
 
 
 
 
 
 
 

 

Missing the forest for the trees: when monitoring 
quantitative measures distorts task prioritization 

 
Eldar Dadon       Ro’i Zultan 

Discussion Paper No. 23-19 

September 2023 

 
Monaster Center for 
Economic Research 

Ben-Gurion University of the Negev 
P.O. Box 653 

Beer Sheva, Israel 
 

Fax: 972-8-6472941 
Tel: 972-8-6472286 



Missing the forest for the trees: when monitoring
quantitative measures distorts task prioritization*

Eldar Dadon Ro’i Zultan†

September 3, 2023

Abstract
Managers’ use of remotemonitoring software increased following the transition to work-

ing from home during the Covid-19 pandemic to compensate for reduced observability.
Higher observability entails quantitative measures not directly related to productivity, po-
tentially incentivizing workers to prioritize quantity over quality. For example, office work-
ers may increase observable work hours by directing effort inefficiently. Observing the
number of completed tasks incentivizes workers to perform many meaningless tasks rather
than prioritize productive ones. We design an experiment where workers can allocate effort
based on perceived task difficulty and manipulate the structure of the signal to the man-
ager. We show theoretically that quantitative information in the signal distorts incentives.
In equilibrium, workers prioritize productive tasks less, reducing overall productivity. Our
results confirm that removing quantitative information from the signal increases produc-
tivity by shifting workers’ strategies. Enriching the signal with quantitative information,
however, does not have the opposite effect.
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1. Introduction

The design of optimal incentives for workers poses a key challenge for managers. While indi-
vidual productivity is readily measurable in some tasks, measuring workers’ effort and output
directly and in real time is typically unfeasible. Furthermore, observed productivity often de-
pends on myriad factors, making the worker’s marginal contribution impossible to identify.1
Consequently, managers face difficulties designing compensation schemes that properly align
workers’ incentives with the managerial objectives.
Overall production is a function of both quantity and quality. Often, quality is hard to

assess, and managers turn to form performance evaluations based on readily available quan-
titative indicators such as number of tasks performed. Remuneration based on observable
quantitative measures may, however, distort incentives. Workers aiming to complete many
tasks will invest less effort per task, thereby reducing quality. For example, software devel-
opers judged by the number of completed tasks may make shortcuts that technically close
tickets but compromise code quality, requiring rework down the road. Generally, relying on
measurable aspects can divert effort away from other important but unobservable objectives
and result in an overall reduction in productivity (Baker, 1992, 2002; Gibbons, 2005; Holm-
strom and Milgrom, 1991). Even if managers are aware that quantitative measures such as the
number of completed tasks are invalid, they may be unable to ignore them. Research in cog-
nitive psychology shows that people find it challenging to ignore irrelevant (“non-diagnostic”)
information, in particular in labor hiring decisions (Carr et al., 2017; Dalal et al., 2020) or
performance assessment (Moore et al., 2010).
Thus, it is possible that providing managers with richer information leads to lower pro-

ductivity, as the additional information draws attention from more valid—though difficult to
measure—indicators of productivity. For example, when workers work in the office, managers
can observe many aspects of work. Some quantitative aspects, such as the work hours, are
highly salient in the office but are not directly linked to productivity. In contrast, when work-
ers work from home, managers are less able to observe direct measures of worker performance,
and rely more on “bottom line” productivity outcomes.2 Some empirical studies corroborate
this conjecture, showing a positive effect of working from home on employees’ productivity
(Angelici and Profeta, 2020; Bloom et al., 2015; Choudhury et al., 2021). Working from home
became the reality of a substantial part of the labor market following the outbreak of the
Covid-19 pandemic at the end of 2019 (Gartner, 2020), with recent surveys indicating that
productivity increased as a result (Barrero et al., 2021; DeFilippis et al., 2022). Nonetheless,
many managers utilize employee monitoring software to compensate for the reduced observ-
ability (Kalischko and Riedl, 2021; Trivedi and Patel, 2021).
In this paper, we test the role of incorporating quantitative information into the signal
1We use the term “productivity” to refer to the worker’s output in terms of its value to the manager, as opposed

to some quantitative measure of output.
2In-office work offers additional advantages beyond the scope of this analysis, including the facilitation of

knowledge sharing among workers and the nurturing of mentorship relationships between senior and junior em-
ployees.
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observed by the manager. We assume that the manager observes a noisy signal composed
of qualitative and quantitative factors. We hypothesize that shutting down the quantitative
element—thereby providing less information in the signal—will focus effort on quality, result-
ing in an increase in overall productivity.
We focus on effort allocation decisions when tasks arrive sequentially. For each task, the

worker decides whether to exert effort and complete it successfully, or to skip it by exerting
the minimal effort required to mark the task as technically completed and move to the next
task. To maximize productivity, the worker should prioritize tasks offering higher returns per
time invested and skip less efficient tasks. We hypothesize that when the manager has access
to quantitative information—in this case, the number of completed tasks—the worker will not
only skip more tasks, but will also be less selective in which tasks to direct effort to, leading
to higher quantity but overall lower productivity.
We present a simple theoretical model formalizing this argument and test its predictions

in a controlled laboratory experiment. Laboratory experiments are uniquely suited to study
productivity under moral hazard and signaling. Testing our hypotheses requires measuring
effort and productivity independent of the signal seen by managers. This is typically infeasible
in natural work environments, where researchers and managers face the same limitations in
monitoring workers. Our experimental environment overcomes this obstacle by explicitly ma-
nipulating the signal available to the managers while fully tracking the worker’s performance.
Our laboratory environment precludes various features of real-world work environments,

such as interactions between workers. By intentionally abstracting from certain real-world
elements, our focus remains on the incentivizing effects of observability and signal structure.
This methodological approach helps minimize potential confounding factors that could other-
wise obscure our findings. On the other hand, caution should be exercised when generalizing
our conclusions to natural work settings, fully taking into account all aspects absent from the
experimental environment, such as distinctions between office and home-based work.
We implement a principal-agent setting with repeated interactions, noisy monitoring, and

incomplete contracts. In each period, the manager observes an imperfect signal of the worker’s
performance and provides discretionary wages. We manipulate whether the signal incorpo-
rates quantitative metrics. When the signal depends on quantity, workers artificially inflate the
number of tasks completed. Removing the quantitative information from the signal decreases
the volume and increases productivity, confirming that shifting effort to quantity comes at
the expense of quality. When we add quantitative content to the signal, however, volume
increases but productivity does not decrease.
We analyze workers’ strategies using a finite mixture model and machine learning-based

task difficulty estimates. In the baseline treatment, strategies align well with the manager’s
interests. However, when quantitative information feeds into the signal, workers’ strategies
shift away from productivity-maximizing strategies and towards strategies that favor quantity.
The findings contribute to the literature on incentive design and optimal task prioritiza-

tion when principals can only observe or reward partial or imperfect metrics of agent effort.
We assume that managers form a holistic impression of workers. When managers observe
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quantitative production indicators, workers adapt by shifting resources to increasing quantity.
This shift comes at the expense of quality and leads to reduced efficiency. Less monitoring,
as happens when workers work from home, improves incentives and increases productivity.
This insight is essential in considering changes in labor and management, especially in the
aftermath of the Covid-19 pandemic.

2. Related literature

The multitasking literature, beginning with Holmstrom and Milgrom (1991) and Baker (1992),
consider situations in which a worker can invest independently in quality and in quantity.
Holmstrom and Milgrom (1991) analyzed settings where workers engage in different activi-
ties, not all of which are observable and contractible. In characterizing the optimal contract,
Holmstrom and Milgrom (1991) showed that incentivizing the observable actions can be coun-
terproductive, as it draws effort from other activities and reduces overall productivity. For
example, production workers may be responsible for both increasing output and maintaining
equipment. If the manager can monitor quantity, paying by piece rate will lead employees to
produce more output while overusing and damaging machines. Paying a global salary is thus
superior to per-performance pay. While the theoretical literature is concerned with optimal
contracts, our focus is on the information available to the manager. Nonetheless, applying a
multitasking model to the question of signal structure confirms that increasing the observabil-
ity of quantitative information may reduce overall productivity.3
Al-Ubaydli et al. (2015) tested the predictions of the Holmstrom andMilgrom (1991) model

in a series of laboratory and field experiments where workers were hired to perform a short-
term job. They find that incentivizing quantity reduces quality—unless there is ambiguity
regarding the ability of the manager to assess quantity, piece rate can increase quality. The
field experiment by Hong et al. (2018) provided further evidence with factory workers per-
forming routine tasks. The workers knew that the quantity they produced was regularly mea-
sured, while quality was not individually recorded and could not be connected to a specific
worker. Introducing piece-rate compensation for each unit above a fixed threshold resulted in
an increase in productivity and a decrease in quality.
A few studies applied the multitasking framework in laboratory experiments. Fehr and

Schmidt (2004) studied a principal-agent framework where the worker chooses effort levels in
two tasks. The two tasks are complementary in the production function, but only the “quantity”
task is contractible. The research question was whether—as quality is non-contractible—an
implicit contract can outperform a piece-rate contract and whether managers prefer the im-
plicit contract. The results confirmed the hypotheses. The managers mostly opted for the
implicit bonus contract, which, in turn, yielded more efficient effort allocation.
Rubin et al. (2018) used a real effort task in which participants had to sum up five 2-

digit numbers. Submitting a solution granted the participants with a given amount of money,
regardless of the correctness of the solution. However, submitting a correct solution could gen-

3More details are available upon request.
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erate extra payoffs for the participant based on the treatment group. The results showed that
an increase in the payment for the correct solution increases the number of correct solutions
at the expense of the total number of solutions submitted. In another experiment, Oosterbeek
et al. (2011) showed that incentivizing an unproductive investment results in an increase in
the unproductive investment and a decrease in the productive investment.
Several studies explicitly manipulated monitoring. Manthei and Sliwka (2019) found that

providing bank branch managers with objective performance measures increased profits. In
small branches, the increase in sales of investment products was offset by a decrease in the
sales of (more profitable) loans. The authors attribute this branch-size effect to high special-
ization in large branches. In small branches, sales agents in small branches necessarily serve
all customers. Providing better measures of the “fringe” task of selling investment products
thus draws effort from the more profitable task of selling loans, which was already previously
monitored. Dickinson and Villeval (2008) conducted a comprehensive laboratory experiment
studying the effect of monitoring on agents’ output in different circumstances. The main re-
sults are that monitoring increases worker performance. Interpersonal relationships between
the worker and manager also increased performance, conditional on a direct and continuous
link between performance and manager’s payoffs. In that case, adding monitoring reduced
performance.
In the modern work environment, removing observable quantitative measures by allowing

workers to work from home may increase productivity. Bloom et al. (2015) provided evidence
supporting this reasoning. Their field experiment showed that employees who worked from
home were more efficient than employees who worked from the office. The improvement
was due to spending more time working during the shift. We suggest that employees who
worked from home could only signal their productivity by working. In contrast, office work-
ers allocated part of their effort to other activities that create an appearance of work without
substantially increasing productivity. Similarly, Angelici and Profeta (2020) found that flex-
ible work hours and location increased worker productivity. Choudhury et al. (2021) found
that working from anywhere was even more effective than working from home, reporting a
productivity increase of 4.4%.
The outburst of the Covid-19 pandemic forced many employers to abandon their conser-

vative habits, allowing more of their employees to work from home (Barrero et al., 2021; Bick
et al., 2021; Brynjolfsson et al., 2020). According to a Gartner (2020) survey of 229 Human
Resources departments conducted in April 2020, 50% of surveyed organizations reported 81%
or more of their employees working from home during the pandemic, with many reporting
that they are planning to work from home more in the future. A March 2021 survey by Bar-
rero et al. (2021) estimated that employees supplied about 45 percent of paid labor services
from home. Furthermore, respondents reported better-than-expected working from home ex-
periences and higher productivity at home. The Covid-19 outburst set a new trend of how the
future labor market will look and that these changes might positively affect the economy.
Thus, some studies on the transition to working from home find an increase in produc-

tivity. In contrast, Gibbs et al. (2023) found decreased per-hour productivity following the
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pandemic-induced transition to home work in an Asian IT company. While this result appears
to be at odds with our analysis, a closer look reveals a conceptual consistency. The firm closely
monitored the work from home using state-of-the-art monitoring applications on the working
devices, collecting detailed information on work patterns and work hours (which made the
research possible). Thus, the technological advances available to the firm studied in Gibbs
et al. (2023) provided workers with more, rather than fewer, channels to signal effort after
the transition. Consistent with this interpretation, the data show that, When working from
home, workers spent more time participating in many short meetings, resulting in short unin-
terrupted working spells and longer overall work hours. This study illustrates that, at least for
modern tech-savvy firms, transitioning to working from home can imply higher transparency
and observability that distorts incentives. Our analysis provides a unifying explanation for
both increased and decreased productivity when working from home, with the key variable
being the observability of quantitative indicators.

3. Experiment

The experiment included twenty rounds in two blocks of ten rounds each. Each session in-
volved an even number of participants and last for approximately 80 minutes. Participants
were randomly assigned to roles of manager and worker, which remained fixed throughout
the experiment. Participants interacted in fixed pairs of manager and worker for ten rounds,
switching partners for the second block such that each manager interacted with a different
worker in each block (and vice versa), and the same two managers interacted with the same
two workers over the two blocks.4 In each round, workers worked on a real-effort task. Specif-
ically, the workers had 60 seconds to solve simple problems of adding three random two-digit
numbers using only pen and paper (cf. Niederle and Vesterlund, 2007). The worker submitted
an answer for each problem and proceeded immediately to the next problem without feedback
until the allotted time ran out. Each correct answer earned the manager 10 ECU (Experimen-
tal Currency Units).5 After the work phase ended, the manager observed a noisy signal of the
worker’s productivity and chose a bonus to pay the worker between zero and 60.
The signal structure depended on the treatment. We use the labels OFFICE and HOME for

the treatment where the signal reflects both quality and quantity and the treatment where the
signal only reflects qualitative information, respectively.6 In both treatments, the manager
observed the true Number of Correct Answers (NCA) submitted by the worker with probabil-
ity 0.5 and otherwise observed a random number drawn from a uniform distribution on the

4Thus, each matching group of two managers and two workers constitutes an independent observation. If the
number of participants in the session was not a multiple of four, there was one matching group of three managers
and three workers.

5To avoid boredom during the work phase, managers could earn additional money by repeatedly clicking on
a sphere that reappeared at a random location on-screen after each click. Every ten clicks added 1 ECU to the
manager’s round payoff. Similar tasks were used in Corgnet et al. (2015) and invoked in Gerstenberg et al. (2023)
and Zultan et al. (2012).

6We do not claim that our manipulation captures all differences between office and home work, and only use
these labels for convenience.
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integers in [1, 𝑋]. The treatments differed in whether the distribution of the noise, determined
by the upper bound 𝑥, is sensitive to quantitative information. In the OFFICE treatment, the
value of 𝑋 equaled the Total Number of Answers (TNA), either correct or incorrect, that the
worker submitted. Thus, the signal distribution in the OFFICE treatment reflects both produc-
tive (qualitative, number of correct answers) and unproductive (quantitative, total number
of answers) inputs. The signal in the HOME treatment, in contrast, reflects only productive
effort. To achieve this, the value of 𝑥 must be independent of the actual TNA. Arguably, by
increasing the expected signal, a higher value of 𝑥 undermines workers’ incentives to invest
effort to boost the signal. We, therefore, calibrated the value of 𝑋 in the HOME treatment to
reflect the expected TNA under the null hypothesis of no incentive distortion. Based on pilot
sessions, we set 𝑋 = 7.7
The treatments varied between the two blocks, with the order counterbalanced across

matching groups. Participants read the relevant instructions on-screen at the beginning of
each block and were required to correctly answer control questions to ensure understanding
of the experimental variation. The end-of-round feedback included the signal that the man-
ager observed and the bonus paid to the worker. Neither the worker nor the manager received
accurate feedback regarding actual productivity. At the end of the experiment, participants
learned their total profits in each round.
The experimental instructions appeared on-screen and were read aloud by the experi-

menters (see the appendix for a translation). Participants could then ask questions privately.
The experiment started after all participants confirmed that they had read and understood the
instructions and answered the control questions correctly. The experiment was conducted at
the Experimental Economics Laboratory at the Department of Economics of the Ben-Gurion
University of the Negev. One hundred and sixty-six students from across the university were
recruited from two subject pools in the Economics and Management departments using ORSEE
(Greiner, 2015) and by email. No participant participated twice in the experiment.8 The ex-
periment was programmed using z-Tree (Fischbacher, 2007). Six rounds, three from each
block, were randomly chosen for payment. Experimental earnings were converted to Israeli
New Shekels (ILS) at a conversion rate of 10 ECU = 1 ILS and added to a show-up fee of 20 ILS
(15 ILS in two of the sessions). Final payoffs ranged from 38 ILS to 105 ILS, with an average of
61.4 ILS (approximately 19 USD) per participant.

4. Theoretical analysis

In this section, we aim to illustrate how incorporating quantitative information into the signal—
as implemented in the experiment—may lead to lower productivity. As our focus in this paper
is on the worker side, we make the simplifying assumption that the manager responds to the
information available to her in a monotonic and linear way and solve the resulting optimiza-

7The mean TNA in the experiment reported in Section 5 did not differ significantly from 7.
8A technical problem during one session corrupted the data of two rounds, which we consequently excluded

from the analysis. Excluding the complete sessions does not affect the results qualitatively.
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tion problem of the worker. We assume that the worker cannot improve his performance
by increasing effort but has control over which problems to solve and which to skip.9 As in
the experiment, the worker encounters problems sequentially. The worker can evaluate the
problem’s difficulty, which we equate with the time required to solve it. Having assessed the
problem, the worker chooses whether to solve it or skip it by submitting an arbitrary solution.
The worker’s optimization problem is thus reduced to choosing the highest difficulty level
above which he skips a problem that maximizes the expected observed signal.
Formally, each problem 𝑘 has a solving time 𝑡𝑘, which the worker can identify after an

initial evaluation time 𝑡𝑒 > 0. To simplify the analysis, we assume that the worker does not
know when the manager is observing, and therefore solves the infinite-horizon problem. The
worker’s strategy is a function 𝜎(𝑡𝑘) ∶ [0, 1] → {0, 1} indicating whether the worker solves a
problem or skips it given its difficulty.10 The strategy 𝜎 induces an expected time per solved
problem 𝑡𝑠(𝜎) and an expected response time per problem (solved or not) 𝑡𝑟(𝜎). The manager
observes performance in such time window of length 𝑇. Specifically, the manager receives
a signal that is weakly increasing in the number of problems and strictly increasing in the
number of solved problems. The expectation of the former is given by 𝑞𝑟(𝜎) = 𝑇

𝑡𝑟(𝜎)
and of the

latter is given by 𝑞𝑠(𝜎) = 𝑇
𝑡𝑠(𝜎)
. For simplicity, we assume that 𝑡𝑘 is a uniform random variable

distributed 𝑡𝑘∼𝑈(0, 1).

Lemma. The optimal strategy 𝜎∗(𝑡𝑘) is monotonic; 𝜎(𝑡𝑘) ≥ 𝜎(𝑡𝑙) iff 𝑡𝑘 ≤ 𝑡𝑙.

Proof. See Appendix B.

The lemma implies that, with some abuse of notation, we can replace 𝜎∗ with a cutoff
value ̄𝑡, below which the worker solves the problem, and above which the worker skips. Be-
cause of our simplifying assumptions on the distribution of 𝑡𝑘, the share of problems solved
is ̄𝑡, and the expected time spent solving a problem is ̄𝑡

2
. The worker encounters and identifies,

on average, 1̄𝑡 problems for each problem solved, hence the average total time spent per solved
problem is 𝑡𝑠( ̄𝑡) = 𝑡𝑒

̄𝑡
+ ̄𝑡

2
. The average time spent on any problem is 𝑡𝑟( ̄𝑡) = 𝑡𝑒 + ̄𝑡 ⋅ ̄𝑡

2
. The

number of solved problems in 𝑇 is thus 𝑞𝑠 = 𝑇
𝑡𝑒
̄𝑡 +

̄𝑡
2

and the total number of problems (solved
or skipped) in 𝑇 is 𝑞𝑟 = 𝑇

𝑡𝑒+
̄𝑡2
2

, corresponding to NCA and TNA in the experiment, respectively.
We assume that the worker aims to maximize the expected signal observed by the manager.

In the experiment, the manager observes the NCA with probability 0.5 and a random number
drawn from a uniform distribution on [1, ̄𝑠] otherwise. In the HOME treatment, the upper
bound is ̄𝑠𝐻 = 7. In the OFFICE treatment, the upper bound is ̄𝑠𝑂 = 𝑞𝑟( ̄𝑡).

Proposition 1. Moving from the OFFICE environment to the HOME environment reduces skipping
and increases productivity.

9Performance in simple tasks carried out in limited time in the laboratory does not increase substantially with
higher incentives, indicating low sensitivity to increased effort (see, e.g., Araujo et al., 2016).
10More generally, the strategy can be probabilistic and depend on the history. The optimal strategy is, how-
ever, necessarily stationary and deterministic (Prieto-Rumeau, 2006; Prieto-Rumeau and Hernández-Lerma, 2005;
Puterman, 1974).
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Proof. In the HOME environment, the worker’s problem is reduced to finding the optimal cutoff
that maximizes 𝑞𝑠:

̄𝑡∗𝐻 = argmax
̄𝑡

[ 𝑇
𝑡𝑒
̄𝑡
+ ̄𝑡

2

] = √2𝑡𝑒. (1)

In the OFFICE treatment, the optimal cutoff that maximizes the expected signal is given by

̄𝑡∗𝑂 = argmax
̄𝑡

[0.5 𝑇
𝑡𝑒
̄𝑡
+ ̄𝑡

2

+ 0.5 ⋅ 0.5 ( 𝑇
𝑡𝑒 +

̄𝑡2

2

+ 1)] = √8𝑡𝑒 + 1 − 1
2 . (2)

It follows that ̄𝑡∗𝐻 > ̄𝑡∗𝑂. That is, there is a range of problems that the worker solves in the
HOME environment but skips in the OFFICE environment. Productivity is the expected number
of solved problems. Substituting (1) for ̄𝑡 in the expression for 𝑞𝑠 yields a productivity at HOME
of 𝑇

√2𝑡𝑒
. Substituting (2) for ̄𝑡 in 𝑞𝑠 yields a lower productivity at the OFFICE of 2𝑇

√8𝑡𝑒+1
.11

4.1. Hypotheses

In line with Proposition 1, workers in the OFFICE treatment increase the expected signal by
solving more problems at the cost of reduced productivity. We, therefore, predict to find more
answers but fewer correct answers in OFFICE than in HOME. The first hypotheses state these
predictions.
Hypothesis 1. The TNA is higher in OFFICE than in HOME.
Hypothesis 2. The NCA is lower in OFFICE than in HOME.
The analysis assumes that skipping decisions drive treatment effects in performance. To test

the suggested mechanism, we aim to identify skipping decisions and explore the relation be-
tween such decisions and problem difficulty. We describe this analysis in detail in Section 5.2.
Based on this direct analysis of strategies, we state the following hypotheses:
Hypothesis 3. Workers are more likely to skip a problem as the problem difficulty increases.
Hypothesis 4. Workers skip more in the OFFICE treatment.
Furthermore, we conjecture that the misaligned incentives in the OFFICE treatment may

lead workers to skip regardless of problem difficulty.
Hypothesis 5. The decision to skip a problem is more sensitive to the problem difficulty in the
HOME treatment.

5. Results

We start by analyzing the effect of the signal structure on the outcomes, as stated in Hy-
potheses 1 and 2. We proceed to analyze worker strategies in the two treatments following
Hypotheses 3–5.
11This is immediately apparent from the fact that √8𝑥 + 1 > √8𝑥 = 2√2𝑥.
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Figure 1: Wages and signals

5.1. Output and productivity

Our aim is to test the effect of the signal structure on the worker side, given that a higher
signal results in higher wages. As background for the tests for our hypotheses relating to worker
performance, Figure 1 depicts the mean wages as a function of the signals in the range [0, 11].12
We see that managers respond positively to the signal. In the OFFICE treatment, there is some
ambiguity regarding high signals, which may come from exceptional productivity or from the
noise, leading to some reduction of wages for signals above 7. Overall, managerial behavior
support our assumption that workers benefit from a higher signal in both treatments, at least
up to a signal of 7.
Turning to worker performance, Figure 2 shows the average total number of answers (TNA)

and the number of correct answers (NCA) by treatment and within-block period. Workers
increase their quantity in the OFFICE treatment, where the signal is sensitive to the TNA, in
line with Hypothesis 1. In line with Hypothesis 2, this increase is accompanied by a decrease
in productivity.
The regressions presented in Tables 1 and 2, controlling for the last received wage and the

period and clustering standard errors on matching groups, confirm these observations. The
results are robust to including fixed and random individual effects. On average, employees
submitted around three answers more in the OFFICE treatment than in the HOME treatment
12Signals above 11 appeared only in the OFFICE treatment.
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Figure 2: Total and correct answers.

Table 1: Treatment effects on TNA.

(1) (2) (3) (4) (5) (6)
TNA TNA TNA TNA TNA TNA

OFFICE 3.123∗∗∗ 3.022∗∗∗ 3.032∗∗∗ 3.276∗∗∗ 3.144∗∗∗ 3.156∗∗∗

(3.929) (4.015) (4.008) (3.790) (3.959) (3.946)
Lagged wage −0.008 0.017 0.014

(−0.288) (1.237) (1.016)
Period 0.096 0.098 0.098

(1.463) (1.494) (1.489)
Constant 6.321∗∗∗ 6.372∗∗∗ 6.394∗∗∗ 6.018∗∗∗ 5.466∗∗∗ 5.583∗∗∗

(18.952) (16.934) (18.478) (8.343) (7.238) (12.263)

Individual effects No FE RE No FE RE
N 1624 1624 1624 1446 1446 1446
Notes: mixed- and fixed-effects regressions with robust standard errors clustered on matching groups. t-statistics
in parentheses. ∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01.

(𝑝 < 0.01). When the employer observes quantitative information, workers increase their non-
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Table 2: Treatment effects on NCA.

(1) (2) (3) (4) (5) (6)
NCA NCA NCA NCA NCA NCA

OFFICE −0.373∗∗ −0.353∗∗ −0.354∗∗ −0.347∗∗ −0.325∗∗ −0.326∗∗

(−2.625) (−2.539) (−2.545) (−2.407) (−2.322) (−2.331)
Lagged wage 0.033∗∗∗ 0.029∗∗∗ 0.030∗∗∗

(3.295) (5.223) (5.332)
Period −0.019 −0.018 −0.018

(−1.033) (−0.989) (−0.991)
Constant 4.615∗∗∗ 4.605∗∗∗ 4.590∗∗∗ 3.929∗∗∗ 3.989∗∗∗ 3.960∗∗∗

(18.982) (66.183) (18.831) (10.150) (24.649) (13.636)

Individual effects No FE RE No FE RE
N 1624 1624 1624 1446 1446 1446
Notes: mixed- and fixed-effects regressions with robust standard errors clustered on matching groups. t-statistics
in parentheses. ∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01.

productive effort to influence the signal in their favor. Thus, the results support Hypothesis 1.

Result 1. The TNA in the OFFICE treatment is higher than in the HOME treatment.

Furthermore, we observe a significant difference in productivity between the OFFICE and
HOME treatments. On average, workers solved correctly 0.3more problems in the HOME treat-
ment compared to the OFFICE treatment (𝑝 < 0.05). These findings support our hypothesis,
suggesting that the increase in task quantity comes at the cost of task quality.
To validate our proposed mechanism, we must address potential alternative explanations.

Specifically, we investigate the unique signaling dynamics within the HOME treatment. Unlike
the OFFICE treatment, any signal higher than 7 necessarily corresponds to the true number of
correct answers. As a result, workers in the HOME treatment are aware that the manager will
recognize signals of 8 or higher as true representations of their performance. This heightened
signaling value for more than seven correct answers may incentivize workers to aim for more
than seven correct answers in the HOME treatment only.
This alternative explanation assumes that workers can increase their productivity in re-

sponse to the implied incentives. Contrary to this assumption, prior research, such as Araujo
et al., 2016, demonstrates that workers in simple laboratory tasks typically perform to the best
of their abilities, and additional effort has a negligible effect on their performance. Thus, we
attribute any observed treatment differences to potential skipping strategies rather than vari-
ations in exerted effort, effectively undermining this alternative explanation. Nevertheless, to
ensure a comprehensive analysis, we carefully examine the data for any evidence that could
support this alternative hypothesis.
To this end, we scrutinize the distribution of correct answers. If workers in the HOME
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treatment indeed respond to the signaling incentives by exceeding seven correct answers, we
would expect to observe fewer instances where the number of correct answers (NCA) is 7
or slightly below in the HOME treatment, accompanied by more instances where the NCA
is 8 or slightly above. Figure 3 shows the NCA distribution by treatments. Whereas more
workers solve eight problems correctly in the HOME treatment, this is also true for six or
seven problems. The most prominent effect apparent in the figure is that it is more common in
the OFFICE treatment that a worker does not solve any problem, in line with our hypothesis
that shifting focus to quantity comes at the expense of quality.

0
.0

5
.1

.1
5

.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of correct answers

HOME OFFICE

Figure 3: Number of correct answers by treatment.

To rigorously test the alternative explanation, we examine whether the treatment effect is
driven by a shift in the distribution towards values above 7 in the HOME treatment. Table 3
reports the relevant regression results. Column (1) repeats the basic regression reported in
Column (1) of Tables 1 and 2. Column (2) repeats the analysis dropping the observations
in which the signal exceeds 7. Naturally, this adjustment reduces the effect size irrespective
of the underlying explanation. To account for workers pushing the NCA beyond 7 without
artificially suppressing the overall treatment difference, we report in Columns (3)–(4) tobit
regressions censoring the dependent variable at 7, 6, and 5, respectively. The results remain
consistent with the main specification reported in Column (1). Consequently, we can attribute
the majority of the treatment effect to the role of quantitative information in the signal within
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the OFFICE treatment, given the reasonable assumption that any extra effort only impacts
values close to the cutoff point of seven correct answers. The analysis of strategies to be
presented in Section 5.2 below further supports our interpretation of the results. To sum, the
experimental evidence establishes that the increase in quantity comes at the expense of quality,
supporting Hypothesis 2.

Result 2. The NCA in the OFFICE treatment is lower than in the HOME treatment.

Table 3: Regressions on restricted NCA.

(1) (2) (3) (4) (5)
Unrestricted 7-capped 7-censored 6-censored 5-censored

OFFICE −0.347∗∗ −0.231∗ −0.365∗∗ −0.372∗∗ −0.368∗∗

(−2.407) (−1.724) (−2.331) (−2.178) (−2.082)
Lagged wage 0.033∗∗∗ 0.030∗∗∗ 0.035∗∗∗ 0.037∗∗∗ 0.041∗∗∗

(3.295) (4.256) (3.434) (3.682) (4.121)
Period −0.019 −0.031∗∗ −0.022 −0.033 −0.037∗

(−1.033) (−2.032) (−1.101) (−1.523) (−1.714)
Constant 3.929∗∗∗ 3.455∗∗∗ 3.943∗∗∗ 4.004∗∗∗ 3.958∗∗∗

(10.150) (14.614) (10.649) (10.947) (10.651)

N 1446 1280 1446 1446 1446
Notes: OLS and tobit regressions for number of correct answers with robust standard errors clustered on matching
groups. t-statistics in parentheses. ∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01.

5.1.1. Order effects

Further investigation reveals an asymmetric effect with respect to the order of the treatments.
Table 4 presents mixed-effects regressions with individual random effects and robust standard
errors clustered on matching groups testing the order effect. Although the interaction of the
treatment and the order on the NCA does not reach significance, the treatment effect appears
only when switching from OFFICE to HOME. The effect in the opposite order is weaker and
non-significant.
There is also a main effect for order, reflecting higher quantity and quality in the HOME

treatment when following the OFFICE treatment. This difference is not likely to reflect a pure
learning effect, as the effect of the period within blocks is negligible and negative. A possible
explanation for this order effect is that when workers switch to HOME, they increase their
productivity to compensate for the reduction in their influence on the signal in the OFFICE
treatment. We expect that when workers transition from HOME to OFFICE, they increase
quantity to boost the signal at the expense of productivity. However, although we see an
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Table 4: Order effects.

(1) (2) (3) (4) (5) (6)
TNA, All TNA,

OFFICE
first

TNA,
HOME
first

NCA, All NCA,
OFFICE
first

NCA,
HOME
first

OFFICE 2.565∗∗∗ 2.582∗∗∗ 3.752∗∗∗ −0.555∗∗∗ −0.558∗∗ −0.130
(2.680) (2.643) (2.886) (−2.594) (−2.572) (−0.767)

OFFICE × HOME first 1.137 0.439
(0.718) (1.584)

HOME first −2.200∗∗∗ −1.054∗∗
(−3.200) (−2.203)

Lagged wage 0.016 0.003 0.030 0.031∗∗∗ 0.035∗∗∗ 0.027∗∗∗
(1.160) (0.174) (1.329) (5.519) (4.541) (3.314)

Period 0.097 0.176 0.024 −0.018 −0.015 −0.021
(1.483) (1.470) (0.417) (−0.995) (−0.688) (−0.722)

Constant 6.665∗∗∗ 6.466∗∗∗ 4.510∗∗∗ 4.483∗∗∗ 4.377∗∗∗ 3.569∗∗∗
(12.180) (13.497) (5.405) (11.576) (11.933) (8.217)

N 1446 696 750 1446 696 750
Notes: mixed-effects regressions with robust standard errors clustered on matching groups. t-statistics in paren-
theses. ∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01.

increase in the signal when switching to OFFICE, the lack of decrease in productivity can
be explained by the characteristic of the task. Increasing the signal (by submitting random
answers) is relatively easy and might not dramatically affect the workers’ productivity. We
summarize in the following result.

Result 3. Reducing the information incorporated in the signal (transition to “working from home”)
increases productivity. Enriching the signal (transition to “working in the office”) does not decrease
productivity significantly. Productivity “at home” is higher if following a transition from “in the
office.”

5.2. Worker strategy

We now turn to analyze the workers’ strategies and how these strategies differ across treat-
ments. We begin with identifying the decision to skip a problem, followed by analyzing prob-
lem difficulty. Section 5.2.3 combines the two variables to estimate strategies.

5.2.1. Estimating the probability of skipping

We assume that the time spent on any given problem results from a two-step process. First,
the worker quickly estimates the problem difficulty and decides whether to skip it. If the
worker decides to skip, the solving time follows a lognormal distribution with a low mean
and is independent of the problem difficulty. If the worker attempts to solve the problem,

15



0.00

0.25

0.50

0.75

0 5 10 15 20 25
Response time

de
ns

ity

Figure 4: Empirical and modelled distributions of solving time.

the solving time follows a lognormal distribution with a higher mean, and depends on the
problem difficulty.13 The histogram in Figure 4 presents the distribution of solving times
across all problems solved in the experiment. Consistent with our assumption, the distribution
is bimodal, with a low mode at around two seconds and a high mode at about seven seconds.
We fitted a finite mixture model to estimate the mean and standard deviation of each

of the two underlying lognormal distributions and the share of each distribution. The two
distributions generated by the model are overlaid over the histogram in Figure 4. The model
generates for each observation a posterior probability that the participant skipped the problem
(i.e., that the solving time for the problem comes from the low distribution). We define a
problem as skipped if and only if the posterior probability is higher than 50%,14 and regardless
of the correctness of the solution.15 See C.1 for more details.
13The assumption that response time distributions are lognormal is a standard assumption in psychology and
economics (Linden, 2006; Moffatt, 2005; Thissen, 1983)
14The probability of skipping is lower than 40% or higher than 60% for over 99% of the observations. The skipping
probability is lower than 1% for over two-thirds of the observations, and higher than 99% for over 20%.
15Among 3, 649 skipped problems, only 7 were solved correctly.
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5.2.2. Estimating difficulty level

A productivity-maximizing worker should skip a problem if the time required to answer the
problem is higher than the expected solving time of a new random problem.16 Accordingly,
we aim to create a measure of problem difficulty based on solving time, subject to individ-
ual fixed effects such as mathematical ability. Because the problems in the experiment were
randomized, it is not feasible to estimate the solving time for each problem individually. We,
therefore, used supervised machine learning to predict the solving time based on the problem
characteristics in an independent data set.
To generate this independent data set, we recruited five participants who did not participate

in the experiment.17 The participants solved randomized problems for 30 minutes, earning 0.5
NIS for each correct answer. Participants had to submit correct answers before proceeding,
and skipping was not possible. After submitting a correct answer, participants could rest as
the clock paused while the computer screen presented the time elapsed and problems solved
up to that point. Overall, the participants solved a total of 794 problems. Thirty-six problems
with a solving time of more than 25 seconds (indicating loss of concentration) were removed,
leaving 769 problems to comprise the training data set.
We trained our model to predict the standardized solving time based on fifteen problem

characteristics using lasso regressions.18 Applying the prediction model to the experimental
problem set and standardizing the results generates a difficulty score for each problem our
participants faced. The full details are in C.2.

5.2.3. Skipping and difficulty

The posited data-generation process described above predicts that the solving time depends
on the problem difficulty only if the participant does not skip the problem. We use this pre-
diction to validate our measures of skipping and problem difficulty. Regressions of solving
time on the problem difficulty interacted with whether our skipping measure marks the prob-
lem as skipped, with robust standard errors clustered on participants, confirm the prediction.
Solving time is significantly correlated with the problem difficulty for solved problems (𝛽 =
0.51, 𝑡(82) = 3.09, 𝑝 = .003) but not for skipped problems (𝛽 = −0.39, 𝑡(82) = −1.20, 𝑝 = .235).
Figure 5 shows the relation between difficulty and skipping by treatment. Panel A presents

the share of skipped problems in the two treatments based on the problem difficulty. The
most evident effect is that workers are more likely to skip a problem in OFFICE than in
HOME.19 Within treatments, more difficult problems are more likely to be skipped in the
16The solving time includes the skipping decision time and the answer time.
17To minimize the variance in mathematical ability, all five participants were Industrial Engineering and Man-
agement graduate students.
18Problem characteristics include, for example, “two of the three numbers sum to a round number” and “the sum
is less than 100”.
19This difference is consistent throughout the 60-second duration. Additionally, in the OFFICE treatment we
observe a steep increase in the propensity to skip in the last ten seconds that is almost completely absent in the
HOME treatment.
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Figure 5: Problem difficulty and skipping.

HOME treatment. The relation between problem difficulty and skipping is weaker in OF-
FICE and appears to be flat for problems that are not easy (difficulty of one standard devia-
tion below the mean or higher). The difference between the treatments is more apparent in
Panel B, which flips the relation to show the mean difficulty of solved and skipped problems
by treatment. The skipped problems are significantly more difficult than the solved prob-
lems in HOME (𝑡(82) = 2.14, 𝑝 = .035, based on an OLS regression of difficulty on treatment
interacted with skipping and robust standard errors clustered on subjects). In contrast, the
difference is much smaller and only weakly significant in OFFICE (𝑡(82) = 1.67, 𝑝 = .099).
As we saw in Section 5.1, the effect of the signal structure is strongest when transiting from
OFFICE to HOME. Indeed, adding the order and its interactions to the model reveals that the
difference is only significant when HOME follows the OFFICE treatment (𝑡(82) = 2.20, 𝑝 = .031;
𝑝 > .110 for the other three comparisons). The interaction of treatment and skipping is sig-
nificant in the OFFICE-first order (𝐹(1, 82) = 4.87, 𝑝 = .030) but not in the HOME-first order
(𝐹(1, 82) = 0.53, 𝑝 = .469).
Table 5 presents a series of logistic regressions supporting these conclusions. In the HOME

treatment, the probability of skipping is significantly higher for more difficult problems. This
relationship is substantially weaker in the OFFICE treatment. The interaction, however, does
not reach significance. The interaction is stronger and significant when excluding the 10 per-
cent easiest problems in Column (2) and when participants transition from the OFFICE to the
HOME treatment in Column (3). Somewhat unexpectedly, problem difficulty does not signifi-
cantly affect the skipping probability in the opposite order.
Thus, the analysis of worker strategy confirms Hypothesis 4. Support for Hypotheses 3

and 5 is strongest when workers transition from OFFICE to HOME. The following result sum-
marizes the strategy analysis.
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Table 5: Problem skipping.

(1) (2) (3) (4)
All All OFFICE first HOME first

OFFICE × Difficulty −0.161 −0.183∗ −0.237∗∗ 0.0495
(−1.63) (−1.90) (−2.16) (0.75)

OFFICE 1.767∗∗∗ 1.782∗∗∗ 1.411∗∗∗ 2.510∗∗∗

(4.88) (4.95) (3.31) (3.32)

Difficulty 0.218∗∗ 0.214∗∗ 0.265∗∗ 0.0375
(2.12) (2.12) (2.15) (0.61)

Constant −2.152∗∗∗ −2.155∗∗∗ −1.746∗∗∗ −2.948∗∗∗

(−6.39) (−6.38) (−4.58) (−4.21)

Exclude easy NO YES NO NO
N 12802 11521 6727 6075
Notes: t-statistics based on robust standard errors clustered on subjects in parentheses. ∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05,
∗∗∗ 𝑝 < 0.01.

Result 4. Workers skip problems more in the OFFICE treatment. Problem difficulty level increases
the probability of skipping the problem in the HOME treatment but less so in the OFFICE treatment.

6. Conclusion

The literature on multitasking primarily analyses the optimal incentive scheme given the cor-
respondence between the production technology and the signal structure (Baker, 1992, 2002;
Gibbons, 2005; Holmstrom and Milgrom, 1991). This paper focuses on how workers respond
to different signal structures and the implications for productivity. Workers necessarily have
some autonomy in allocating effort between various tasks or between different aspects of a
task. To make the best of a worker’s limited time and effort, optimal effort allocation requires
focusing on tasks that maximize the production rate. We refer to this aspect of the task as
quality. When the observed signal is sensitive to quantitative aspects of the job, the worker is
incentivized to reallocate effort to less efficient tasks. As a result, the quality of the output de-
creases. This insight is relevant for the design of work environments. Specifically, it suggests
the counter-intuitive conclusion that reducing observability—as when switching from office
work to working from home—may reduce the transparency of quantitative indicators, thereby
improving incentives and increasing productivity.
A natural response to this argument is that managers can ignore irrelevant indicators. Much

practical effort is indeed given to identifying the best procedures and measures to assess worker
performance and productivity. However, this is not only often practically impossible, as vari-
ous dimensions simultaneously affect the observed indicators—but is psychologically difficult.
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Research in psychology shows that people are unable to ignore information, even if the in-
formation is irrelevant or “non-diagnostic” to the task at hand (Nisbett et al., 1981; Waller
and Zimbelman, 2003; Zukier, 1982). This so-called Dilution effect extends to performance
evaluations (Humphrey, 1997).
Our experimental results are in line with the reasoning presented above. When quantity is

(noisily) observable, workers artificially inflate the number of tasks they work on; and become
less efficient in their effort allocation between tasks. The experiment reveals an unexpected
order effect. We find significant support for our hypotheses when workers transition from
high observability (“office”) to low observability (“home”). In contrast, the treatment effects
diminish and disappear when workers start in the limited observability treatment. Productivity
increases but does not decrease with a shift in the signal structure. A possible explanation is
that workers only learn to estimate problem difficulty with experience. There are, accordingly,
two conditions for the implementation of efficient strategies that consider problem difficulty.
Workers must be both experienced and subject to undistorted incentives. As a result, we only
observe a strong effect for problem difficulty on skipping decisions in the late HOME treatment.
The effect is considerably weaker in the late OFFICE treatment and does not exist in the first
block regardless of the treatment. Does such asymmetry exist in actual firms? The literature
on working from home reviewed in Section 2 only looked at the transition from office to home
work. We could not find any field study testing the opposite direction. Future work is required
to understand the reasons for this asymmetric effect better and to what extent it generalizes
to field conditions.
These findings have important implications for performance evaluations. Even in an envi-

ronment of incomplete contracts, workers allocate attention and effort to tasks that maximize
the observable measures, which may harm efficiency. Workers who understand that working
long hours improves their employer’s (explicit or implicit) evaluations will prioritize their tasks
to extend their work hours while reducing their total productivity. This aspect of transparency
may provide part of the explanation for recent research pointing at the benefits of working
from home (Angelici and Profeta, 2020; Bloom et al., 2015; Choudhury et al., 2021).
Finally, this study focuses on the effect of the signal structure on worker behavior. Several

questions regarding the employer side remain open. Do employers understand the potential
downside of more transparency? Can employers ignore non-diagnostic information? Future
research is needed to provide a more complete understanding of this phenomenon.
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Disclaimer

During the preparation of this work the authors used Claude 2 in order to make slight gram-
matical and style changes. After using this tool/service, the authors reviewed and edited the
content as needed and take full responsibility for the content of the publication.
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Appendix A. Experimental instructions

Thank you for coming to participate in the experiment.

Please read the instructions carefully.

The experiment includes two parts, each consisting of 10 rounds. At the end of the experiment,
the computer will randomly draw three rounds from each part, and the payment you will
receive will be the total profits you earned in these six rounds.
The participants will be randomly assigned into roles of workers and employers. These roles

will be fixed during the whole experiment. At the beginning of the first part of the experiment,
each worker will be randomly paired with one employer, so each worker will work for one
employer, and each employer will have only one worker. These pairs will be fixed during
the first part of the experiment. At the beginning of the second part of the experiment, each
worker will be repaired with a new and different employer than the one he was paired with
for the first part. These pairs will be fixed during the second part of the experiment.

Instructions for the round

The procedure of round

During each round, the worker will work for the employer by solving simple addition problems.
The worker will have 60 seconds each round to solve the problems. Each correct solution will
earn the employer 10 points. After submitting a solution, the worker will be presented with
a new problem, and will not be able to return to the previous problems. The worker will not
know if the solution he submitted is correct or wrong. There is no limit on the number of
problems during a round.
During this time the employer will be able to make extra profits by clicking on a blue ball

that will appear on random locations on the screen, using the left click of the mouse. Each
click will earn him 0.1 points.
At the end of the 60 seconds, the employer will receive information regarding the worker’s

performance and will then choose the wage he wants to pay to the worker for his work in the
round. The wage can be any round number between 0 and 60 points.
The information the employer will observe will differ between the parts as follows:

• The computer will flip a virtual coin. In the case of ”heads,” the computer will present
the employer the real number of problems the worker solved correctly.

• In the case of ”Tails,” the computer will replace the real number with a random number
from a given range. When the employer sees the number, he will not know whether this
is the real number of correct solutions or a random number. Information regarding the
range will be given to you at the beginning of each part.

After the employer decides the wage he wants to pay to his worker for his work in the
round, both the employer and worker will observe the following information:
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• The information the employer observed before choosing the wage.

• The wage the employer chose to pay.

Then a new round will start. Please notice: the employer’s profit from each round will be
visible to neither of the participants until the end of the experiment.

The profits from a round

The workers’ profit from each round will be the wage paid by the employer plus 30 points.
The employers’ profit from each round will be 60 points, plus the number of clicks on the

blue ball multiplied by 0.1, plus 10 points for each problem the worker solved correctly, minus
the wage he chose to pay to the worker.

Practice

Before the start of the experiment, you will go throw a short training, during which you will
solve simple addition problems similar to these in the experiment for 1 minute. The purpose
of this part is to let you get familiar with the task and will not affect your payment.

End of the experiment

After the end of the experiment, you will be asked to fill out a short survey. This survey, as
any other decision you make during the experiment, is anonymous. Please wait in your seats
until we call you to receive your payment.
We will now read the instruction out loud. If you have any questions afterward please raise

your hand and the experimenter will come to answer you privately.
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A.1. On-screen instructions

The following instructions were given on-screen at the beginning of each block of the experi-
ment.

In the OFFICE treatment:
During this part, half of the time, the number observed by the employer will be randomly

drawn, and its value will be between 1 and the total number of answers submitted by the
worker.

In the Home treatment:
During this part, half of the time, the number observed by the employer will be randomly

drawn, and its value will be between 1 and 7.
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Appendix B. Proof of the lemma

Lemma. The optimal strategy 𝜎∗(𝑡𝑘) is monotonic; 𝜎(𝑡𝑘) ≥ 𝜎(𝑡𝑙) iff 𝑡𝑘 ≤ 𝑡𝑙.

Proof. The worker maximizes the signal observed by the manager. Recall that the signal is
increasing in 𝑞𝑠 = 𝑇

𝑡𝑠(𝜎)
and weakly increasing in 𝑞𝑟 = 𝑇

𝑡𝑟(𝜎)
. Because 𝜕𝑞𝑠

𝜕𝑡𝑠
, 𝜕𝑞𝑟
𝜕𝑡𝑟

< 0, we can
represent the signal as

𝑆(𝜎) = 𝑓(𝑡𝑠, 𝑡𝑟),

such that 𝜕𝑓
𝜕𝑡𝑠

< 0 and 𝜕𝑓
𝜕𝑡𝑟

≤ 0. Let 𝐼(𝜎) ⊆ [0, 1] be the region for which the worker solves the
problem, formally 𝑡 ∈ 𝐼(𝜎) iff 𝜎(𝑡) = 1. Denote the length and mean of 𝐼(𝜎) by |𝐼(𝜎)| and 𝐼(𝜎),
respectively. The expected answer time is thus

𝑡𝑟(𝜎) = 𝑡𝑒 + |𝐼(𝜎)| ⋅ 𝐼(𝜎), (B1)

and the expected solving time 𝑡𝑠 is

𝑡𝑠 =
𝑡𝑒

|𝐼(𝜎)| + 𝐼(𝜎). (B2)

For any strategy 𝜎, consider the monotonic strategy 𝜎′ given by

𝜎′(𝑡) = {
1 if 0 ≤ 𝑡 ≤ |𝐼(𝜎)|,
0 if |𝐼(𝜎)| < 𝑡 ≤ 1.

(B3)

From the definition of 𝜎′, 𝑡𝑟(𝜎′) ≤ 𝑡𝑟(𝜎) and 𝑡𝑠(𝜎′) ≤ 𝑡𝑠(𝜎). Consequently, 𝑆(𝜎′) ≥ 𝑆(𝜎), hence
the optimal strategy is monotonic.
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Appendix C. Additional analyses

C.1. Skipping analysis

We fitted a finite mixture model to estimate the probability of skipping based on the solving
time. The observation-level log-likelihood function is given by

𝐿𝐿𝑖 = ln [𝜋𝜙 ( ln(𝑟𝑡𝑖) − 𝜇1
𝜎1

) + (1 − 𝜋)𝜙 ( ln(𝑟𝑡𝑖) − 𝜇2
𝜎2

)] ,

where 𝑟𝑡𝑖 is the solving time in problem i, 𝜋 is the share of skipped problems, and 𝜇1 and 𝜎1
(𝜇2 and 𝜎2) are the mean and standard deviation of the distribution of log solving time of the
skipped (solved) problems. Figure C1 shows the kernel density estimate of the log solving time.
We set the initial values for the estimation by splitting the observations at the minimum density
marked by the vertical line in the figure, and calculating the mean and standard deviation for
the observations above and below the splitting point. The initial value for 𝜋 is set as the
ratio between the number of observations below the splitting point and the total number of
observations.

0.0

0.2

0.4

0.6

0 1 2 3 4
Log response time

de
ns

ity

Figure C1

Next we apply Bayes’ Rule to determine for each observation the posterior probability
of being in the “skipped” distribution. The histogram of the resulting posteriors depicted in
Figure C2 reveals that the posteriors are very informative. We therefore define a problem as
skipped if the posterior is above 50%.
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C.2. Problem difficulty analysis

We used supervised machine learning to estimate the difficulty level of each problem in the
experiment. We constructed a model predicting the difficulty level of any given addition
problem based on an independent training data set of random addition problems and solving
times.
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Figure C3: Distribution of problem difficulty in the training set.

To generate the independent data set, we recruited five participants who did not participate
in the experiment. The participants solved randomized problems for 30 minutes, earning 0.5
NIS for each correct answer. Participants had to submit correct answers before proceeding
and skipping was not possible. After submitting a correct answer, participants could rest as
the clock paused while the computer screen presented the time elapsed and problems solved
up to that point. Overall, the participants solved a total of 794 problems. Thirty-six problems
with a solving time of more than 25 seconds (indicating loss of concentration) were removed,
leaving 769 problems to comprise the training set. To wash out individual differences, the
criterion used to train the prediction model was the problem’s solving time, standardized sep-
arately within individuals. The resulting distribution appears in Figure C3.
As predictors, we used indicators for the features listed in Table C1. We used lasso re-

gressions and V-fold CV, which conducts an automatic search for the optimal level of regular-
ization.We also used the ‘Lambda.min’ feature which automatically chooses the lambda that
brings the MSE to minimum. We consequently trained our model using only part of the inde-
pendent data in order to validate the model. The procedure was as follows. We randomly split
the data into a Training set, consisting of 20% of all observations and a Test set, consisting of
the remaining 80% of observations. We then used this Training set for within-sample predic-
tion, resulting in an MSE of 0.63. Next, we used the same methodology, this time training on
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the full independent Training data set and predicting the difficulty level in the experimental
Test set.

Table C1: Predictors.

At least one unit digit is 0.
At least two unit digits are 0.
All three unit digits are 0.
At least two unit digits sum to 10.
All three unit digits sum to 10.
At least two ten digits sum to 10.
All three ten digits sum to 10.
The total sum is less than 100.
The total sum is between 100 and 200.
At least one unit digit is smaller than 7.
At least two unit digits are smaller than 7.
All three unit digits are smaller than 7.
At least one ten digit is smaller than 7.
At least two ten digits are smaller than 7.
All three ten digits are smaller than 7.
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