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Abstract

We study two-sided matching contests with two sets, A and B, each of which includes a

�nite number of heterogeneous agents with commonly known types. The agents in each set

compete in Tullock contests where they simultaneously send their costly e¤orts, and then are

assortatively matched, namely, the winner of set A is matched with the winner of set B and so

on until all the agents in the set with the smaller number of agents are matched. We analyze

the agents�equilibrium e¤orts for which an agent�s match-value is either a multiplicative or an

additive function of the types who are matched. We demonstrate that whether or not both

sets have the same number of agents might have a critical e¤ect on their equilibrium e¤orts. In

particular, a little change in the size of one of the sets might have a radical e¤ect on the agents�

equilibrium e¤orts.
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1 Introduction

Consider two-sided matching contests in which two contests take place independently within two

groups. At the end of these contests, the agents in both groups are assortatively matched according

to the ratings of the agents in the contests. Such a two-sided matching can be found in academic

life, in which one of the groups includes universities which invest in hiring the best researchers

and teachers as well as in providing the best conditions for the students. Such an investment

improves its rank and thus will attract better candidates. The other group includes potential

international student candidates, who aspire to be admitted to higher education universities, and

for this purpose they put forth their best e¤orts in learning, studying for entrance exams, requesting

recommendations, etc. Subsequently, candidates with the best qualities will be admitted to the

highest ranked/top universities. Similar two-sided matching contests can be seen among accounting

or law students on the one side and �rms on the other, or among models, actors, and artists on

one side, and the talent agencies on the other.

In such two-sided matching contests, the form of the contest among the agents has a signi�cant

e¤ect on their behavior and, in particular, on the results. In this paper, we involve the well-known

Tullock contest (see tullock 1980) in the study of two-sided matching. Formally, we study such a

two-sided matching model under complete information where there are two sets of agents, set A

with m heterogeneous �rms and set B with n; n � m; heterogeneous workers, each of whom has

commonly known types. The �rms compete against each other in a Tullock contest, and similarly

the workers compete against each other in another Tullock contest. The agents simultaneously

exert their e¤orts, and then they are assortatively matched, namely, the winner in the contest of

set A is matched with the winner in the contest of set B, and so on until all the agents in the set

with the smaller number of agents are matched. The agents have a match-value function that is

monotonically increasing in both types of �rms and workers. An agent who is matched has a payo¤

of his match-value minus the cost of his e¤ort.
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We begin with 2x2 assortative matching contests in which there are two agents on each side. We

�rst establish that there are equilibrium e¤orts, and we provide a necessary and su¢ cient condition

on the match-value function such that the �rm (worker) with the higher type exerts a larger e¤ort

than his opponent. For such matching contests with a multiplicative match-value function of the

agents� types, we explicitly characterize the equilibrium e¤orts and show that the ratio of the

agents�e¤orts in each set is equal to the ratio of their types such that the larger the type of the

agent is, the larger is his equilibrium e¤ort. On the other hand, in these matching contests with

an additive value function of the agents�types, there is only a unique equilibrium in which all the

agents exert an e¤ort of zero and therefore the matching is randomized and every �rm (worker)

has the same probability to be matched with each of the workers (�rms).

The analysis of mxn assortative matching contests is quite complex, and in order to analyze

the agents�behavior when the number of agents in both sets are not the same, we focus �rst on the

simpler case of 3x2 assortative matching contests with three �rms and two workers. We establish

the existence of the equilibrium e¤orts, and prove that at least two �rms exert positive e¤orts in

equilibrium, but with an additive match-value function all the three �rms exert positive e¤orts in

equilibrium. On the other hand, in equilibrium, the two workers might exert an e¤ort of zero.

We also study assortative matching contests with a larger number of agents. We �rst generalize

some of the above results and claim that in a mxn assortative matching contest where m > n, at

least n �rms exert positive e¤orts in equilibrium. Likewise, with an additive match-value function

where m > n at least n+1 �rms exert positive e¤orts in equilibrium. Then, we consider assortative

matching contests with m � 2 �rms and two workers. We show that when there is a multiplicative

match-value function, the ratio of the workers�e¤orts is equal to the ratio of their types exactly as

in the 2x2 assortative matching contests. In addition, we show that with an additive match-value

function, the equilibrium workers�e¤orts are the same.

When the number of agents in both sets are the same we generalize our result for 2x2 assortative

matching contests and show that for every n � 2, in the nxn assortative matching contest with an
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additive match-value function, the equilibrium e¤orts of all the agents are zero and therefore the

matching is randomized and each �rm (worker) has the same probability to be matched with each

of the workers (�rms).

Hence, one of the insights we can derive from our analysis of assortative matching contests is

that in a two-sided matching model where agents have additive match-value functions, if the sets

have the same size, the agents from both sets might be not active. Then, when a new agent joins

to one of the sets, although his type (ability) is much smaller than the other agents� types, an

intensive competition might begin there. On the other hand, in a two-sided matching model where

the agents have multiplicative match-value functions, if a new agent joins to one of the sets, if his

type is much smaller than the other agents�types, he does not a¤ect the other agents�strategies,

and actually he stays out of the competition. In other words, if an additional agent, independently

of his ability, joins to one of the sets in a two-sided matching model, depending on the form of the

agents�match-value function, the status quo may be either completely changed or not at all.

The rest of the paper is organized as follows: in Section 2 we present our assortative matching

contest. In Sections 3 and 4 we analyze 2x2 and 3x2 assortative matching contests, respectively,

and in Section 5 we analyze some assortative matching contests with a larger number of agents.

Section 6 concludes. Some of the proofs appear in the Appendix.

Related literature

In a matching model, e¤orts can be exerted by either one side or both. One-sided activity is

modeled in the Tullock contest (see, for example, Tullock 1980, Skaperdas 1996, Szidarovszky and

Okuguchi 1997, Baye and Hoppe 2003, and Einy et al. 2015), the all-pay contest (see, for example,

Baye, Kovenock, and de Vries 1996, Moldovanu and Sela 2001, 2006, Che and Gale 1998, and

Siegel 2009), the rank-order tournament (see, for example, Lazear and Rosen 1981, Rosen 1986),

among others. In these contests we have one set of agents and one set of prizes, and the agents

exert e¤orts to win the prizes. In such one-sided models, the higher is the agent�s e¤ort, the higher

is his probability to win a larger prize. Some examples of one-sided models include Chao and
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Wilson (1987) and Wilson (1989) who considered a seller facing a continuum of customers who

di¤er in their private valuations of service quality. They showed how customers can be matched

to di¤erent service qualities by o¤ering them price menus that induce them to reveal their types.

Likewise, Fernandez and Gali (1999) compared markets to matching tournaments in a model with

a continuum of uniformly distributed agents on each side where only one side is active. They found

that despite wasteful signaling, tournaments may be welfare superior to markets if the active agents

have budget constraints.

A matching model in which e¤orts are exerted by agents on two sides with complete information

is studied by Bhaskar and Hopkins (2016) who considered a continuum of homogenous agents who

are matched according to the tournament model of Lazear and Rosen (1981). Hoppe, Moldovanu,

and Sela (2009) studied two-sided markets with incomplete information and a �nite number of

agents where the agents are matched according to the all-pay contest. Hoppe, Moldovanu, and

Ozdenoren (2011) studied this model where the agents on both sides compete in the all-pay contest,

but there is an in�nite number of agents on each side.1 Dizdar, Moldovanu, and Szech (2019) also

studied a two-sided model with a �nite number of agents where on each side the agents compete

in the all-pay contest, but in contrast to Hoppe, Moldovanu and Sela (2009) who assumed that the

agents�e¤orts are wasteful, they assumed that the e¤orts are not completely wasteful and that the

agents�e¤orts generate bene�ts for their partners that are increasing in the level of e¤ort. We, on

the other hand, also assume that the agents are assortatively matched and that their e¤orts are

wasteful, but unlike the above two-sided matching models, in our model the agents compete in the

Tullock contest. Since, the contest success function in the Tullock contest is stochastic while in the

all-pay contest it is deterministic, though we assume there is complete information, the stochastic

Tullock success function generates uncertainty in the matching between the two sides.

1Peters (2007) showed that equilibrium e¤orts in a very large �nite two-sided matching model can be quite di¤erent

from the equilibrium e¤orts in the continuum model.
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2 The assortative matching contest

We consider a set A = f1; 2; :::;mg of m �rms and a set B = f1; 2; :::; ng of n workers where n � m:

The �rms�types are mi; where mi � mi+1, i = 1; :::;m � 1. The workers� types are wj ; where

wj > wj+1, j = 1; :::; n� 1. All these types are commonly known. The matching contest proceeds

as follows: Each �rm i; i = 1; 2; :::;m exerts an e¤ort xi; and each worker j; j = 1; 2; :::; n exerts an

e¤ort yj . E¤orts are submitted simultaneously. The order of the �rms (workers) to be matched is

determined according to the method of Clark and Riis (1998) which is as follows: The �rst �rm

to be matched is determined by the probability success function that takes into account the e¤orts

of all the �rms. Formally, �rm i, i = 1; :::;m wins to be the �rst match with probability xiPm
k=1 xk

,

where xk is �rm k�s e¤ort, k = 1; :::;m. Then, the second �rm to be matched is determined by the

probability success function that is based on the e¤orts of all the �rms excluding the e¤ort of the

�rst winner. Thus, �rm i, i = 1; :::;m wins to be the second match with probability
mX
k=1
k 6=i

xk
mX
j=1

xj

xi
mX
j=1
j 6=k

xj

,

and so on until all the �rms are ranked, and similarly, all the workers are ranked. Then the �rm

and the worker who win �rst place in their sets are matched, those who win second place in their

sets are matched and so on until all the workers are matched. If �rm i is matched with worker j

after exerting e¤orts of xi and yj , correspondingly, the �rm�s utility is f(mi; wj)�xi and, similarly,

the worker�s utility is f(mi; wj) � yj , where f : R2 ! R1 is the match-value function which is

monotonically increasing in the types of the �rms and the workers who are matched. We say that

a matching contest has an equilibrium if every agent chooses an e¤ort that maximizes his expected

utility given the e¤orts of the other agents in both sets.

3 The 2x2 assortative matching contest

We next consider a set A = fl; hg of two �rms and a set B = fl; hg of two workers. We call

the types mh and wh the high-type �rm and worker, respectively, and the other types, ml and
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wl, the low-type �rm and worker, respectively. Suppose that �rm i; i = h; l exerts e¤ort xi and

worker j; j = h; l exerts e¤ort yj , and the two �rms compete against each other in a Tullock contest

and the two workers compete against each other in another Tullock contest. Then, the agents are

assortatively matched, namely the �rm that won the contest is matched with the worker who won

his contest, and, similarly, the �rm that lost the contest is matched with the worker who lost his

contest. In this case, the maximization problem of the high-type �rm is

max
xh

f(mh; wh)

�
xh

xh + xl

yh
yh + yl

+
xl

xh + xl

yl
yh + yl

�
(1)

+f(mh; wl)

�
xh

xh + xl

yl
yh + yl

+
xl

xh + xl

yh
yh + yl

�
� xh

and that of the low-type �rm is

max
xl
f(ml; wh)

�
xl

xh + xl

yh
yh + yl

+
xh

xh + xl

yl
yh + yl

�
(2)

+f(ml; wl)

�
xl

xh + xl

yl
yh + yl

+
xh

xh + xl

yh
yh + yl

�
� xl

The maximization problem of the high-type worker is

max
yh

f(mh; wh)

�
yh

yh + yl

xh
xh + xl

+
xl

xh + xl

yl
yh + yl

�
(3)

+f(ml; wh)

�
yh

yh + yl

xl
xh + xl

+
yl

yh + yl

xh
xh + xl

�
� yh

and that of the low-type worker is

max
yl
f(mh; wl)

�
yh

yh + yl

xl
xh + xl

+
yl

yh + yl

xh
xh + xl

�
(4)

+f(ml; wl)

�
yh

yh + yl

xh
xh + xl

+
yl

yh + yl

xl
xh + xl

�
� yl

The F.O.C. of the maximization problems (1), (2), (3), and (4) are

(f(mh; wh)� f(mh; wl))
xl

(xh + xl)2
yh � yl
yh + yl

� 1 (5)

(f(ml; wh)� f(ml; wl))
xh

(xh + xl)2
yh � yl
yh + yl

� 1

(f(mh; wh)� f(ml; wh))
yl

(yh + yl)2
xh � xl
xh + xl

� 1

(f(mh; wl)� f(ml; wl))
yh

(yh + yl)2
xh � xl
xh + xl

� 1
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In an interior equilibrium, there is equality between the LHS and the RHS of (5) and then we have

Proposition 1 The agents�equilibrium e¤orts in the 2x2 assortative matching contest are obtained

by the solution of the equations given in (5).

Proof. See Appendix.

In an interior equilibrium, if we divide the LHS of the �rst two equations of (5) by each other,

and also divide both RHS of these equations by each other, we obtain that

f(mh; wh)� f(mh; wl)

f(ml; wh)� f(ml; wl)
=
xh
xl

(6)

Similarly, if we divide both LHS of the last two equations of (5) by each other, and divide the RHS

of these equations by each other, we obtain

f(mh; wh)� f(ml; wh)

f(mh; wl)� f(ml; wl)
=
yh
yl

(7)

Equations (6) and (7) yield

Proposition 2 In the 2x2 assortative matching contest, if all the agents exert positive e¤orts,

the worker (�rm) with the higher type exerts a larger e¤ort than his opponent i¤ the match-value

function satis�es df(m;w)
dwdm > 0:
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3.1 The 2x2 assortative matching contest with a multiplicative match-value

function

We assume now that the agents�match-value function is multiplicative, namely, f(mi; wj) = miwj ;

i = l; h; j = l; h:2 By (5), the agents�equilibrium e¤orts satisfy:

mh(wh � wl)
xl

(xh + xl)2
yh � yl
yh + yl

� 1 (8)

ml(wh � wl)
xh

(xh + xl)2
yh � yl
yh + yl

� 1

wh(mh �ml)
yl

(yh + yl)2
xh � xl
xh + xl

� 1

wl(mh �ml)
yh

(yh + yl)2
xh � xl
xh + xl

� 1

In an interior equilibrium, by (6) and (7), we obtain

yh
yl

=
wh
wl

xh
xl

=
mh

ml

Thus, we have

Proposition 3 In the 2x2 assortative matching contest with a multiplicative match-value function,

the agents�equilibrium e¤orts are

xh =
m2
hml

(ml +mh)2
(wh � wl)2
(wh + wl)

(9)

xl =
mhm

2
l

(ml +mh)2
(wh � wl)2
(wh + wl)

yh =
w2hwl

(wh + wl)2
(mh �ml)

2

(mh +ml)

yl =
whw

2
l

(wh + wl)2
(mh �ml)

2

(mh +ml)

where the worker (�rm) with the larger type exerts a larger e¤ort than his opponent.

2Note that our results in this section can be immediately extended to match-value functions of the form f(mi; wj) =

�(mi)�(wj), where � and � are strictly increasing and di¤erentiable.
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In the standard Tullock contest between �rms (workers) without any matching when their values

of winning are mh;ml (wh; wl), the equilibrium e¤orts (see Tullock 1980) are

exh =
m2
hml

(ml +mh)2

exl =
mhm

2
l

(ml +mh)2

and the equilibrium e¤orts in the standard Tullock contest between the workers are

eyh =
w2hwl

(wh + wl)

eyl =
whw

2
l

(wh + wl)

If we compare the agents�equilibrium e¤orts in the (two-sided) assortative matching contest

with the (one-sided) standard Tullock contest, we obtain that each �rm�s e¤ort in the 2x2 assortative

matching contest with a multiplicative match-value function is larger than in the standard Tullock

contest i¤

(wh � wl)2 > (wh + wl)

Similarly, each worker�s e¤ort is larger than in the standard Tullock contest i¤

(mh �ml)
2 > (mh +ml)

We can see that the agents� e¤orts are larger than their e¤orts in the Tullock contest i¤ the

di¤erence of their opponents� types is relatively larger with respect to their sum. In the 2x2

assortative matching contest the agents�total e¤ort is

TE = xh + xl + yh + yl

= mhml
(mh �ml)

(ml +mh)2
(wh � wl)2
(wh + wl)

+whwl
(wh � wl)
(wh + wl)2

(mh �ml)
2

(mh +ml)

Thus, when the sum of the agents�types is constant on both sides, the larger the di¤erence of the

agents�types on both sides is, the larger is the equilibrium total e¤ort.
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3.2 The 2x2 assortative matching contest with an additive match-value function

We next assume that the agents�match-value function is additive, namely, f(mi; wj) = mi + wj ;

i = l; h; j = l; h:3 By (5), the agents�equilibrium e¤orts satisfy:

(wh � wl)
xl

(xh + xl)2
yh � yl
yh + yl

� 1 (10)

(wh � wl)
xh

(xh + xl)2
yh � yl
yh + yl

� 1

(mh �ml)
yl

(yh + yl)2
xh � xl
xh + xl

� 1

(mh �ml)
yh

(yh + yl)2
xh � xl
xh + xl

� 1

In an interior equilibrium, by (6) and (7),

xh = xl; yh = yl

which contradicts equality in the equations of (10). Thus, in this case we have only a corner

equilibrium.

Proposition 4 In the assortative 2x2 matching contest with an additive match-value function the

equilibrium e¤orts are

xh = xl = yh = yl = 0

and therefore the matching is randomized and every �rm (worker) has the same probability to be

matched with each of the workers (�rms)

In the next section we show that if the numbers of �rms and workers are not the same, in

contrast to Proposition 4, they compete in the contests and exert positive e¤orts.

3Note that our results in this section can be immediately extended to match-value functions having the form

f(mi; wj) = �(mi) + �(wj), where � and � are strictly increasing and di¤erentiable.
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4 The 3x2 assortative matching contest

We now consider the simplest case of two sets with a di¤erent number of agents where in set

A = fh;m; lg there are three �rms and in set B = fh; lg there are two workers. The �rms�types

are mh;mm and ml, where mh � mm � ml, and the workers�types are wh and wl where wh � wl.

Suppose that �rm i; i = h;m; l exerts e¤ort xi and worker j; j = h; l exerts e¤ort yj . Then, the

maximization problem of �rm h is

max
xh

f(mh; wh)

�
1

yh + yl
(

yhxh
xh + xm + xl

+
ylxl

xh + xm + xl

xh
xh + xm

+
ylxm

xh + xm + xl

xh
xh + xl

)

�
(11)

+f(mh; wl)

�
1

yh + yl
(

ylxh
xh + xm + xl

+
yhxl

xh + xm + xl

xh
xh + xm

+
yhxm

xh + xm + xl

xh
xh + xl

)

�
� xh

the maximization problem of �rm m is

max
xm

f(mm; wh)

�
1

yh + yl
(

yhxm
xh + xm + xl

+
ylxh

xh + xm + xl

xm
xl + xm

+
ylxl

xh + xm + xl

xm
xm + xh

)

�
(12)

+f(mm; wl)

�
1

yh + yl
(

ylxm
xh + xm + xl

+
yhxh

xh + xm + xl

xm
xl + xm

+
yhxl

xh + xm + xl

xm
xm + xh

)

�
� xm

and the maximization problem of �rm l is

max
xl
f(ml; wh)

�
1

yh + yl
(

yhxl
xh + xm + xl

+
ylxh

xh + xm + xl

xl
xl + xm

+
ylxm

xh + xm + xl

xl
xl + xh

)

�
(13)

+f(ml; wl)

�
1

yh + yl
(

ylxl
xh + xm + xl

+
yhxh

xh + xm + xl

xl
xl + xm

+
yhxm

xh + xm + xl

xl
xl + xh

)

�
� xl

Similarly, the maximization problem worker h is

max
yh

f(mh; wh)

�
1

yh + yl
(

yhxh
xh + xm + xl

+
ylxl

xh + xm + xl

xh
xh + xm

+
ylxm

xh + xm + xl

xh
xh + xl

)

�
(14)

+f(mm; wh)

�
1

yh + yl
(

yhxm
xh + xm + xl

+
ylxh

xh + xm + xl

xm
xl + xm

+
ylxl

xh + xm + xl

xm
xh + xm

)

�
+f(ml; wh)

�
1

yh + yl
(

yhxl
xh + xm + xl

+
ylxh

xh + xm + xl

xl
xl + xm

+
ylxm

xh + xm + xl

xl
xh + xl

)

�
� yh
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and the maximization problem of worker l is

max
yl
f(mh; wl)

�
1

yh + yl
(

ylxh
xh + xm + xl

+
yhxl

xh + xm + xl

xh
xh + xm

+
yhxm

xh + xm + xl

xh
xh + xl

)

�
(15)

+f(mm; wl)

�
1

yh + yl
(

ylxm
xh + xm + xl

+
yhxh

xh + xm + xl

xm
xl + xm

+
yhxl

xh + xm + xl

xm
xh + xm

)

�
+f(ml; wl)

�
1

yh + yl
(

ylxl
xh + xm + xl

+
yhxh

xh + xm + xl

xl
xl + xm

+
yhxm

xh + xm + xl

xl
xh + xl

)

�
� yl

The F.O.C. of �rm h�s maximization problems is

f(mh; wh)

�
1

yh + yl
(
yh(xm + xl)

(xh + xm + xl)2
� ylxl
(xh + xm + xl)2

xh
xh + xm

� ylxm
(xh + xm + xl)2

xh
xh + xl

)

�
(16)

+f(mh; wh)

�
yl

yh + yl
(

xm
(xh + xm)2

xl
xh + xm + xl

+
xl

(xh + xl)2
xm

xh + xm + xl
)

�
+f(mh; wl)

�
1

yh + yl

yl(xm + xl)

(xh + xm + xl)2
� yhxl
(xh + xm + xl)2

xh
xh + xm

� yhxm
(xh + xm + xl)2

xh
xh + xl

)

�
+f(mh; wl)

�
yh

yh + yl
(

xm
(xh + xm)2

xl
xh + xm + xl

+
xl

(xh + xl)2
xm

xh + xm + xl
)

�
� 1

The F.O.C. of �rm m�s maximization problem is

f(mm; wh)

�
1

yh + yl
(
yh(xl + xh)

(xh + xm + xl)2
� ylxh
(xh + xm + xl)2

xm
xl + xm

� ylxl
(xh + xm + xl)2

xm
xm + xh

)

�
(17)

+f(mm; wh)

�
yl

yh + yl
(

xh
xh + xm + xl

xl
(xl + xm)2

+
xl

xh + xm + xl

xh
(xm + xh)2

)

�
+f(mm; wl)

�
1

yh + yl
(

yl(xl + xh)

(xh + xm + xl)2
� yhxh
(xh + xm + xl)2

xm
xl + xm

� yhxl
(xh + xm + xl)2

xm
xm + xh

)

�
+f(mm; wl)

�
yh

yh + yl
(

xh
xh + xm + xl

xl
(xl + xm)2

+
xl

xh + xm + xl

xh
(xm + xh)2

)

�
� 1

and the F.O.C. of �rm l�s maximization problem is

f(ml; wh)

�
1

yh + yl
(
yh(xm + xh)

(xh + xm + xl)2
� ylxh
(xh + xm + xl)2

xl
xl + xm

� ylxm
(xh + xm + xl)2

xl
xl + xh

)

�
(18)

+f(ml; wh)

�
yl

yh + yl
(

xh
xh + xm + xl

xm
(xl + xm)2

+
xm

xh + xm + xl

xh
(xl + xh)2

)

�
+f(ml; wl)

�
1

yh + yl
(
yl(xm + xh)

(xh + xm + xl)2
� yhxh
(xh + xm + xl)2

xl
xl + xm

� yhxm
(xh + xm + xl)2

xl
xl + xh

)

�
+f(ml; wl)

�
yh

yh + yl
(

xh
xh + xm + xl

xm
(xl + xm)2

+
xm

xh + xm + xl

xh
(xl + xh)2

)

�
� 1
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Similarly, the F.O.C of worker h�s maximization problems is

f(mh; wh)

�
yl

(yh + yl)2
(

xh
xh + xm + xl

� xl
xh + xm + xl

xh
xh + xm

� xm
xh + xm + xl

xh
xh + xl

)

�
(19)

+f(mm; wh)

�
yl

(yh + yl)2
(

xm
xh + xm + xl

� xh
xh + xm + xl

xm
xl + xm

� xl
xh + xm + xl

xm
xh + xm

)

�
+f(ml; wh)

�
yl

(yh + yl)2
(

xl
xh + xm + xl

� xh
xh + xm + xl

xl
xl + xm

� xm
xh + xm + xl

xl
xh + xl

)

�
� 1

and the F.O.C. of worker l�s maximization problems is

f(mh; wl)

�
yh

(yh + yl)2
(

xh
xh + xm + xl

� xl
xh + xm + xl

xh
xh + xm

� xm
xh + xm + xl

xh
xh + xl

)

�
(20)

+f(mm; wl)

�
yh

(yh + yl)2
(

xm
xh + xm + xl

� xh
xh + xm + xl

xm
xl + xm

� xl
xh + xm + xl

xm
xh + xm

)

�
+f(ml; wl)

�
yh

(yh + yl)2
(

xl
xh + xm + xl

� xh
xh + xm + xl

xl
xl + xm

� xm
xh + xm + xl

xl
xh + xl

)

�
� 1

Then, we have an interior equilibrium.

Proposition 5 The equilibrium e¤orts of the 3x2 assortative matching contest are obtained by the

solution of the equations given in (16), (17), (18), (19), and (20).

Proof. See Appendix.

We showed that in the 2x2 assortative matching contest with an additive match-value function

the agents from both sets do not exert e¤orts in equilibrium. However, this does not occur in the

3x2 matching contests.

Proposition 6 In the 3x2 assortative matching contest, at least two �rms exert positive e¤orts in

equilibrium.

Proof. Suppose that in the 3x2 assortative matching contest all the three �rms do not exert any

e¤ort. In such a case, it is obvious that also the two workers do not have an incentive to exert

positive e¤orts. Therefore, every �rm is matched with each of the two workers with the probability

of 13 and then a �rm has a positive expected payo¤. In addition, a �rm is not matched at all with

14



the probability of 13 and then it has an expected payo¤ of zero. Thus, if one �rm exerts a positive

e¤ort that approaches zero, given that its opponents do not exert any e¤ort, its expected payo¤

signi�cantly increases since it is matched with the probability of 12 with each of the workers who

both exert an e¤ort of zero such that each has the same chance to win as well as to lose. Therefore

there is no equilibrium in which all the three �rms do not exert any e¤ort.

By Proposition 6, there is no equilibrium in the 3x2 assortative matching contest in which all

the three �rms exert an e¤ort of zero. However, the following example shows that there is an

equilibrium in which both workers exert an e¤ort of zero.

Example 1 Assume a 3x2 matching contest with three symmetric �rms where m = mh = mm =

ml and two asymmetric workers where wh � wl. By symmetry of the �rms, assume that every �rm

exerts the same e¤ort x and worker j; j = h; l exerts e¤ort yj : By (16), (17), and (18), the �rms

have the same F.O.C. which is given by

f(m;wh)

�
2

9x

yh
yh + yl

+
1

18x

yl
yh + yl

�
+f(m;wl)

�
2

9x

yl
yh + yl

+
1

18

yh
yh + yl

�
= 1

By symmetry of the �rms, the workers�F.O.C. (19) and (20) are

3f(m;wh)

�
yl

(yh + yl)2
(
1

3
� (1
6
+
1

6
)

�
� 1 < 0

3f(m;wl)

�
yh

(yh + yl)2
(
1

3
� (1
6
+
1

6
)

�
� 1 < 0

Thus, the equilibrium e¤orts of the workers are yl = yh = 0, and yl
yh+yl

= yh
yh+yl

= 1
2 . Then, the

identical e¤ort of all three �rms is x = 5
18
f(m;wh)+f(m;wl)

2 :

By Proposition 6, in any 3x2 assortative matching contest at least two �rms exert positive e¤orts

in equilibrium. The following example shows that in a 3x2 assortative matching contest with a

multiplicative match-value function, it is possible that exactly two �rms exert positive e¤orts and

the third one exerts an e¤ort of zero, or, alternatively, stays out of the contest.
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Example 2 Suppose that in a 3x2 assortative matching contest, �rms h and m have the same type,

and �rm l exerts an e¤ort of xl = 0. Then, by the the equilibrium e¤orts in the 2x2 assortative

matching contest given by (9), we obtain that the equilibrium e¤orts of the workers satisfy yh
yl
= wh

wl

and that the equilibrium e¤orts of the �rms that participate are

xm = xh = x =
mh

4

(wh � wl)2
(wh + wl)

By (18), the F.O.C. of �rm l�s maximization problem is

FOC3 = (
xm + xh
(xh + xm)2

1

yh + yl
(f(ml; wh)yh + f(ml; wl)yl)

+(
xh

xh + xm

1

xm
+

xm
xh + xm

1

xh
)

1

yh + yl
(f(ml; wh)yl + f(ml; wl)yh)

�1

Inserting the equilibrium e¤orts of the other agents yields

FOC3 =
1

2x

1

1 + wl
wh

ml(wh +
w2l
wh
) +

1

x

1

1 + wl
wh

ml(2wl)

=
1

x

wh
wh + wl

ml(2wl + wh +
w2l
wh
) =

4ml

mh

wh
(wh � wl)2

(2wl + wh +
w2l
wh
)� 1

=
4ml

mh

(wh + wl)
2

(wh � wl)2
� 1

Thus, if ml
mh

is su¢ ciently small, FOC3 is negative, which implies that �rm l stays out of the

contest.

The above example shows that in a 3x2 assortative matching contest with a multiplicative

match-value function there is an equilibrium in which only two �rms participate. However, in any

3x2 assortative matching contest with an additive match-value function all the �rms take part in

the contest.

Proposition 7 In a 3x2 assortative matching contest with an additive match-value function all

the three �rms exert positive e¤orts in equilibrium.
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Proof. Suppose that one of the three �rms exerts an e¤ort of zero. Then we actually have a 2x2

assortative matching contest, and by Proposition 4, all the �rms do not exert any e¤ort. In that

case, each of the �rms has a probability of 13 to be matched with each of the two workers and a

probability of 13 not to be matched at all. Thus, if one of the �rms exerts any positive e¤ort that

approaches zero it signi�cantly increases its expected payo¤ since then it is matched for sure with

a probability of 12 with each of the workers. Consequently, in any equilibrium, all the three �rms

participate and exert positive e¤orts.

5 The mxn assortative matching contest

Consider now the general case when there is a set A = f1; 2; :::;mg of m � 2 �rms and a set

B = f1; 2; :::; ng of n � 2 workers where n � m: The �rms� types are mi; where mi � mi+1,

i = 1; :::;m � 1. The workers� types are wj ; where wj > wj+1, j = 1; :::; n � 1. An immediate

generalization of Propositions (6) and (7) is

Proposition 8 In a mxn assortative matching contest where m > n, at least n �rms exert positive

e¤orts in equilibrium. Likewise, in a mxn assortative matching contest with an additive match-

value function where m > n at least n+ 1 �rms exert positive e¤orts in equilibrium.

Consider now that n = 2 such that the �rms�types are mi; where mi � mi+1, i = 1; :::;m� 1,

and the workers�types are wh and wl, where wh � wl. Then, for interior equilibrium, we have the

following two results :

Proposition 9 In a mx2 assortative matching contest with a multiplicative match-value function

the e¤orts of the workers satisfy

whyl � wlyh = 0

Proof. See Appendix.
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Proposition 10 In a mx2 assortative matching contest with an additive match-value function the

equilibrium workers�e¤orts satisfy

yh = yl

Proof. See Appendix.

Last, assume that m = n. In such a symmetric assortative matching contest with an additive

match-value function, �rm i; 1 � i � n, obtains an expected payo¤ that is equal to its own type mi

independent of the equilibrium e¤orts. In other words, independent of the ranking of �rm i it has

for sure a payo¤ of mi and in addition a payo¤ that is equal to the type of the matched worker.

Thus, the real prize for �rm i is the type of the matched worker, and therefore each �rm actually

has n possible prizes which are functions of the workers�types with these prizes being contingent

on the result in the contest. Thus, all the �rms actually have the same n prizes such that they are

actually symmetric agents who have symmetric equilibrium e¤orts. This argument holds for the

workers as well such that they also exert symmetric equilibrium e¤orts. Thus, if the heterogeneous

workers exert the same e¤ort, each �rm has n identical prizes since it has the same probability to

be matched with each of the workers, independent of the result of the contest. As such, if n �rms

have n identical prizes, each of them does not have an incentive to exert an e¤ort, and therefore

each of the �rms exert an e¤ort of zero. Likewise, each of the workers exerts an e¤ort of zero, and

we have

Proposition 11 In the nxn assortative matching contest with an additive match-value function,

for every n � 2, the equilibrium e¤orts of all the agents are zero and therefore the matching is

randomized and each �rm (worker) has the same probability to be matched with each of the workers

(�rms).
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6 Concluding remarks

We studied assortative matching contests in which there are two sets of agents. In each set the

agents compete against each other in a Tullock contest, and then according to the results of both

Tullock contests, the agents from both sets are assortatively matched, such that the �rst agents

from both sets are matched, the second agents are matched, and so on until all the agents from

the smaller set are matched. Every two agents who are matched win a reward according to a

match-value function that depends on both agents�types. Such symmetric assortative matching

contests in which the number of agents in both sets is the same, have an equilibrium in which all

the agents in both sets do not exert e¤orts and as such the agents are randomly matched. These

matching contests may have other equilibrium strategies which depend on the form of the match-

value function. However, when the number of agents in both sets is not the same, independent of

the form of the match-value function, there is no equilibrium in which all the agents do not exert

e¤orts, although it is possible that the agents of only one set do not exert e¤orts in equilibrium.

Therefore if the agents�e¤orts have some positive e¤ect, the sizes of the sets should be di¤erent.

When we compare the total e¤ort in these two-sided assortative matching contests with the

one-sided standard Tullock contest, we can see that if the variance of the agents� types in both

sets is relative large, the total e¤ort might be larger than in the one-sided Tullock contest and vice

versa when the variance of the agents�types in both sets is relatively small. The reason is that

when the variance of the agents�types in one set is relatively large, the agents of the other set have

a high incentive to compete against each other, while in the one-sided Tullock contest, similarly to

any other one-sided contest, if the variance of the agents�type is large, the competition between

the agents is weak.
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7 Appendix

7.1 Proof of Proposition 1

The S.O.C. of the maximization problems (1), (2), (3), and (4) are

(f(mh; wh)� f(mh; wl))
�2xl

(xh + xl)3
yh � yl
yh + yl

(f(ml; wh)� f(ml; wl))
�2xh

(xh + xl)3
yh � yl
yh + yl

(f(mh; wh)� f(ml; wh))
�2yl

(yh + yl)3
xh � xl
xh + xl

(f(mh; wh)� f(ml; wh))
�2yh

(yh + yl)3
xh � xl
xh + xl

which can be rewritten as

�2
(xh + xl)

�
(f(mh; wh)� f(mh; wl))

xl
(xh + xl)2

yh � yl
yh + yl

�
�2

(xh + xl)

�
(f(ml; wh)� f(ml; wl))

xh
(xh + xl)2

yh � yl
yh + yl

�
�2

(yh + yl)

�
(f(mh; wh)� f(ml; wh))

yl
(yh + yl)2

xh � xl
xh + xl

�
�2

(yh + yl)

�
(f(mh; wl)� f(ml; wl))

yh
(yh + yl)2

xh � xl
xh + xl

�
Since in an interior equilibrium each of the terms inside the parentheses is positive according to the

F.O.C. given in (5), we obtain that each of the equations of the S.O.C. is negative and therefore

the solution obtained by the equations of the F.O.C is an equilibrium.

7.2 Proof of Proposition 5

In an interior equilibrium, by (16), the F.O.C. of �rm h�s maximization problem is

FOCh = f(mh; wh)(foc1 + foc2 + foc3 + foc4 + foc5)

+f(mh; wl)(foc6 + foc7 + foc8 + foc9 + foc10)

= 1
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where

foc1 =
xm + xl

(xh + xm + xl)2
yh

yh + yl

foc2 = � xl
(xh + xm + xl)2

xh
xh + xm

yl
yh + yl

foc3 = � xm
(xh + xm + xl)2

xh
xh + xl

yl
yh + yl

foc4 =
xm

(xh + xm)2
xl

xh + xm + xl

yl
yh + yl

foc5 =
xl

(xh + xl)2
xm

xh + xm + xl

yl
yh + yl

foc6 =
xm + xl

(xh + xm + xl)2
yl

yh + yl

foc7 = � xl
(xh + xm + xl)2

xh
xh + xm

yh
yh + yl

foc8 = � xm
(xh + xm + xl)2

xh
xh + xl

yh
yh + yl

foc9 =
xm

(xh + xm)2
xl

xh + xm + xl

yh
yh + yl

foc10 =
xl

(xh + xl)2
xm

xh + xm + xl

yh
yh + yl

The S.O.C. of �rm h�s maximization problem is

SOCh = f(mh; wh)(soc1 + soc2 + soc3 + soc4 + soc5)

+f(mh; wl)(soc6 + soc7 + soc8 + soc9 + soc10)
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where

soc1 =
�2(xh + xm + xl)(xl + xm)

(xh + xm + xl)4
yh

yh + yl

soc2 = (
2(xh + xm + xl)xl
(xh + xm + xl)4

xh
xh + xm

� xl
(xh + xm + xl)2

xm
(xh + xm)2

)
yl

yh + yl

soc3 = (
2(xh + xm + xl)xm
(xh + xm + xl)4

xh
xh + xl

� xm
(xh + xm + xl)2

xl
(xh + xl)2

)
yl

yh + yl

soc4 = (
�2(xh + xm)xm
(xh + xm)4

xl
xh + xm + xl

� xl
(xh + xm + xl)2

xm
(xh + xm)2

)
yl

yh + yl

soc5 = (
�2(xh + xl)xl
(xh + xl)4

xm
xh + xm + xl

� xm
(xh + xm + xl)2

xl
(xh + xl)2

)
yl

yh + yl

soc6 =
�2(xh + xm + xl)(xl + xm)

(xh + xm + xl)4
yl

yh + yl

soc7 = (
2(xh + xm + xl)xl
(xh + xm + xl)4

xh
xh + xm

� xl
(xh + xm + xl)2

xm
(xh + xm)2

)
yh

yh + yl

soc8 = (
2(xh + xm + xl)xm
(xh + xm + xl)4

xh
xh + xl

� xm
(xh + xm + xl)2

xl
(xh + xl)2

)
yh

yh + yl

soc9 = (
�2(xh + xm)xm
(xh + xm)4

xl
xh + xm + xl

� xl
(xh + xm + xl)2

xm
(xh + xm)2

)
yh

yh + yl

soc10 = (
�2(xh + xl)xl
(xh + xl)4

xm
xh + xm + xl

� xm
(xh + xm + xl)2

xl
(xh + xl)2

)
yh

yh + yl
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We have the following relations among the elements of the FOCh and those of the SOCh:

soc1 =
�2

xh + xm + xl
foc1

soc2 = (
�2

xh + xm + xl
+

xm
xh(xh + xm)

)foc2 >
�2

xh + xm + xl
foc2

soc3 = (
�2

xh + xm + xl
+

xl
xh(xh + xl)

)foc3 >
�2

xh + xm + xl
foc3

soc4 = (
�2

xh + xm
� 1

xh + xm + xl
)foc4 <

�2
xh + xm + xl

foc4

soc5 = (
�2

xh + xl
� 1

xh + xm + xl
)foc5 <

�2
xh + xm + xl

foc4

soc6 =
�2

xh + xm + xl
foc6

soc7 = (
�2

xh + xm + xl
+

xm
xh(xh + xm)

)foc7 >
�2

xh + xm + xl
foc7

soc8 = (
�2

xh + xm + xl
+

xl
xh(xh + xl)

)foc8 >
�2

xh + xm + xl
foc8

soc9 = (
�2

xh + xm
� 1

xh + xm + xl
)foc9 <

�2
xh + xm + xl

foc9

soc10 = (
�2

xh + xl
� 1

xh + xm + xl
)foc10 <

�2
xh + xm + xl

foc10

Since focj ; j = 2; 3; 7; 8 are negative and focj ; j = 1; 4; 5; 6; 9; 10 are positive, we obtain that

SOCh <
�2

xh + xm + xl
FOCh < 0

Similarly, it can be shown that the S.O.C. of the maximization problems of �rms m and l are

negative as well.
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Now, in an interior equilibrium, by (19), the F.O.C. of worker h�s maximization problem is

foch = f(mh; wh)

�
yl

(yh + yl)2
xh

xh + xm + xl

�
�f(mh; wh)

�
(

xl
xh + xm + xl

xh
xh + xm

+
xm

xh + xm + xl

xh
xh + xl

)

�
+f(mm; wh)

�
yl

(yh + yl)2
xm

xh + xm + xl

�
�f(mm; wh)

�
yl

(yh + yl)2
(

xh
xh + xm + xl

xm
xl + xm

+
xl

xh + xm + xl

xm
xh + xm

)

�
+f(ml; wh)

�
yl

(yh + yl)2
xl

xh + xm + xl

�
�f(ml; wh)

�
yl

(yh + yl)2
(

xh
xh + xm + xl

xl
xl + xm

+
xm

xh + xm + xl

xl
xh + xl

)

�
= 1

The S.O.C. of worker h�s maximization problem is

soch = � f(mh; wh)

�
2(yh + yl)yl
(yh + yl)4

xh
xh + xm + xl

�
+f(mh; wh)

�
2(yh + yl)yl
(yh + yl)4

(
xl

xh + xm + xl

xh
xh + xm

+
xm

xh + xm + xl

xh
xh + xl

)

�
�f(mm; wh)

�
2(yh + yl)yl
(yh + yl)4

xm
xh + xm + xl

�
+f(mm; wh)

�
2(yh + yl)yl
(yh + yl)4

(
xh

xh + xm + xl

xm
xl + xm

+
xl

xh + xm + xl

xm
xh + xm

)

�
�f(ml; wh)

�
2(yh + yl)yl
(yh + yl)4

xl
xh + xm + xl

�
+f(ml; wh)

�
2(yh + yl)yl
(yh + yl)4

(
xh

xh + xm + xl

xl
xl + xm

+
xm

xh + xm + xl

xl
xh + xl

)

�
Then, we obtain that

soch = �foch
2(yh + yl)

(yh + yl)2
< 0

Similarly, it can be shown that the S.O.C. of the maximization problem of worker l is negative as

well.
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7.3 Proof of Proposition 9

The maximization problem of worker h is

max
yh

mX
i=1

miwh

264 yh
yh+yl

Pr(�rm i wins �rst place)

+ yl
yh+yl

Pr(�rm i wins second place)

375
where Pr(�rm i wins �rst place) is the probability that �rm i wins �rst place, and Pr(�rm i wins

second place) is the probability that �rm i wins second place.

Similarly, the maximization problem of worker l is

max
yl

mX
i=1

miwl

264 yl
yh+yl

Pr(�rm i wins �rst place)

+ yh
yh+yl

Pr(�rm i wins second place)

375
If we subtract the F.O.C. of these workers�maximization problems from each other we obtain that

�FOC =
mX
i=1

mi(whyl � wlyh)
(yh + yl)2

Pr(�rm i wins �rst place)

�
mX
i=1

mi(whyl � wlyh)
(yh + yl)2

Pr(�rm i wins second place)

Thus, when whyl � wlyh = 0, we obtain that �FOC = 0, which implies that in equilibrium

whyl = wlyh.

7.4 Proof of Proposition 10

The maximization problem of worker h is

max
yh

mX
i=1

(mi + wh)

264 yh
yh+yl

Pr(�rm i wins �rst place)

+ yl
yh+yl

Pr(�rm i wins second place)

375
where Pr(�rm i wins �rst place) is the probability that �rm i wins �rst place, and Pr(�rm i wins

second place) is the probability that �rm i wins second place. Similarly, the maximization problem

of worker l is

max
yl

mX
i=1

(mi + wl)

264 yl
yh+yl

Pr(�rm i wins �rst place)

+ yh
yh+yl

Pr(�rm i wins second place)

375
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If we subtract the F.O.C. of these workers�maximization problems from each other we obtain that

�FOC =
mX
i=1

(mi + wh)
yl

(yh + yl)2
Pr (�rm i wins �rst place)

�
mX
i=1

(mi + wh)
yl

(yh + yl)2
Pr (�rm i wins second place)

�
mX
i=1

(mi + wl)
yh

(yh + yl)2
Pr (�rm i wins �rst place)

+

mX
i=1

(mi + wl)
yh

(yh + yl)2
Pr (�rm i wins second place)

Since for j = h; i we have

mX
i=1

wj Pr (�rm i wins the �rst place) = wj

mX
i=1

wj Pr (�rm i wins the second place) = wj

we obtain that

�FOC = m
yl � yh
(yh + yl)2

Pr (�rm i wins the �rst place)

�m yl � yh
(yh + yl)2

Pr (�rm i wins the second place)

mX
i=1

mi
yl � yh
(yh + yl)2

Pr (�rm i wins the �rst place)

�
mX
i=1

mi
yl � yh
(yh + yl)2

Pr (�rm i wins the second place)

Thus, when yl = yh, we obtain that �FOC = 0, which implies that in equilibrium yl = yh.
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