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Abstract

We study all-pay auctions under incomplete information in which the designer can impose taxes or

subsidies, and his expected payo¤ is the contestants�expected total e¤ort minus the cost of subsidies,

or, alternatively, plus the tax payment. When contestants have linear e¤ort cost functions, we show

that taxing the winner�s payo¤ is pro�table for the contest designer, and particularly more pro�table

than the same model with no taxation or the same model with contestants�e¤ort taxation. When the

contestants� e¤ort cost functions are convex and the taxation rate is relatively low, we show that the

designer should tax the winner�s payo¤ while subsidizing all of the other contestants�e¤ort costs. As a

result, contest organizers should think about combining taxation and subsidies in their contests because

they complement rather than substitute each other.
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1 Introduction

Taxation is an important policy of governments in modern economies, but it is also a well-known policy that

is used in many other economic environments (see, for example, Sav, 2004, Zuniga Vicente et al. 2014, and

Bisceglia, 2020). A contest is one example of such an environment. In general, regardless of the amount,

prizes and awards in contests are subject to ordinary income taxation by the U.S. federal government. This

means that whatever percentage you are taxed for your regular income, that same rate will apply to the

prize money you received. For example, if an agents earns $43,000 per year, his federal tax rate is 22%. If

he wins $1,000 in a contest, his total income rises to $44,000, and his tax rate remains 22%. However, a

large prize could push his income into a higher tax bracket. There are some exclusions, such as prize money

awarded to a U.S. athlete by the United States Olympic Committee (USOC), as well as the fair market value

of any gold, silver, or bronze medal received as a result of competing in the Olympic or Paralympic Games.

However, Olympic athletes must pay taxes if they earn $1 million or more per year. Likewise, a scholarship

or a grant awarded for academic studies or research in the academy is not taxable income, but employers

(i.e., universities) may charge a tax. In Israel, for example, a university charges each researcher a tax rate of

16 percent of the winning amount for each research grant received from the Israel Science Foundation (ISF)

or any other science foundation. In this paper, we attempt to provide some answers on the pro�tability of

contest designers using economic taxation policies.

In the area of contest taxation, not much research has been done. The majority of the research was

conducted in a complete information environment (see, for example, Glazer and Konrad 1999, Konrad 2000,

Fu et al. 2012, Mealem and Nitzan 2014, Carpenter et al. 2016, and Thomas and Wang 2017). To the best

of our knowledge, our previous work (Minchuk and Sela 2023) is the only work that studied contests (all-pay

auctions) with incomplete information, non-linear e¤ort costs, and two types of subsidies/taxes, either on the

cost of e¤ort or on the size of the prize.1 The expected payo¤ of the designer in their model is the total e¤ort

of the contestants minus the cost of subsidy or, alternatively, plus the tax payment, and they demonstrate

that when the e¤ort cost function is convex, the expected payo¤ for the designer in all-pay auctions with

1Fu et al. (2012) call this form of subsidy on the cost of e¤ort an "e¢ ciency-enhancing subsidy."
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both types of taxation is greater than in the same contest without any taxation.2 When the e¤ort cost

functions are concave, the expected payo¤ for the designer in all-pay auctions with both types of subsidies

is higher than in the same contest without any subsidies. In other words, when the e¤ort cost functions

are convex, taxation is e¢ cient; when they are concave, subsidy is e¢ cient. In this paper, we extend and

improve these �ndings of Minchuk and Sela (2023) by demonstrating that di¤erent types of taxation, which

are some combinations of taxation and subsidy, are the best ways to apply taxes and subsidies in contests

held in an environment with incomplete information.

There is a signi�cant distinction between designing in environments with complete and incomplete infor-

mation when a designer wants to impose taxes in addition to subsidies. The reason for this is that, whereas

in a complete information environment, the designer can apply a di¤erent subsidy/tax for each contestant

based on his type (see, for example, Konrad 2000, and Nitzan and Mealem 2014), in an incomplete informa-

tion environment, the contestants�types are ex-ante identical where each contestant knows his type (which is

private information), and thus the designer who does not know the contestants�types must apply a uniform

policy of taxation for all the contestants without the ability to discriminate among them. In our model,

there is incomplete information on the contestants�types in the �rst stage, which are revealed in the second

stage, so the designer must apply a uniform taxation policy in the �rst stage but has the option of imposing

di¤erent taxes on the winner in relation to all other contestants. This type of policy taxation is what we

propose in our all-pay contests with incomplete information.

We study all-pay contests (auctions) with incomplete information with n contestants who have either

linear or non-linear e¤ort cost functions.3 The designer who does not know the contestants�values informs

them the tax rate in the �rst stage, and the contestants choose their e¤orts; the contestant with the highest

e¤ort wins, and all contestants pay the cost of their e¤orts. In the second stage, the contestants�values are

revealed and the designer receives a tax payment from the winner�s pro�t, which is equal to the winner�s

winning value minus the cost of his e¤ort. The designer�s expected payo¤ is the contestants�expected total

2Runkel (2006) and Ritz (2008) also show that a policy that uniformly raises the e¤ort costs of the contestants can result in

an increase in total e¤ort.
3Among others, Amman and Leininger (1996), Krishna and Morgan (1997), Moldovanu and Sela (2006), Kirkegaard (2012),

and Liu and Lu (2017) have studied all-pay contests (auctions) with incomplete information.
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e¤ort plus the tax on the winner�s payo¤. In our model because that the contestants�types are revealed in

the second stage, the higher the tax rate, the higher the expected payo¤ for the designer, and we assume

that the tax rate is �xed and is not an endogenous parameter, so the designer accepts it as given. We will

refer to this contest as the winner�s payo¤ taxation model.

The winner�s payo¤ taxation has ambiguous e¤ects on the expected payo¤ of the designer. On the one

hand, the designer receives a tax payment by imposing a tax on the winner�s payo¤, but on the other hand,

by imposing a tax, he reduces the contestants�equilibrium e¤orts. We show that, when e¤ort cost functions

are linear, regardless of tax rate, the expected payo¤ for the designer in the winner�s payo¤ taxation model

is greater than in the same model without taxation. We also demonstrate that this result holds true even

when the e¤ort cost functions are convex and the tax rate is low enough. To demonstrate the e¢ ciency of

the winner�s payo¤ taxation, we compare it to the model studied by Minchuk and Sela (2023), in which the

designer imposes a tax on the cost of e¤orts of the contestants, and we show that if the tax rate is the same

in both models, the designer�s expected payo¤ in our winner�s payo¤ taxation model is greater than that in

the model of e¤ort cost taxation.

In the next step, we give the designer the option of taxing the winner�s pro�t and subsidizing the other

contestants�e¤ort costs. This competition is referred to as the winner�s payo¤ taxation and subsidies model.

Subsidies, on the one hand, increase the equilibrium e¤orts of the contestants, but on the other hand, the

designer must pay this subsidy payment. We show that when e¤ort cost functions are linear, the expected

payo¤ for the designer is the same in both models of winner�s payo¤ taxation with and without subsidies.

Furthermore, even if we allow the contest designer to set di¤erent tax and subsidy rates, the expected

payo¤ for the contest designer is the same for both models with and without subsidies. In other words, the

additional subsidies to the winner�s payo¤ taxation model have no e¤ect on the designer�s expected payo¤.

On the other hand, when the e¤ort cost functions are convex, we show that for su¢ ciently low tax rates, the

winner�s payo¤ taxation and subsidies model yields a higher expected payo¤ for the designer than without

subsidies. As a result, when the e¤ort cost functions are convex, the designer should tax the winner�s pro�t

while subsidizing all other contestants�e¤ort costs.

Finally, we assume that, in addition to the tax payment, the designer bene�ts from the contestants�
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highest e¤ort rather than their total e¤ort. In that case, the winner�s e¤ort is signi�cant, whereas the e¤orts

of the other contestants are not. As a result, it appears that the subsidies for all contestants except the

winner are ine¤ective; however, we show that when the contestants�e¤ort costs are convex, the model of

the winner�s payo¤ taxation with subsidies is the best option for the designer. The reason for this is that

subsidies for the contestants�costs of e¤ort increase their e¤orts, forcing the winner to increase his e¤ort as

well, so subsidies are required in addition to taxation of the winner�s pro�t. As a result, we show that optimal

collaboration between taxation and subsidies is very e¢ cient in all-pay contests with incomplete information,

and we believe it is e¢ cient in other types of contests with both complete and incomplete information.

As previously stated, there are other works dealing with taxation in competitions, but they consider

environments with complete information. Glazer and Konrad (1999) consider a model of taxation for �rms

that engage in rent-seeking contests. They investigate two types of taxation: e¤ort taxation and pro�t

taxation. They do not analyze the e¤ect of these taxes on the designer�s payo¤ in the same way that we

do, but they do �nd situations in which taxes have no e¤ect on the contestants� e¤orts. Konrad (2000)

investigates a trade all-pay contest between two �rms in which each country can impose taxes or subsidies

on an exporting �rm. He discovers that governments�strategic policy is to subsidize one �rm while taxing

the other. Later Mealem and Nitzan (2014) investigate the optimal taxation policy in Konrad�s model of all-

pay contest and show that, given a revenue-maximizing contest designer and a balanced-budget constraint,

the optimal taxation scheme is to tax one of the contestants while subsidizing the other, and that the

contestants�total e¤orts are greater than those obtained under almost any pure-strategy equilibrium in the

Tullock contest. In comparison to our model, the contest designer�s constraint of a balanced budget limits

the design of the optimal tax policy in their model. Fu et al. (2012) study research contests in which two

�rms compete on the quality of their products. They demonstrate that combining prizes and subsidies is

optimal for the designer who wants to maximize the quality of the winning product. As previously stated,

the most relevant paper is Minchuk and Sela (2023), who investigate the use of tax and subsidy in an all-

pay auction with incomplete information and show that one is useful when contestants�costs of e¤ort are

concave and the other when these costs of e¤ort are convex. This work departs from our previous work by

demonstrating the use of carrots (subsidies) and sticks (taxations) in conjunction, rather than just carrots
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(subsidies) or just sticks (taxes). In other words, combining tax and subsidy is far more bene�cial to the

designer who wishes to maximize the contestants�total e¤ort than using either tax or subsidy alone. There

is another signi�cant distinction between our model and that of Minchk and Sela (2023). Minchuk and Sela

(2023) study a one-stage contest with incomplete information, whereas this paper looks at a two-stage model

in which the �rst stage is incomplete and the private information is revealed in the second. The reason for

this is that the designer taxed the winner, who must report his actual pro�t. However, this assumption

complicates our model; without it, if the winner can manipulate his true pro�t, our model would be simpler

and comparable to a one-stage contest.

In our paper, the designer uses taxation and subsidies to increase his expected payo¤, which is based on

the total e¤ort of the contestants plus the taxation payment minus the subsidy payment. Similar methods of

reimbursing some of the contestants�e¤ort costs have been shown in the contest literature to be bene�cial for

the contest designer, who wants to maximize the contestants�total e¤ort minus the cost of the reimbursement

(see, among others, Cohen and Sela 2005, Matros and Armanious 2009, Matros 2012, Minchuk 2018, and

Minchuk and Sela 2020). Obviously, the designer has di¤erent ways, other than taxation and subsidies, to

enhance the contestants�e¤orts. For example he can decide how to distribute the entire prize sum among

the contestants by allocating number of prizes and punishments (see, among others, Moldovanu and Sela,

2001, Moldovanu et al. 2012, Olszewski and Siegel 2016, Sela 2020, Liu et al. 2018, and Liu and Lu 2023),

he can also limit the number of contestants by setting a minimum e¤ort level (see, among others, Taylor

1995, Fullerton and McAfee 1999, Fu et al. 2015, and Kirkegaard 2022), or, alternatively, he can impose a

maximum e¤ort level (see, among others, Che and Gale 1998, Gavious et al. 2003, Megidish and Sela 2014,

and Olszewski and Siegel 2019).

The rest of the paper is organized as follows. In Section 2, we examine the winner�s payo¤ taxation model,

and in Section 3, we examine the winner�s payo¤ taxation model with subsidies. We examine additional

objectives of the designer in these models in Section 4. Section 5 concludes. The appendix contains the

proofs.
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2 The winner�s payo¤ taxation model

Consider n � 2 contestants competing for a single prize in an all-pay contest (auction). Contestant i�s

winning value is vi; i = 1; ::; n; and is private information. The contestants�values are drawn independently

of each other from the interval [0; 1] according to the distribution function F which is common knowledge.

We assume that F is continuously di¤erentiable and that f(x) = F 0(x) > 0 for all 0 � x � 1. The contest

is divided into two stages, which are as follows: In the �rst stage, the designer, who is unaware of the

contestants�winning values, informs them of the (exogenous) tax rate 0 < (1��) < 1 on the winner�s payo¤,

and then the contestants simultaneously choose their e¤orts, where the contestant with the highest e¤ort wins

and all the contestants pay the cost of their e¤orts, where an e¤ort of x has a cost of 
(x); 
0 > 0; 
(0) = 0 in

monetary units. In other words, 
 transfers x units of e¤ort to 
(x) monetary units. We denote g = 
�1. In

the second stage, contestants�types are revealed, and the designer receives a tax payment of (1��)(v�
(x))

from the winner�s payo¤, who has a winning value of v and an e¤ort cost of 
(x). The designer�s expected

payo¤ is the contestants�expected total e¤ort plus the tax on the winner�s payo¤. This model will be referred

to as the winner�s payo¤ taxation model. In this model, player i with a winning value of vi has an expected

payo¤,

U(vi) = � (vi � 
(x(vi)))G(vi)� (1�G(vi))
(x(vi)); (1)

where G(vi) = Fn�1(vi) is the probability that the value vi is the highest among all the n contestants, and

the tax rate 1 � � satis�es 0 < 1 � � � 1. The �rst term in (1) describes the pro�t in the case of winning

multiplied by the probability of winning, while the second describes the cost of losing multiplied by the

probability of losing. The designer�s expected payo¤ in e¤ort units is

Rtax = TE + Emax(g ((1� �)v � 
(x(v)))) ; (2)

where TE is the contestants�expected total e¤ort, and Emax(g((1��) (v � 
(x(v)))) is the designer�s expected

pro�t from the winner�s payo¤taxation in e¤ort units. The expected payo¤ increases with the tax rate (1��),

but this parameter is assumed to be exogenous and the designer accepts it as given.

Assume that there is a symmetric monotonically increasing equilibrium e¤ort function x(vi). This as-
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sumption will be con�rmed later. Then, the maximization problem of contestant i; i = 1; ::; n; is

max
s
� (vi � 
(x(s)))G(s)� (1�G(s))
(x(s)):

The �rst order condition (FOC) of the maximization problem of contestant i�s expected payo¤ is

�G0(s�)vi � ((1� (1� �)G(vi))
(x(vi)))0 = 0:

In equilibrium s� = vi, thus, we obtain

(1� (1� �)G(vi))
(x(vi)) = �
viZ
0

sG0(s)ds+ k:

Since 
(x(0)) = 0, we have


(x(vi)) =
�

(1� (1� �)G(vi))

viZ
0

G0(s)sds:

Rearranging, yields the equilibrium e¤ort of contestant i; i = 1; 2; :::; n as follows:

xi(vi) = g

0@ �

(1� (1� �)G(vi))

viZ
0

sG0(s)sds

1A (3)

= g

0@ �

(1� (1� �)G(vi))

24viG(vi)� viZ
0

G(s)ds

351A :
Deriving (3) gives

@xi(vi)

@vi
= g0

0@ �

(1� (1� �)G(vi))

24viG(vi)� viZ
0

G(s)ds

351A
�

24 �(1� �)G0(vi)
(1� (1� �)G(vi))2

24viG(vi)� viZ
0

G(s)ds

35+ �viG
0(vi)

(1� (1� �)G(vi))

35 :
It can be easily veri�ed that @xi(vi)@vi

> 0; and therefore we can con�rm our assumption that the equilibrium

e¤ort is monotonically increasing.

Inserting (3) into (1) gives us the expected payo¤ of contestant i with a winning value of vi as follows:

U(vi) = �viG(vi)� (1� (1� �)G(vi))
(x(vi)) (4)

= �viG(vi)� �

24viG(vi)� viZ
0

G(s)ds

35 = � viZ
0

G(s)ds:

In the standard all-pay auction with linear cost functions and without any taxation (see Krishna 2010) the

expected payo¤ of contestant i with a winning value of vi is

viZ
0

G(s)ds: Therefore, the ratio of a contestant�s

8



expected payo¤s in our all-pay contest model with winner�s payo¤ taxation and in the standard all-pay

auction without any taxation is equal to � < 1 when the tax rate is (1 � �). Because the winner must

pay a portion of his payo¤ in the all-pay contest with winner�s payo¤ taxation, the winner�s equilibrium

e¤ort appears to be lower in this scenario than in the standard all-pay contest with no taxation. However,

as demonstrated by the following result, the e¤ect of taxation on the contestants�equilibrium e¤ort is not

completely straightforward.

Proposition 1 The equilibrium e¤orts in the winner�s payo¤ taxation model are less than or equal to those

in the same model without taxation. The taxation, however, has no e¤ect on the equilibrium e¤orts of the

contestants with the highest winning values.

The reasoning behind this result is that when a contestant increases his e¤ort, there are two possible

outcomes. On the one hand, he will have to pay a lower tax to the designer, but his e¤ort will cost him more

if he loses. Because the contestants with the highest winning values win almost always, these two opposing

e¤ects balance each other out so that the contestants with the highest winning values have no reason to

change their e¤orts as a result of taxation.

We now analyze the designer�s expected payo¤. Inserting (3) in (2) gives the designer�s expected payo¤

in the winner�s payo¤ taxation model as follows:

Rtax = n

1Z
0

g

0@ �

(1� (1� �)G(v))

vZ
0

sG0(s)ds

1A f(v)dv + Emax(g ((1� �) (v � (x(v))))) : (5)

By comparing the designer�s expected payo¤ in models with and without taxation, we demonstrate the

bene�t of the winner�s taxation for the contest designer.

Proposition 2 When the e¤ort cost functions are linear, regardless of tax rate, the expected payo¤ of the

designer in the winner�s payo¤ taxation model is greater than in the same model without taxation.

The result in Proposition 2 shows that a designer can increase his expected payo¤ in the all-pay contest

with linear cost functions by taxing the winner�s payo¤. This result indicates that the Revenue Equivalence

Theorem (RET) (see Myerson 1981 and Riley and Samuelson 1981) does not hold in the current setting and

the reason is that, in our model, the winner�s payment to the contest designer is based on his payo¤ and

e¤ort rather than just his e¤ort.
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In order to demonstrate the advantage of the winner�s payo¤ taxation we will show that it is also more

pro�table than the model of cost taxation as studied by Minchuk and Sela (2023). In the model of cost

taxation where the tax rate is (� � 1), � > 1, the payo¤ function of contestant i; i = 1; ::; n, is

U(vi) = viG(vi)� �
(x(vi)):

Then, the designer�s expected payo¤ is

Rct = n

1Z
0

g

0@1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv + E (g(n(� � 1)
(x))) (6)

= n

1Z
0

g

0@1
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv + 1Z
0

g

0@n(� � 1)
�

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv:
In that case of cost taxation, the RET holds. Thus, by Proposition 2, we can conclude that

Corollary 1 When the e¤ort cost functions are linear and the tax rate is the same in the winner�s payo¤

taxation model and the cost taxation model, the designer�s expected payo¤ in the winner�s payo¤ taxation

model is greater than that in the cost taxation model.

The RET is no longer valid when the e¤ort cost functions are non-linear, and in particular, the outcome

of Corollary 1 may not hold. The following result, however, demonstrates that even when the e¤ort cost

functions are non-linear, the winner�s payo¤ taxation model still outperforms the standard model with cost

taxation when the tax rates are relatively low.

Proposition 3 When the e¤ort cost functions are convex, and the tax rate is su¢ ciently low and the same

in both the winner�s payo¤ taxation model and the cost taxation model, the expected payo¤ in the winner�s

payo¤ taxation model is greater than in the cost taxation model.

The intuition behind this result is that since g = 
�1 is concave, the derivative of the concave function

g0 is a decreasing function. Thus, when the cost function is changed from linear to convex, the marginal

decrease in contestants�e¤orts is less than the marginal increase in contestants�payo¤ as a result of taxation

for high-type contestants (contestants with high winning values) and the opposite for low-type contestants

(contestants with low winning values). Therefore, when the cost function is convex, it is pro�table for the

designer to impose a tax on the winner�s payo¤.
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According to Minchuk and Sela (2023), when the contestants have convex e¤ort cost functions, the

designer�s expected payo¤ in the cost taxation model is higher than in the same model without any taxation.

Thus, by Proposition 3, we can conclude that

Corollary 2 When the e¤ort cost functions are convex and the tax rate is su¢ ciently low, the designer�s

expected payo¤ in the winner�s payo¤ taxation model is greater than in the same model without any taxation.

3 The winner�s payo¤ taxation and subsidies model

Consider n � 2 contestants competing in the same all-pay contest model described in the previous section,

but now, in the second stage, the designer receives a tax payment of (1��)(vj �
(xj))� (1��)
Pn

i=1
i 6=j

(xj)

where (1��)(vj � 
(xj)) is the winner�s tax payment received by the designer and (1��)
Pn

i=1
i 6=j

(xj) is the

designer�s subsidies paid to all contestants who did not win. In that case, both the tax and subsidy rates

are 0 < (1� �) < 1, and this model will be referred to as the winner�s payo¤ taxation and subsidies model.

In this model, the payo¤ function of contestant i:i = 1; ::; n is given by

U(vi) = � (viG(vi)� 
(x(vi))) : (7)

The equilibrium e¤ort of the contestants will not be dependent on �, namely, they are the same as in the

standard all-pay contest without any taxation/subsidies, and is given by

x(vi) = g

0@viG(vi)� viZ
0

G(s)ds

1A :
The designer�s expected payo¤ is then

Ralltax = TE + E(g

 
(1� �)

"
(v1 � 
(x(v1))) +

nX
i=2

(�
(x(v)))
#!

; (8)

where TE is the contestants�expected total e¤ort and E (g ((1� �) [(v1 � 
(x(v1))) +
Pn

i=2 (�
(x(v)))])) is

the designer�s expected payo¤ from the winner�s taxation (the winner is arbitrarily chosen as contestant 1)

minus the subsidies to all other contestants.

A comparison of the designer�s expected payo¤s with and without subsidies is not obvious because, in the

winner�s payo¤ taxation model, the designer�s payo¤ from the contestants�equilibrium e¤orts decreases in
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comparison to the standard model without any taxation, but the designer receives an additional payo¤ from

the winner�s payo¤ tax. In the winner�s payo¤ taxation and subsidies model, the designer�s payo¤ from the

contestants�equilibrium e¤orts is the same as in the standard model without any taxation, but the designer

must pay some subsidies to the contestants who did not win. Indeed, we show that

Proposition 4 When the e¤ort cost functions are linear and both models of winner�s payo¤ taxation with

and without subsidies have the same tax rate, the designer�s expected payo¤ is the same in both models.

In the winner�s payo¤ taxation and subsidies model, the tax rate for taxation and subsidies is not

necessarily the same. In that case, the tax rate of the winner�s payo¤ is 1� �, and the subsidy rate of all

other contestants�costs is 1� �. Then, the payo¤ function of contestant i; i = 1; :::; n is given by

U(vi) = � (vi � 
(x(vi)))G(vi)� �(1�G(vi))
(x(vi)): (9)

The �rst order condition (FOC) of the maximization problem of contestant i�s expected payo¤ is

�G0(vi)vi � ((� � (� � �)G(vi))
(x(vi)))0 = 0:

Using the same arguments as in the equilibrium analysis in the previous cases, we obtain the contestants�

equilibrium e¤ort as follows:

x
all_dif
i (vi) = g

0@ �

(� � (� � �)G(vi))

viZ
0

sG0(s)ds

1A (10)

= g

0@ �

(� � (� � �)G(vi))

24viG(vi)� viZ
0

G(s)ds

351A :
The following result shows that when the e¤ort cost functions are linear, the option of setting di¤erent

taxation and subsidy rates provides no advantage to the contest designer.

Proposition 5 When the e¤ort cost functions are linear, regardless of the tax and subsidy rates, the de-

signer�s expected payo¤ in the winner�s payo¤ taxation models with and without subsidies is the same.

Following Proposition 5, we return to our initial assumption that taxation and subsidies have the same
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rates. Then, when the cost functions are convex, the designer�s expected payo¤ is given by

Ralltax = n

1Z
0

g

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv (11)

+

1Z
0

g

0@(1� �)
0@v �

24vG(v)� vZ
0

G(s)ds

351A1A dGn;n
+
n�1X
i=1

1Z
0

g

0@(1� �)
0@�

24vG(v)� vZ
0

G(s)ds

351A1A dGn�i;n:
where Gk;n(x) =

Pn
j=k

�
n
j

�
F (x)j [1 � F (x)]n�j ; k = 1; 2; :::; n, denotes the distribution of the k-th order

statistic out of n independent variables independently distributed according to F . In contrast to the outcome

of Proposition 4, when e¤ort cost functions are non-linear, the subsidies for contestants who did not win

have a positive e¤ect on the designer�s expected payo¤.

Proposition 6 When the e¤ort cost functions are convex, the designer�s expected payo¤ in the winner�s

payo¤ taxation model is less than in the winner�s payo¤ taxation and subsidies model for the same su¢ ciently

low tax rate.

The intuitive explanation for the last result is that, because g = 
�1 is concave, the derivative of the

concave cost function g0 is a decreasing function, and g0 is a meaningful parameter that a¤ects the designer�s

expected payo¤. This implies that subsidies for high-type contestants are relatively small, while subsidies

for low-type contestants are relatively large, and thus total subsidies are smaller than in the case of linear

e¤ort costs, making subsidies pro�table in the case of convex e¤ort costs.

By Proposition 6 and Corollary 2 we obtain that

Corollary 3 When the e¤ort cost functions are convex and the tax rate is low enough, the designer�s expected

payo¤ in the winner�s payo¤ taxation and subsidies model is greater than in the same model without any

taxation or subsidies.

4 Extensions

In the previous section, we assumed that the designer�s expected payo¤ is based on the tax payment plus the

total e¤ort of the contestants. In some cases, the designer is more concerned with the contestants�highest
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e¤ort than their total e¤ort. Because the contestants�equilibrium e¤orts do not depend on the designer�s

goal, they are the same as in the previous sections, and thus, in the winner�s payo¤ taxation model, the

designer�s expected payo¤ is

Rmaxtax = Emax(g (x(v))) + Emax(g ((1� �) (v � 
(x(v)))) (12)

=

1Z
0

g

0BB@� vG(v)�
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA dFn(v) +
1Z
0

g

0BB@(1� �)v(1�G(v)) + �
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA dFn(v);
where Emax(g (x(v))) is the contestants�expected highest e¤ort and Emax(g((1� �) (v � 
(x(v)))) is the ex-

pected taxation of the winner�s payo¤. The following result demonstrates that when the designer is concerned

with the contestants�highest e¤ort, the winner�s payo¤ taxation is pro�table.

Proposition 7 When the e¤ort cost functions are either convex or linear, and the designer bene�ts from

the highest e¤ort, his expected payo¤ in the winner�s payo¤ taxation model is greater than in the same model

without any taxation.

It is worth noting that Proposition 7 holds true for any tax rate, though we assume throughout this

paper that when e¤ort costs functions are non-linear the tax rate is relatively low and, more importantly,

bounded. This assumption is consistent with our model because, as in the previous section, the designer�s

expected payo¤ increases with the tax rate, and without a cap on its value, contestants will have no incentive

to participate in the contest. According to Proposition 7 when the designer bene�ts from the contestants�

highest e¤ort, taxation of the winner�s payo¤ is pro�table for him. Now, we want to compare the winner�s

payo¤ taxation model with and without subsidies. When there are subsidies for all the contestants who did

not win, the designer�s expected payo¤ is

R
all_ max
tax =

1Z
0

g

0@vG(v)� vZ
0

G(s)ds

1A dGn;n (13)

+

1Z
0

g

0@(1� �)
0@v �

24vG(v)� vZ
0

G(s)ds

351A1A dGn;n
+
n�1X
i=1

1Z
0

g

0@(1� �)
0@�

24vG(v)� vZ
0

G(s)ds

351A1A dGn�i;n:
Below we show, just as when the designer bene�ts from the total e¤ort of the contestants, that taxation of

the winner�s payo¤ in addition to subsidies for the remaining contestants is more pro�table for the designer
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than the same model without taxation and subsidies.

Proposition 8 When the e¤ort cost functions are linear, if the designer bene�ts from the highest e¤ort,

then his expected payo¤ in the winner�s payo¤ taxation model with taxation and subsidies is greater than in

the same model without any taxation and subsidies.

Proposition 8 shows that when the designer bene�ts from the highest e¤ort, it is pro�table for the

designer to tax the winner while subsidizing losers. One of the reasons for this is that the designer taxes

the highest e¤ort, which, in the case of linear cost functions, can extract the majority of the total e¤ort in

the competition.4 Thus, in that case, because the e¤ort remains the same as in the absence of taxation and

subsidies, the gain from the winner taxation exceeds the total cost of subsidies.

The following result shows that combining taxes and subsidies is even more pro�table when contestants

have convex cost functions.

Proposition 9 When the e¤ort cost functions are convex and the tax rate is su¢ ciently low, if the designer

bene�ts from the highest e¤ort, then his expected payo¤ in the winner�s payo¤ taxation model with subsidies

is greater than in the same model without any subsidies.

The outcome of Proposition 9 is counterintuitive because, if the designer bene�ts from the highest e¤ort,

why should he subsidize the e¤ort costs of all the other contestants where he does not bene�t from their

e¤orts? The explanation is that by subsidizing all of the other contestants�e¤ort costs, they increase their

e¤ort, and as a result, the winner also increases his e¤ort, which bene�ts the contest designer.

5 Conclusion

Taxation and subsidies are well-known tools for increasing the payo¤ of designers in various organizations.

Each appears to be useful in di¤erent environments, The main conclusion of this work is that it demonstrates

how taxation and subsidies can be usefully combined in contests with incomplete information. In contests

with complete information, it is quite clear that this collaboration of taxation and subsidy is bene�cial

4The highest e¤ort in the linear case may reach 50% of the total e¤orts in all pay auctions with incomplete information (see

Gavious and Minchuk, 2014).
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because, by imposing taxes on the strong contestants while providing subsidies to the weak contestants, the

contest becomes more balanced, and the total e¤ort of the contestants increases. In contrast, in contests

with incomplete information, the types of contestants are private information, making tax discrimination for

high-type contestants and subsidy discrimination for low-type contestants more complicated. As a result,

we distinguish the winner from all the other contestants and then levy a tax on the winner�s payo¤ while

providing subsidies to all the other contestants. As a result, an improvement in our model of the winner�s

taxation and subsidies for all the other contestants could be accomplished in two stages: the �rst is to divide

the contestants into di¤erent classes based on their e¤orts, and then each of these classes will be either taxed

or subsidized, with tax and subsidy rates potentially di¤ering for each of the contestants based on their

classi�ed classes.

6 Appendix

6.1 Proof of Proposition 1

By (3), the equilibrium e¤ort is

xi(vi) = g

0@ �

(1� (1� �)G(vi))

24viG(vi)� viZ
0

G(s)ds

351A :
If we derive the equilibrium e¤ort with respect to � we obtain

dxi
d�

= g0

0@ �

(1� (1� �)G(vi))

24viG(vi)� viZ
0

G(s)ds

351A
� 1�G(vi)
(1� (1� �)G(vi))2

24viG(vi)� viZ
0

G(s)ds

35
� 0:

Thus, the equilibrium e¤ort of every contestant decreases in the tax rate (1��). However, when vi approaches

1, we obtain dxi(vi)
d� = 0, namely, the contestants with the highest winning values do not change their

equilibrium e¤orts as a result of the taxation.
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6.2 Proof of Proposition 2

By (5), we have

Rtax = n

1Z
0

0BB@� vG(v)�
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA f(v)dv +
1Z
0

0BB@(1� �)v(1�G(v)) + �
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA dFn(v);
where the LHS of the integrand represents the total e¤ort of the contestants and the RHS of the integrand

represents the tax payment. If we rewrite this expression, the expected payo¤ for the designer is

Rtax = n

1Z
0

0@vG(v)� � vZ
0

G(s)ds

1A f(v)dv: (14)

According to Krishna (2010), the designer�s expected payo¤ in an all-pay contest with no taxes and linear

e¤ort cost functions is

R = n

1Z
0

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv:
The di¤erence between the designer�s expected payo¤s in these two cases is

Rtax �R = n
1Z
0

0@(1� �) vZ
0

G(s)ds

1A f(v)dv > 0:
Thus, when the e¤ort cost functions are linear, the designer�s expected payo¤ in the all-pay contest with any

tax rate (1� �) is greater than in the same contest without any taxation.

6.3 Proof of Proposition 3

By (5), the designer�s expected payo¤ in the winner�s payo¤ taxation model is

Rtax = n

1Z
0

g

0BB@� vG(v)�
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA f(v)dv +
1Z
0

g

0BB@(1� �)v(1�G(v)) + �
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA dFn(v):
Di¤erentiating this expression with respect to the taxation parameter � yields

@Rtax
@�

= n

1Z
0

g0

0BB@� vG(v)�
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA
0@ 1�G(v)
(1� (1� �)G(v))2 �

0@vG(v)� vZ
0

G(s)ds

1A1A f(v)dv

+n

1Z
0

g0

0BB@(1� �)v(1�G(v)) + �
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA

�
�v(1�G(v)) + [(1� 2�)� (1� 3�) (1� �)G(v))]

vR
0

G(s)ds

(1� (1� �)G(v))2 f(v)G(v)dv:
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Notice that in case of � = 1 we get the designer�s expected payo¤ in the standard model without any taxation

(for more details see Minchuk and Sela , 2020; Minchuk and Sela, 2023). Thus, when � approaches 1, we

obtain that the designer�s expected payo¤ is

lim
�!1

@Rtax
@�

= n

1Z
0

g0

0@0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1A (1�G(v)) f(v)dv (15)

�n
1Z
0

g0 (0)

0@v (1�G(v)) + vZ
0

G(s)ds

1AG(v)f(v)dv:
Di¤erentiating the designer�s payo¤ in the cost taxation model given by (6) with respect to the taxation

parameter � yields

@Rct
@�

= �n
1Z
0

g0

0@1
�

0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1A 1

�2
f(v)dv

+n

1Z
0

g0

0@n(� � 1)
�

0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1A 1

�2
f(v)dv:

Then, taking the limit when � approaches 1 gives us

lim
�!1

(�@Rct
@�

) = n

1Z
0

g0

0@0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1A f(v)dv (16)

�n
1Z
0

g0 (0)

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv:
We compare lim�!1

@Rtax

@� with lim�!1(�@Rct

@� ): The reason is that when we increase the value of � we

decrease the tax rate (1� �) in the winner�s payo¤ taxation model, but when we increase the value of � we

increase the tax rate (�� 1) in the cost taxation model. Thus, the parameters � and � have opposite e¤ects

on the tax rates in both models. The di¤erence between (16) and (15) is

lim
�!1

@Rtax
@�

� lim
�!1

(�@Rct
@�

)

= n

1Z
0

g0

0@0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1AG(v)f(v)dv
�n

1Z
0

g0 (0)

0@0@vG(v) + vZ
0

G(s)ds

1AG(v)� vZ
0

G(s)ds

1A f(v)dv:
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If 
 is convex and strictly increasing, its inverse function g = 
�1 is concave and then g0 is decreasing such

that g0
�
vG(v)�

vR
0

G(s)ds

�
� g0 (0) : Thus,

lim
�!1

@Rtax
@�

� lim
�!1

(�@Rct
@�

) � n

1Z
0

g0 (0)

0@vG(v)� vZ
0

G(s)ds

1AG(v)f(v)dv
�n

1Z
0

g0 (0)

0@0@vG(v) + vZ
0

G(s)ds

1AG(v)� vZ
0

G(s)ds

1A f(v)dv
= n

1Z
0

g0 (0) (1� 2G(v))

0@ vZ
0

G(s)ds

1A f(v)dv:
Notice that

vR
0

G(s)ds � G(v) and G(v) = Fn�1(v): Thus, we have

lim
�!1

@Rtax
@�

� lim
�!1

(�@Rct
@�

) � n

1Z
0

g0 (0) (1� 2G(v))

0@ vZ
0

G(s)ds

1A f(v)dv
� ng0 (0)

24 1Z
0

(1� 2G(v))G(v)f(v)dv

35
= g0 (0)

24 1Z
0

dFn(v)� 2n

2n� 1

1Z
0

dF 2n�1(v)

35 = � g0 (0)

2n� 1 < 0:

Thus, we can conclude that lim�!1
@Rtax

@� �lim�!1(�@Rct

@� ) � 0. Since according to (5) and (6), (Rtax �Rct) j�=�=1 =

0; we obtain the result that when the tax rates are su¢ ciently low, then the designer expected payo¤ in the

winner�s payo¤ taxation Rtax is greater than in the the same model with cost taxation Rct.

6.4 Proof of Proposition 4

By (8), when the e¤ort cost functions are linear, the designer�s expected payo¤ in the winner�s payo¤ taxation

and subsidies model is

Ralltax = n

1Z
0

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv (17)

+(1� �)
1Z
0

0@v �
24vG(v)� vZ

0

G(s)ds

351A dGn;n
+(1� �)

n�1X
i=1

1Z
0

0@�
24vG(v)� vZ

0

G(s)ds

351A dGn�i;n;
where Gk;n(x) =

Pn
j=k

�
n
j

�
F (x)j [1 � F (x)]n�j denotes the distribution of the k-th order statistic out of n

independent variables independently distributed according to F . Note that Gn;n is the highest order statistic
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distribution. Rearranging (17) where Gn;n = Fn(v); G(v) = Fn�1(v) and
Pn�1

i=0 dGn�i;n = nf(v) gives us

Ralltax = n

1Z
0

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv + (1� �)n 1Z
0

vG(v)f(v)dv

+(1� �)n
1Z
0

0@�
24vG(v)� vZ

0

G(s)ds

351A f(v)dv:
This yields

Ralltax = n

1Z
0

0@vG(v)� � vZ
0

G(s)ds

1A f(v)dv: (18)

This last expression of the designer�s expected payo¤ in the winner�s payo¤ taxation and subsidies model is

exactly the same as the designer�s expected payo¤ in the winner�s payo¤ taxation without subsidies given

by (14).

6.5 Proof of Proposition 5

The designer�s expected payo¤ in the winner�s payo¤ taxation and subsidies model with a tax rate of

0 < (1� �) < 1 and a subsidy rate of 0 < (1� �) < 1 is

R
all_dif
tax = n

1Z
0

0@ �

(� � (� � �)G(vi))

24viG(vi)� viZ
0

G(s)ds

351A f(v)dv (19)

+(1� �)
1Z
0

0@v �
24 �

(� � (� � �)G(vi))

24viG(vi)� viZ
0

G(s)ds

35351A dGn;n
+(1� �)

n�1X
i=1

1Z
0

0@�
24 �

(� � (� � �)G(vi))

24viG(vi)� viZ
0

G(s)ds

35351A dGn�i;n:
Rearranging (19) when Gn;n = Fn(v); G(v) = Fn�1(v) and

Pn�1
i=0 dGn�i;n = nf(v) gives us

R
all_dif
tax = n

1Z
0

0@ �

(� � (� � �)G(vi))

24viG(vi)� viZ
0

G(s)ds

351A f(v)dv
+(1� �)

1Z
0

0@v �
24 �

(� � (� � �)G(vi))

24viG(vi)� viZ
0

G(s)ds

35351AnG(v)f(v)dv
�(1� �)n

1Z
0

0@ �

(� � (� � �)G(vi))

24viG(vi)� viZ
0

G(s)ds

351A f(v)dv
+(1� �)

1Z
0

0@ �

(� � (� � �)G(vi))

24viG(vi)� viZ
0

G(s)ds

351AnG(v)f(v)dv;
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or, alternatively,

R
all_dif
tax = n

1Z
0

0@ �

(� � (� � �)G(vi))

24viG(vi)� viZ
0

G(s)ds

351A ((� � (� � �)G(vi))) f(v)dv (20)

+(1� �)
1Z
0

vnG(v)f(v)dv

= n

1Z
0

0@�
24viG(vi)� viZ

0

G(s)ds

351A f(v)dv + (1� �) 1Z
0

vnG(v)f(v)dv

= n

1Z
0

0@vG(v)� � vZ
0

G(s)ds

1A f(v)dv:
We can see that the designer�s expected payo¤when the taxation and subsidy rates are di¤erent, as given

by (20), is exactly the same as when the taxation and subsidy rates are the same, as given by (18).

6.6 Proof of Proposition 6

Rearranging the designer�s expected payo¤ in the winner�s payo¤ taxation and subsidies model given by (11)

yields

Ralltax = n

1Z
0

g

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv
+

1Z
0

g

0@(1� �)
0@v �

24vG(v)� vZ
0

G(s)ds

351A1A dGn;n
+
n�1X
i=0

1Z
0

g

0@(1� �)
0@�

24vG(v)� vZ
0

G(s)ds

351A1A dGn�i;n
�

1Z
0

g

0@(1� �)
0@�

24vG(v)� vZ
0

G(s)ds

351A1A dGn;n:
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Since
Pn�1

i=0 dG
n�i
n = nf(v), we get

Ralltax = n

1Z
0

g

0@vG(v)� vZ
0

G(s)ds

1A f(v)dv (21)

+

1Z
0

g

0@(1� �)
0@v �

24vG(v)� vZ
0

G(s)ds

351A1A dGn;n
+n

1Z
0

g

0@(1� �)
0@�

24vG(v)� vZ
0

G(s)ds

351A1A f(v)dv
�

1Z
0

g

0@(1� �)
0@�

24vG(v)� vZ
0

G(s)ds

351A1A dGn:n:
Di¤erentiating (21) with respect to the taxation parameter � gives us

@Ralltax
@�

= �
1Z
0

g0

0@(1� �)
0@v �

24vG(v)� vZ
0

G(s)ds

351A1A0@v �
24vG(v)� vZ

0

G(s)ds

351A dGn;n
+n

1Z
0

g0

0@(1� �)
0@�

24vG(v)� vZ
0

G(s)ds

351A1A24vG(v)� vZ
0

G(s)ds

35 f(v)dv
�

1Z
0

g0

0@(1� �)
0@�

24vG(v)� vZ
0

G(s)ds

351A1A24vG(v)� vZ
0

G(s)ds

35 dGn;n:
Taking the limit when � approaches 1 yields

lim
�!1

@Ralltax
@�

= �n
1Z
0

g0 (0)

0@v �
24vG(v)� vZ

0

G(s)ds

351AG(v)f(v)dv (22)

+n

1Z
0

g0 (0)

0@vG(v)� vZ
0

G(s)ds

1A (1�G(v))f(v)dv
= �n

1Z
0

g0 (0)

0@ vZ
0

G(s)ds

1A f(v)dv:
The di¤erence between (15) and (22) is

lim
�!1

�
@Rtax
@�

� @R
all
tax

@�

�
= n

1Z
0

g0

0@0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1A (1�G(v)) f(v)dv
�n

1Z
0

g0 (0)

0@v (1�G(v)) + vZ
0

G(s)ds

1AG(v)f(v)dv
+n

1Z
0

g0 (0)

0@ vZ
0

G(s)ds

1A f(v)dv:
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If 
 is convex and strictly increasing, its inverse function g = 
�1 is concave, g0 is decreasing and therefore

g0
�
vG(v)�

vR
0

G(s)ds

�
� g0 (0) : Thus,

lim
�!1

�
@Rtax
@�

� @R
all
tax

@�

�
� n

1Z
0

g0 (0)

0@vG(v)� vZ
0

G(s)ds

1A (1�G(v)) f(v)dv
�n

1Z
0

g0 (0)

0@v (1�G(v)) + vZ
0

G(s)ds

1AG(v)f(v)dv
+n

1Z
0

g0 (0)

0@ vZ
0

G(s)ds

1A f(v)dv
= 0

Since by Proposition 4,
�
Rtax �Ralltax

�
j�=1 = 0; then the inequality lim�!1

�
@Rtax

@� � @Rall
tax

@�

�
� 0 implies

that when the e¤ort cost functions are convex, the expected payo¤ in the winner�s payo¤ taxation model is

smaller than in the same model with subsidies for the same tax rate that is su¢ ciently low.

6.7 Proof of Proposition 7

By (12), the designer expected payo¤ in the winner�s payo¤ taxation model is

Rmaxtax =

1Z
0

g

0BB@� vG(v)�
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA dFn(v) +
1Z
0

g

0BB@(1� �)v(1�G(v)) + �
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA dFn(v): (23)

We will divide the proof into two cases: one with linear cost functions and one with convex cost functions.

1) Linear cost functions: If the cost function is linear, (23) can be rewritten as follows:

Rmaxtax =

1Z
0

0BB@� vG(v)�
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA dFn(v) +
1Z
0

0BB@(1� �)v(1�G(v)) + �
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA dFn(v) (24)

�
1Z
0

0BB@� vG(v)�
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA dFn(v) +
1Z
0

0BB@(1� �)v(1�G(v)) + �
vR
0

G(s)ds

(1� (1� �)G(v)) G(v)

1CCA dFn(v)
=

1Z
0

0@vG(v)� � vZ
0

G(s)ds

1A dFn(v):
According to Minchuk and Sela (2020) and Minchuk and Sela (2023), the designer�s expected payo¤ which
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is the expected highest e¤ort in the all-pay auction without any taxation for any cost function is

Rmax =

1Z
0

0@vG(v)� vZ
0

G(s)ds

1A dFn(v): (25)

Thus, by (24) and (25), we obtain that Rmaxtax �Rmax > 0:

2) Convex cost functions: De�ne

A = �

vG(v)�
vR
0

G(s)ds

(1� (1� �)G(v))

B = (1� �)
v(1�G(v)) + �

vR
0

G(s)ds

(1� (1� �)G(v)) :

Notice that A;B � 0: Since 
 is convex and g = 
�1 is concave, we get

g(A) + g(B) = g(A
A+B

A+B
) + g(B

A+B

A+B
)

� A

A+B
g(A+B) +

B

A+B
g(A+B) = g(A+B):

Thus, we have

Rmaxtax =

1Z
0

g

0BB@� vG(v)�
vR
0

G(s)ds

(1� (1� �)G(v))

1CCA+ g
0BB@(1� �)v(1�G(v)) + �

vR
0

G(s)ds

(1� (1� �)G(v))

1CCA dFn(v) (26)

>

1Z
0

g

0BB@� vG(v)�
vR
0

G(s)ds

(1� (1� �)G(v)) + (1� �)
v(1�G(v)) + �

vR
0

G(s)ds

(1� (1� �)G(v))

1CCA dFn(v)

�
1Z
0

g

0BB@� vG(v)�
vR
0

G(s)ds

(1� (1� �)G(v)) + (1� �)
v(1�G(v)) + �

vR
0

G(s)ds

(1� (1� �)G(v)) G(v)

1CCA dFn(v)
=

1Z
0

g

0@vG(v)� � vZ
0

G(s)ds

1A dFn(v):
Then, according to (23) and (26) we obtain that

Rmaxtax >

1Z
0

g

0@vG(v)� � vZ
0

G(s)ds

1A dFn(v): (27)

On the other hand, the designer�s expected payo¤ in the all-pay auction without any taxation is

Rmax =

1Z
0

g

0@vG(v)� vZ
0

G(s)ds

1A dFn(v):
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Because that � < 1, we obtain that Rmaxtax � Rmax > 0; that is, the designer�s expected payo¤ in the

winner�s payo¤ taxation is higher than in the same model without any taxation.

6.8 Proof of Proposition 8

By (13), when the cost functions are linear, the designer�s expected payo¤ in the winner�s payo¤ taxation

model is

R
all_ max
tax =

1Z
0

0@vG(v)� vZ
0

G(s)ds

1A dGn;n
+(1� �)

1Z
0

0@v �
24vG(v)� vZ

0

G(s)ds

351A dGn;n
�(1� �)

n�1X
i=1

1Z
0

0@vG(v)� vZ
0

G(s)ds

1A dGn�i;n:
=

1Z
0

0@vG(v)� vZ
0

G(s)ds

1A dGn;n
+(1� �)

1Z
0

vdGn;n

�(1� �)
n�1X
i=0

1Z
0

0@vG(v)� vZ
0

G(s)ds

1A dGn�i;n:

Because that
Pn�1

i=0 dGn�i;n = nf(v); Gn;n = F
n(v) and

1Z
0

vdGn;n = n

1Z
0

vFn�1(v)f(v)dv; we get

R
all_ max
tax =

1Z
0

0@vG(v)� vZ
0

G(s)ds

1A dFn(v) (28)

+(1� �)n
1Z
0

0@ vZ
0

G(s)ds

1A f(v)dv
>

1Z
0

0@vG(v)� vZ
0

G(s)ds

1A dFn(v) = Rmax:
where Rmax represents the designer�s expected payo¤ in the model without taxation and subsidies. Thus,

when the cost functions are linear, taxation and additional subsidies for all contestants bene�t the designer.
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6.9 Proof of Proposition 9

Di¤erentiating the designer�s expected payo¤ in the winner�s payo¤ taxation and subsidies model given by

(13) with respect to the taxation parameter � yields

@R
all_ max
tax

@�
= �

1Z
0

g0

0@(1� �)
0@v �

24vG(v)� vZ
0

G(s)ds

351A1A0@v �
24vG(v)� vZ

0

G(s)ds

351A dGn;n
+n

1Z
0

g0

0@(1� �)
0@�

24vG(v)� vZ
0

G(s)ds

351A1A24vG(v)� vZ
0

G(s)ds

35 f(v)dv
�

1Z
0

g0

0@(1� �)
0@�

24vG(v)� vZ
0

G(s)ds

351A1A24vG(v)� vZ
0

G(s)ds

35 dGn;n:
The limit when � approaches 1 is

lim
�!1

@R
all_ max
tax

@�
= �n

1Z
0

g0 (0)

0@ vZ
0

G(s)ds

1A f(v)dv: (29)

Taking the di¤erence between the models of the winner�s taxation models without subsidies (12) and with

subsidies (29) give us

lim
�!1

 
@Rmaxtax

@�
� @R

all_ max
tax

@�

!
= n

1Z
0

g0

0@0@vG(v)� vZ
0

G(s)ds

1A1A0@vG(v)� vZ
0

G(s)ds

1A (1�G(v))G(v)f(v)dv
�n

1Z
0

g0 (0)

0@v (1�G(v)) + vZ
0

G(s)ds

1AG(v)f(v)dv
+n

1Z
0

g0 (0)

0@ vZ
0

G(s)ds

1A f(v)dv:
If 
 is convex and strictly increasing, its inverse function g = 
�1 is concave, g0 is decreasing and therefore

g0
�
vG(v)�

vR
0

G(s)ds

�
� g0 (0) : Thus,

lim
�!1

 
@Rmaxtax

@�
� @R

all_ max
tax

@�

!
� n

1Z
0

g0 (0)

0@vG(v)� vZ
0

G(s)ds

1A (1�G(v))G(v)f(v)dv
�n

1Z
0

g0 (0)

0@v (1�G(v)) + vZ
0

G(s)ds

1AG(v)f(v)dv
+n

1Z
0

g0 (0)

0@ vZ
0

G(s)ds

1A f(v)dv
= �n

1Z
0

g0 (0)

0@vG(v)� vZ
0

G(s)ds

1A (1�G(v))2f(v)dv:
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Therefore, for a designer who cares about the highest e¤ort, additional subsidies for all the contestants is

pro�table.

lim
�!1

 
@Rmaxtax

@�
� @R

all_ max
tax

@�

!
� n

1Z
0

g0 (0)

0@vG(v)� vZ
0

G(s)ds

1A (1�G(v))G(v)f(v)dv
�n

1Z
0

g0 (0)

0@v (1�G(v)) + vZ
0

G(s)ds

1AG(v)f(v)dv
+n

1Z
0

g0 (0)

0@ vZ
0

G(s)ds

1A f(v)dv
= �n

1Z
0

g0 (0)

0@vG(v)� vZ
0

G(s)ds

1A (1�G(v))2f(v)dv:
Therefore, for a designer who cares about the highest e¤ort, additional subsidies for all the contestants is

pro�table.
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