require increased statistical power in
comparison to MD ([60]; see Limitations), future studies are
needed to determine the association between initial errors and
the ICP.

Contrary to our hypotheses, we did not find significant
correlations between long-term measures of locomotor adap-
tation and white matter microstructure. The discrepancy be-
tween the hypotheses and the results could be explained by
several factors. First, the failure to detect a significant effect in
the SCP and CST may reflect limited statistical power (see
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Limitations). Second, our hypotheses regarding these specific
tracts were based upon functional connectivity findings previ-
ously reported in this sample [17]. It is plausible, however,
that the functional connectivity between two functional re-
gions is mediated by other brain regions, or that the variability
between subjects in functional connectivity measures was
transient and was not associated with structural variability.

Limitations

This study has several limitations. First, the sample size is
relatively modest (N = 17), which reduces the statistical
power of our analysis. This power was sufficient, howev-
er, to detect a significant correlation in the ICP.
Furthermore, comparable sample sizes have been reported
in prior published studies [30, 61–64] and have been
shown to be sufficient to obtain considerable statistical
power (specifically, power of 0.9 for group differences in
MD, [60]). This limitation is still relevant, however, to the
null effects reported here, specifically to the absence of
significant correlations between long-term components of
locomotor adaptation and the diffusion properties of the
left SCP and the right CST. Yet, another limitation of this
study concerns the scan protocol. Due to the complex be-
havioral and scanning protocol, which involves repeated
visits in the lab to assess adaptation and relearning, and
given that the focus of this study was primarily on fMRI
measurements [17], the dMRI protocol was limited to a
single shell measurement along 32 directions. These pa-
rameters are appropriate for tensor fitting [65] but are in-
sufficient for fi tt ing more complex shapes (e.g.,
constrained spherical deconvolution [66]). Future studies
with larger sample sizes and multi-shell high angular res-
olution acquisition may improve sensitivity for brain-
behavior correlations along the SCP and CST, and eluci-
date the role of these or other pathways in mediating the
long-term aspects of locomotor adaptation.

Conclusions

Our study highlights the contribution of the ICP to locomotor
adaptation. It delineates, for the first time, the fibers that com-
municate error signals to the cerebellum during locomotor
adaptation in healthy human adults and supports the view that
the olivo-cerebellar fibers (passing through the ICP) are im-
portant for the process of error detection during locomotor
adaptation. It remains to be seen which neural mechanisms
are important for the correction of these errors, and which
neural pathways contribute to retaining locomotor adaptation
in the long run.
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