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Abstract

We present a new axiomatization of the Shapley-Shubik power index based

on three axioms. The central axiom � occasional subgame-consistency

on average (OSCoA) �requires the power of a player to coincide with the

average of his power in one-player-out subgames, for just one game v on any

given support (which must be essential for the game). The choice of v may

be player-dependent but v must have no veto players. The other two axioms

are the standard Transfer and Dummy. We also formulate some stronger

variants of OSCoA that do not explicitly require the support of such a game

v to be essential.

JEL Classi�cation Numbers: C71, D72.

Keywords: Simple Games, Shapley-Shubik Power Index, Consistency, Sub-

games, Transfer, Dummy.

1 Introduction

Felsenthal and Machover (1998) persuasively argue that, in quantifying a priori voting

power of individual voters under a decision rule describable by a simple (voting) game,

a distinction should be made between two notions of power: I-power and P-power.

They view I-power as the "voter�s potential in�uence over the outcome of divisions of
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the decision-making body: whether proposed bills are adopted or blocked," whereas

P-power is the "voter�s expected relative share in a �xed prize available to the winning

coalition under a decision rule."1 They also argue that, among the two best-known and

most popular voting power indices �the Banzhaf power index (henceforth, BPI)2

and the Shapley-Shubik power index (henceforth, SSPI)3 � the former is better

suited to measure I-power, and the latter P-power.

The suitability of the BPI to quantify I-power is intuitively evident: it measures

the probability that player (voter) i�s Yes vote swings the voting outcome from No to

Yes when he joins a random set of other Yes voters, under the uniform distribution

over such sets.4 On the other hand, the SSPI seems to be better tailored to measure

P-power: it is an import of the Shapley (1953) value, a solution concept de�ned for

cooperative TU games and designed to predict (or suggest) the way in which the

worth of the grand coalition in the game is to be shared between the players; in the

context of voting games, this solution concept suggests a division of what may be

regarded as some tangible "prize of power" (with total worth normalized to 1).

There are some grounds to doubt that the SSPI is always a conceptually ad-

equate measure of voting power, however.5 Felsenthal and Machover (1998, 2005)

highlight several possible shortcomings of the SSPI, including the following two.

For one, as pointed out already, the SSPI�s origin is the Shapley value, which was

1The quotations are from Felsenthal and Machover (2005, Section 3).
2As is often done in the literature, the term �Banzhaf power index�is used for brevity, although

the origin of the BPI lies in multiple works (Penrose (1946), Banzhaf (1965, 1966, 1968), Coleman

(1971)).
3Introduced in Shapley and Shubik (1954).
4Felsenthal and Machover (1998) call this version of BPI �the Banzhaf measure.�The uniform

distribution over the sets of Yes voters represents a state of complete a priori ignorance regarding

the voters�preferences, which seems the most appropriate when attempting to quantify a priori the

in�uence of individual voters.
5In contrast to the BPI, even the usual probabilistic interpretation of the SSPI �whereby a

player�s power is his probability to be pivotal in a random (and uniformly distributed) ordering of

all voters, who are gradually persuaded to vote Yes �may be objectionable as a model underlying

power measurement. That is, for example, because the voting process may be secret or simultaneous,

so pivotality is not well-de�ned; not everyone may be ultimately persuaded to vote Yes; and, if the

voting is indeed observable, players have an incentive to position themselves strategically in an

ordering so as to become pivotal. This underscores the need for an axiomatic justi�cation for the

SSPI; as is repeatedly stressed by Felsenthal and Machover (1998, Section 6).
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designed to be a sharing rule of a concrete amount of utility that is collectively attain-

able by the grand coalition. But, in the context of voting games, a winning coalition

of Yes voters may not derive a tangible bene�t �or that bene�t may be in the form

of public rather than private good �or "winning" may be just a label attached to

subsets of players that su¢ ce to approve a proposal. In all these cases, measuring

P-power may not be feasible.

If the P-power, is for any reason, not relevant or not measurable, can the SSPI

at least be viewed as a quanti�cation of the I-power, as is the case with the BPI?

This takes us to another point raised by Felsenthal and Machover (1998, 2005): the

Shapley value is e¢ cient, which means that the SSPI for di¤erent players must

sum up to 1, making the SSPI de facto �and perhaps arti�cially �normalized.

But this calls into question the validity of using SSPI to compare the same player�s

in�uence across di¤erent games �that is, the SSPI�s capacity to capture absolute,

rather than relative, power of players may be in doubt. Axiomatic derivations of the

SSPI (starting with Dubey (1975)) tended to a priori impose e¢ ciency as one of

the axioms,6 thereby not helping to alleviate the above concern.

This work o¤ers a new axiomatization of the SSPI that attempts to stay as

distant as possible from explicitly or implicitly assuming e¢ ciency of the power index.

Thus, the perceived normalization of the total power to unity will be a strictly ex-

post, implied feature of the index. Our central axiom, which we begin to describe

next, requires at least an occasional consistency between a player�s power in a simple

game and the attribution of power to this player in subgames, in a way that may

reasonably be expected from an I-power index.

Cooperative game theory has devoted a fair amount of attention to consistency of

various solution concepts �that is, to their invariance under a reduction of the player

set for a particular speci�cation of the game in which only the remaining players

are active.7 Di¤erent notions of that residual, or reduced, game upon which the

6Among the works that characterize the SSPI without the e¢ ciency axiom are Laruelle and

Valenciano (2001), Einy and Haimanko (2011) and Chen et al. (2024), which are touched upon later

in the introduction.
7Sobolev (1975) pioneered this approach, axiomatizing the prenucleolus. Davis and Maschler�s

(1964) de�nition of a "reduced" game was later used in Peleg�s (1986) axiomatizations of the core

and the prekernel. Another notion of reduced game was used by Hart and Mas-Colell (1989) to
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consistency requirement is predicated characterize di¤erent solution concepts in the

TU setting. However, those reduced games share a common feature: in determining

the new characteristic function, any coalition drawn from the remaining players makes

a utility transfer to (or receives a transfer from) subsets of players outside the reduced

game.8 In particular, the existing reduced game concepts do not seem to be applicable

to simple games, which in most applications do not attribute to winning coalitions

a tangible divisible utility but merely label coalitions that are su¢ cient to approve

a proposal under some underlying decision rule. In fact, technically "reducing" a

simple game according to the usual notions is bound to produce a game that is not

even simple, making little sense if a simple game is viewed just as a labeling device.

Our approach to consistency is built around subgames, obtained by removing a

single player from the game�s support.9 For a simple game, considering a subgame

obtained by removing one non-veto player from the support is meaningful because the

resulting subgame remains simple. This subgame represents the conceivable scenario

in which one player becomes inactive, and the minimal winning coalitions become (by

default) those that could push a proposal through in the original game without the

now-inactive player�s vote. However, it would be too simplistic to think that a player

i retains the same in�uence after some j 6= i is inactivated. Evidently, i�s in�uence
is a¤ected by two opposing forces: j�s inactivation may reduce the set of minimal

winning coalitions containing i (making i less in�uential), but the set of minimal

winning coalitions excluding i may shrink as well (boosting i�s relative in�uence).

These forces, however, do not generally balance each other. At one extreme, only the

minimal winning coalitions with i are a¤ected by j�s inactivation, clearly weakening

characterize the Shapley value.
8Such transfers can be seen as arising from bargaining between a given (sub)coalition of the

remaining players and (sub)coalitions of outside players over the extent of intergroup cooperation

and the corresponding compensation based on some solution concept (which is given ex ante or

determined ex post). See, e.g., Hart and Mas-Colell (1989, Section 4) for a survey of some prominent

reduced game notions, and Pérez and Sun (2021) for an axiomatic treatment of reduced game

mappings.
9Unlike the standard notion of a subgame (see, e.g., De�nition 3.2.2 in Peleg and Sudhölter

(2007)), our approach retains in the player set the player removed from the game�s support, thereby

turning him into a null player. In viewing subgames this way, we follow Béal et al. (2016), who refer

to this procedure as the nulli�cation of a player.
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i; and at another extreme, j�s switch-o¤ removes only minimal winning coalitions

without i; thereby strengthening i.

Although removing a player may signi�cantly a¤ect the decision structure in the

game, it turns out that if a simple game v has no veto players (and hence inactivation

of any single player leaves the game simple), then according to the SSPI the power of

any given player i in v equals the average of i�s power in all one-player-out subgames

v�j (obtained by removing a single player j from v�s support).10 This fact is a simple

corollary of a known recursive formula for the Shapley value in general TU games,

which expresses any player�s value as the average of his values in one-player-out

subgames and his marginal contribution to the grand coalition.11 In the context of

simple games without veto players, however, this representation takes a whole new

meaning: any player i�s power, although generally not consistent with the power that

the SSPI attributes to him in a particular subgame, is subgame-consistent on

average (henceforth, SCoA), being equal to the average of i�s power in all one-

player-out subgames v�j.

The property of SCoA appears to be quite appealing in the context of a general

I-power index: the knowledge of winning coalitions in the subgames v�j for all j

fully accounts for the decision structure in the original game v, and so SCoA seems

adequate as a minimal12 consistency requirement. Alternatively, SCoA can be viewed

as a simple robustness feature of a power index in relation to a hypothetical scenario

in which one (and only one) player randomly drops out of the game v�s support

(by becoming inactive, i.e., abstaining from the vote), with equal probability for any

player in the support to be chosen for inactivity. SCoA then means that the power

measured in v is equal �in expectation �to the power measured in the one-player-out

subgame created by a randomly inactive player.

We elevate the property of SCoA to the status of an axiom for general power

indices, but only need its weak form. Speci�cally, a power index is said to be oc-

casionally subgame-consistent on average (henceforth, OSCoA) if, for each

10This property of the SSPI has been partially observed, in a much more limited context of

speci�c weighted majority games, by Gafni et al. (2021, Lemma 3.1).
11This formula goes back (at least) to Maschler and Owen (1989) and Hart and Mas-Colell (1989).
12As noted earlier, full consistency of a power index with subgame power is unachievable, making

consistency on average the next best desirable property.
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subset T of players, the power of a player in T is the average of his power in one-

player-out subgames for at least one (but not every!) game v. Such a game v is

required to have T as its essential support13 and to be without veto players, but the

choice of the game v may be player-dependent. Our main result is that OSCoA �

supplemented by the standard Transfer (T) and Dummy (D) axioms14 �uniquely

characterizes a power index as the SSPI.

In addition to avoiding the usual e¢ ciency axiom, our axiomatization of the

SSPI does not involve an explicit symmetry or anonymity assumption.15 In partic-

ular, the OSCoA axiom does not even require the "occasional" game v for which the

subgame consistency holds on average to be the same for every player in the support

T: There are also no restrictions on how the choice of v depends T (although the

averaging principle behind our consistency notion does contain some equal-treatment

aspect, in that the one-player-out subgames are given the same weight in averages).

It is worth noting that previous axiomatizations of the SSPI that avoided the

e¢ ciency axioms tended to explicitly impose symmetry or some explicit symmetry-

related features. The recent work of Chen et al. (2024) employs �like us �just three

axioms in its characterization of the SSPI: two of them, T and D, are the same as

in our setting, and the third, cross-invariance, requires all games that are symmetric

within the same support to be treated identically.16 In the SSPI characterizations

of Laruelle and Valenciano (2001) and Einy and Haimanko (2011), symmetry is an

explicit axiom alongside two types of "gain-loss" assumptions that replace e¢ ciency.17

13The assumption that the support is essential is extensively discussed in Section 4.1, and its

necessity is demonstrated in Remark 7. Some su¢ cient conditions for games used in OSCoA to

have an essential support are provided in Remarks 4 and 5, and these are incorporated into the

axiomatization of the SSPI in Corollary 1.
14These axioms are due to Dubey (1975) and Dubey and Shapley (1979).
15Since we do not a priori assume symmetry or non-negativity of the power index, it is not a

semivalue in the sense of Einy (1987) and Dubey et al. (1981). Consequently, the characterization

results for semivalues provided in these works cannot be applied in our setting.
16Condition in a somewhat similar spirit is used in an older axiomatization of the SSPI, due to

Blair and McLean (1990), in the context of modeling the players�preferences over simple games. In

that work, however, that condition is supplemented by the assumption of symmetry in each player�s

evaluation of his position in unanimity games.
17In Laruelle and Valenciano (2001), the central e¢ ciency-replacing axiom is the total gain-loss

balance. It requires that, following the deletion of a minimal winning coalition from the game�s
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This paper is organized as follows. Section 2 recalls the basic de�nitions pertaining

to games, simple games, and power indices. Section 3 introduces and motivates the

concept of subgame consistency on average. Section 4 states the axioms, and Section

5 presents the main results: Theorem 1 provides our axiomatization of the SSPI,

and Corollary 1 incorporates into it some strengthened versions of OSCoA that do

not involve the essential support assumption. Section 6 concludes, and the Appendix

contains most of the proofs.

2 Preliminaries

2.1 TU games and simple games

Let N = f1; 2; :::; ng ; n � 2; be the player set, which will be �xed throughout.

Denote the collection of all coalitions (subsets of N) by 2N ; and the empty coalition

by ?: Then a TU game on N (or simply a game) is a map v : 2N ! R with

v (?) = 0: The space of all games is denoted by G: A coalition T � N is called

a carrier of v 2 G if v(S) = v(S \ T ) for any S � N ; T (v) will stand for the

support of v, de�ned as its minimal carrier. Given v 2 G and i 2 T (v), we denote
by v�i the one-player-out subgame of v obtained by "removing" i from v�s support,

i.e., letting v�i(S) = v(Snfig) for any S � N: Player i is called a dummy in v if

v(S [ fig) = v(S) + v(fig) for every S � Nn fig ; if, in addition, v(fig) = 0 then i is
a null player. Note that i 2 T (v) becomes a null player in the game v�i:18

The concept of a simple (voting) game is embedded in the framework of TU games.

The domain SG � G of simple games on player (voter) set N consists of all v 2 G
such that

(i) v(S) 2 f0; 1g for all S � N ;
(ii) v(N) = 1;

(iii) v is monotonic, i.e., if S � T then v(S) � v(T ):

support, the total loss in power for the players in that coalition equals the total gain in power for

the players in its complement. In Einy and Haimanko (2011), e¢ ciency is replaced by the gain-loss

axiom, which requires that a gain in power for one player entails some (not necessarily equivalent)

loss in power for another player when the game changes.
18Using the terminology of Béal et al. (2016), the one-player-out subgame v�i is obtained from v

by nullifying player i:

7



A coalition S �which may now be interpreted as the set of players who cast a Yes

vote �is said to be winning in v 2 SG if v(S) = 1; and losing otherwise. The set of
simple games will be denoted by SG: For any v 2 SG, denote by Wmin(v) the set of

its minimal winning coalitions; and byW(v) the set of all winning coalitions that are

contained in T (v). Given a non-empty set T � N; denote by uT 2 SG the unanimity
game with support T (i.e., Wmin(uT ) = fTg):
We call i 2 N a veto player in a game v 2 SG if v(Nnfig) = 0; i.e., no coalition

can win without i. Denote by SGno�veto the subset of SG consisting of simple games in
which all players are non-veto. Given v 2 SGno�veto and i 2 T (v), note that the grand
coalition N remains winning in the one-player-out subgame v�i; i.e. v�i(N) = 1; and

hence the removal of i does not a¤ect the simple game�s status: v�i 2 SG:
Finally, for any v; w 2 SG de�ne v _ w; v ^ w 2 SG by:

(v _ w) (S) = max fv(S); w(S)g ;

(v ^ w) (S) = min fv(S); w(S)g

for all S � N: (It is evident that SG is closed under operations _;^:) Thus, a coalition
is winning in v _ w if and only if it is winning in at least one of v or w, and it is

winning in v ^ w if and only if it is winning in both v and w: Note that any game
v 2 SG can be represented as

v = uT1 _ uT2 _ ::: _ uTk ;

where T1; T2; :::; Tk � T (v) is a list of the elements of Wmin(v):

2.2 Power indices

A power index is a mapping � : SG !Rn. For each i 2 N and v 2 SG; the ith

coordinate of � (v) 2 Rn; � (v) (i); is interpreted as the voting power of player i in the
game v: The Banzhaf power index (henceforth BPI) and the Shapley-Shubik power

index (henceforth SSPI) are among the best known power indices. The BPI is

given for each v 2 SG and i 2 N by

BPI (v) (i) =
X

S�Nnfig

1

2n�1
[v(S [ fig)� v(S)] : (1)
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Here, for each i 2 N , BPI (v) (i) is the probability that adding player i�s Yes vote to
a random set (coalition) of all other Yes voters, drawn w.r.t. the uniform distribution

over the subsets of Nn fig ; swings the voting outcome (namely, that the random
coalition S � Nn fig switches from losing to winning when joined by i).

The SSPI is given for each v 2 SG and i 2 N by

SSPI (v) (i) =
X

S�Nnfig

jSj! (n� jSj � 1)!
n!

[v(S [ fig)� v(S)] : (2)

Thus, the formula for SSPI is a modi�cation of (1), wherein the original coe¢ cient
1

2n�1 in each summand �the probability of the coalition of all other Yes voters be-

ing S under the uniform distribution �is replaced by jSj!(n�jSj�1)!
n!

: For each i 2 N ,
SSPI (v) (i) may be thought of as arising from a simple model of sequential voting,

in which all players sequentially join the Yes vote according to a random and uni-

formly distributed ordering of N: Then, SSPI (v) (i) in (2) is the probability that

player i is pivotal in a random ordering of N �namely, the chance that the coalition

of players preceding i in joining the Yes vote is losing, but becomes winning once i is

counted.

3 Subgame consistency on average

The Shapley (1953) value SH on the space G of all games is given by the same
formula � (2) �as the SSPI but for a general v 2 G, and among its distinctive
characteristics is the e¢ ciency property, namely that

P
i2N SH (v) (i) = v(N) holds

for any v 2 G: The SSPI inherits this property, satisfying the equalityX
i2N

SSPI (v) (i) = 1 (3)

for each v 2 SG. The postulate of e¢ ciency in axiomatic characterizations of the
SSPI (and the perceived implication of "normalization" associated with (3)) is,

in part, what casts the SSPI more as a measure of P-power �pertaining to the

allocation of the tangible spoils enjoyed by the winning coalition � and less as a

measure of I-power, which concerns the in�uence of voters on the voting outcome.

To distance ourselves from the notion of P-power, and, ultimately, to put the

SSPI in a di¤erent light, instead of e¢ ciency we focus on some aspects of consis-

tency in measuring voting power in a game and its one-player-out subgames, which is
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something that I-power may in principle exhibit. Consider a power index �, a game

v 2 SGno�veto with support T := T (v); and i 2 T . When a player j 6= i is removed
from v�s support,19 there is little reason to expect i�s in�uence in the ensuing subgame

v�j to remain the same as in the original v; i.e., to have

� (v) (i) = � (v�j) (i) : (4)

That is because � as argued in the introduction � j�s removal from the support

potentially changes the decision structure in the game, conceivably adding to, or

subtracting from, the in�uence held by each of the remaining players in v. However,

when the entire collection fv�jgj2T of one-player-out subgames of v is taken into
account, the full complexity ofW(v) is brought back, and one may view as desirable a

generalized version of (4), whereby i�s power in one-player-out subgames of v coincides

on average with his power in v :

� (v) (i) =
1

jT j
X
j2T

� (v�j) (i) : (5)

According to (5), the �-measured power in v is consistent �on average �with

the power that � quanti�es in one-player-out subgames of v: For an alternative in-

terpretation, consider a hypothetical scenario in which one (and only one) player is

randomly dropped out of the game v�s support T (i.e., the player becomes inactive,

abstaining from vote), with equal probability for any player in T to be chosen for

inactivity: Then (5) means that the �-based power measurement is �in expectation �

robust to the introduction of random inactivity of one player: the �-measured power

in v coincides with its expectation in a random one-player-out subgame of v that is

created in the above scenario.

De�nition 1. A power index � has the property of subgame consistency on

average (henceforth, SCoA) if (5) holds for every v 2 SGno�veto with support T =
T (v) and every i 2 T .

In what follows we verify that SSPI has the SCoA property, but BPI does

not.

Proposition 1. The SSPI has the SCoA property.

19Since v 2 SGno�veto, jT j � 2 and so there exists j 2 T who is not i.
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Proof. See the Appendix.

Remark 1. The BPI does not have the SCoA property even in three-player

simple games (for two-player games, it coincides with the SSPI which has the SCoA

property). When n = 3; consider for example the game v = uf1;2g_uf2;3g_uf1;3g: For
this v 2 SGno�veto; we have v�1 = uf2;3g; v�2 = uf1;3g; and v�3 = uf1;2g; and thus

BPI(v) =

�
1

2
;
1

2
;
1

2

�
6= 1

3

��
0;
1

2
;
1

2

�
+

�
1

2
; 0;
1

2

�
+

�
1

2
;
1

2
; 0

��
=

1

3
[BPI(v�1) +BPI(v�2) +BPI(v�3)] :

In fact, a stronger claim is valid, as can be easily checked:

BPI(v) (i) 6= 1

3
[BPI(v�1) (i) +BPI(v�2) (i) +BPI(v�3) (i)]

for every v 2 SGno�veto with T (v) = N = f1; 2; 3g and every i 2 N:

Remark 2. The restriction made in De�nition 1 to checking (5) in the SCoA

property only for games without veto players �i.e., games in the domain SGno�veto �is
not merely due to the fact that a one-player-out subgame v�i becomes the null game

(and thus lies outside the domain SG) if i is a veto player in the game v 2 SG: The
more substantial reason is that the SSPI; a power index that we aim to characterize,

fails to satisfy (5) for games v 2 SGnSGno�veto: This is already evident20 in the
simplest example: for the unanimity game v = uf1;2g 2 SGnSGno�veto with two
veto players, v�1 = v�2 is the null game,21 and thus SPI(v) = (1

2
; 1
2
) 6= (0; 0) =

1
2
[SH(v�1) + SH(v�2)] :

4 Axioms

Even if a power index � is known to have the SCoA property and its values are

given for games with one-player support, it still cannot be uniquely determined on

20In fact, the failure of (5) for games v 2 SGnSGno�veto is apparent from the proof of Proposition

1 because, for a veto player i; (12) in that proof would not imply (5).
21Because v�1; v�2 =2 SG, in the equality that follows we apply the SH and not the SSPI to

the subgames.
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the entire SG by a recursive use of (5), simply because (5) does not apply to games
with veto players. In order to uniquely characterize the SSPI, we will need to appeal

to the standard transfer and dummy axioms, and then supplement them with a weak

version of the SCoA property.

4.1 Transfer and Dummy

The following two axioms are standard, and have been commonly assumed in ax-

iomatizations of the SSPI and BPI starting with Dubey (1975) and Dubey and

Shapley (1979).

Axiom I: Transfer (T). � (v _ w) + � (v ^ w) = � (v) + � (w) for all v; w 2 SG.

As was noted, e.g., in Dubey et al. (2005), T can be restated in an equivalent

but conceptually clearer form, amounting to a requirement that the change in power

following an addition of winning coalitions to the game depends on just that added

set.22

Axiom II: Dummy (D). If v 2 SG and i is a dummy player in v; then � (v) (i) =
v (fig) :

D may be viewed as introducing a scale of measurement. If i is dummy in v 2 SG;
then he is either a null player (when v (fig) = 0), who never swings the outcome,

and it is convenient to label his in�uence as 0; or a dictator (when v(fig) = 1), who
always determines the outcome single-handedly, and it is convenient to label that

level of in�uence as 1.

4.2 The main axiom

Our main axiom on a power index is weaker than the SCoA requirement, in that it

imposes the latter only on some games. However, a technical condition is involved:

these games must have an essential support. While simple to state, this condition

lacks an obvious intuitive interpretation, but we will show later (in Remarks 4, 5, and

22Formally, the following is required: if v � v0 2 SG and u � u0 2 SG are such that v � v0 =
u� u0; then � (v0)� � (v) = � (u0)� � (u) :
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Corollary 1) that it can be replaced by more natural (although stronger) assumptions,

and we will discuss its necessity in Remark 7.

We recall from Shapley (1953, Lemma 3) that each v 2 G is representable as a
linear combination of unanimity games,

v =
X

? 6=T�T (v)

cT (v)uT (6)

for a uniquely determined set fcT (v)g? 6=T�T (v) of coe¢ cients, given by

cT (v) =
X
S�T

(�1)jT j�jSj v(S) (7)

for each non-empty T � T (v):23

De�nition 2. We say that v 2 SG has an essential support if cT (v)(v) 6= 0:24

Remark 3. Not every v 2 SG (or even v 2 SGno�veto) has an essential support.
For example, if N = f1; 2; 3; 4g; then v = uf1;2g _ uf2;3g _ uf3;4g 2 SGno�veto has full
support T (v) = N; yet this support is not essential because cN (v) = 0 as easily seen

from (7):

Remark 4. Despite the observation in Remark 3, the class of games in SG (or
even in SGno�veto) that have an essential support is quite broad. Indeed:

(i) whenever jW(v)j is an odd number, v 2 SG has an essential support;

(ii) for any T � N , jT j � 2; and any jT j + 1 � m � 2jT j � 1 (including all odd
values of such m), there exists v 2 SGno�veto with T (v) = T and jW(v)j = m;

(iii) if the support T of v 2 SGno�veto is not essential, then there exists a game
v0 2 SGno�veto with T as its essential support that is obtained from v by adding a

single winning coalition.

(See the Appendix for the proof.)

23In fact, cT (v) is de�ned by (7) for any non-empty T � N; but it is easy to see that cT (v) = 0
whenever T * T (v):
24In using this term we follow, e.g., Besner (2022), who refers to any coalition T with cT (v) 6= 0

as essential in the game v:
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Remark 5. Any game v 2 SG that is symmetric within its support T (v) (i.e.,
v (S) depends only on jS \ T (v)j) has an essential support. (See the Appendix for
the proof.)

Axiom III: Occasional subgame consistency on average (OSCoA). A

power index � is occasionally subgame-consistent on average (henceforth, OSCoA)

if, given any T � N; jT j � 2; and any i 2 T; there exists a game v 2 SGno�veto with
essential support T (v) = T for which

� (v) (i) =
1

jT j
X
j2T

� (v�j) (i) : (8)

As its name suggests, OSCoA requires the SCoA property to hold only occa-

sionally: for any possible support set T; the consistency requirement in (8) needs to

materialize only jT j times (once for every player in T ), and the choice of a game v
for which (8) holds may depend on i 2 T: Naturally, the OSCoA property is weaker

than SCoA (notice that, by Remarks 4 or 5, for any given T � N; jT j � 2; there ex-
ists a game v 2 SGno�veto for which T is the essential support, and so any � with the
SCoA property satis�es OSCoA).25 Our main result in the next section, Theorem

1, shows that going in the opposite direction is possible if the axioms from Section

4.1 are assumed as well: any � satisfying OSCoA in conjunction with T and D has

the SCoA property a posteriori because it must coincide with the SSPI:

5 The results

Our main result below axiomatizes the SSPI.

Theorem 1. There exists one, and only one, power index satisfying T, D and

OSCoA, and it is the SSPI:

Proof. The fact that the SSPI satis�es T andD is well known (see, e.g., Dubey

(1975)). By Proposition 1, the SSPI has the SCoA property, and thus also satis�es

the weaker OSCoA.
25Clearly, OSCoA is strictly weaker than SCoA when n � 3: a power index obtained from the

SSPI by arbitrarily changing the latter for just one game v 2 SGno�veto with T (v) = N satis�es

OSCoA and D but neither SCoA nor T.

14



To prove uniqueness, consider a power index � that is subject to T, D and OS-

CoA. We start with a lemma on the connection between � (v) for a given v 2 SG
and ��s values for unanimity games, proved in the Appendix.

Lemma 1. For any v 2 SG,

� (v) =
P

? 6=L�f1;2;:::;kg
(�1)jLj+1 �

�
u[l2LTl

�
; (9)

where T1; T2; :::; Tk � T (v) is a list of the elements of Wmin(v). Furthermore, the

coe¢ cient of uT (v) in v�s expansion in (6) is given by

cT (v)(v) =
P

? 6=L�f1;2;:::;kg;[l2LTl=T (v)
(�1)jLj+1 (10)

(namely, cT (v)(v) is the total weight given to �
�
uT (v)

�
in the summation in (9)).

We now show by induction on m = 1; 2; :::; n that

� (v) = SSPI(v) (11)

for any v 2 SG with jT (v)j = m: Form = 1; the equality (11) follows fromD because

all players in v 2 SG with jT (v)j = 1 are dummies. Now assume that m � 2 and that
(11) has been established for all v 2 SG with jT (v)j < m: The next lemma, proved
in the Appendix, shows that (11) holds for any unanimity game with support of size

m :

Lemma 2. Under the induction hypothesis, for any T � N , jT j = m (� 2), we
have � (uT ) = SSPI(uT ):

By the induction hypothesis and Lemma 2, we now know that (11) holds for all

unanimity games uT for which jT j � m: Thus, if v 2 SG is any game with jT (v)j = m;
by applying (9) in Lemma 1 to both � and the SSPI we obtain (11) for such a v as

well, which �nishes the induction step. We conclude that (11) holds for any v 2 SG,
meaning that � = SSPI: �

Remark 6. The axioms T, D and OSCoA are independent. Indeed, the dicta-

torial index �d (given by �d (v) (i) = v(fig) for every v 2 SG and i 2 N) satis�es T
and D but not OSCoA.26 The index that is identically zero satis�es T and OSCoA
26By Remark 1, the BPI also satis�es T and D but not OSCoA, though only when n � 3:
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but not D. Finally, an index that coincides with the SSPI on all games with the

exception of all those v 2 SGnSGno�veto for which T (v) = N; and is the zero vector
for all games in the latter category, satis�es D and OSCoA but not T.

Remark 7. Our statement of OSCoA includes a requirement that the games v

on which condition (8) is imposed must have an essential support. This requirement

cannot be dropped when n � 4 if one desires the SSPI to be uniquely characterized
by T, D and OSCoA as in Theorem 1.27 (See the Appendix for the proof.)

The assumption that the games used in OSCoA have an essential support can

be replaced by some stronger conditions that do not explicitly involve essentiality,

while still yielding the same axiomatization of the SSPI as in Theorem 1. This is

summarized in the following corollary:

Corollary 1. A power index is the SSPI if and only if it satis�es T, D, and,

given any T � N; jT j � 2; and any i 2 T; at least one of the following two conditions
is ful�lled:

(a) there exists v 6= uT in SG with T (v) = T; which is symmetric within T and
for which (8) holds;

(b) there exists v 2 SGno�veto with T (v) = T and an odd jW(v)j ; for which (8)
holds.

Proof. The SSPI satis�es the conditions stated in the corollary because it

has the SCoA property by Proposition 1, implying both (a) and (b). Conversely,

assume that a power index adheres to the stated conditions, and consider any T � N;
jT j � 2; and i 2 T: If (a) is satis�ed, then T is the essential support of v by Remark
5. The game v cannot have veto players (otherwise, by the symmetry of v within T ,

every player in T would be a veto player, meaning that v = uT and contradicting the

assumption in (a)). That is, v 2 SGno�veto. And, if (b) is satis�ed, v 2 SGno�veto has
T as its essential support by Remark 4. Thus, in either of the two cases, there exists

v 2 SGno�veto with the essential support T that satis�es (8). Accordingly, the power
index satis�es OSCoA, and together with T and D this implies �by Theorem 1 �

that the index is the SSPI.�
27When n = 2 or n = 3, all simple games have an essential support, and so the requirement of

having an essential support is automatically ful�lled by any v.
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6 Concluding remarks

Our axioms avoid explicit imposition of symmetry (or anonymity) assumptions, al-

though some measure of symmetry is inevitably implicit in D and OSCoA. Indeed,

it follows from D that null players are treated symmetrically. Also, the arithmetic

average taken in (8) within the statement of OSCoA assigns the same weight to

the one-player-out subgames for all players. What counters the symmetry is that

the games v for which (8) holds may be di¤erent for di¤erent players, and the rela-

tion between the given support T and the game v that it essentially supports does

not need to be covariant under player permutations. Note also that when Corollary

1(i) requires (8) to hold for a symmetric game with a given support in the SSPI

characterization, the choice of such a game is support-dependent and may be player-

dependent28 �and thus, symmetry is in no way explicitly spelled out even with this

requirement.

We would like to stress again that, in OSCoA, the requirement that the games

used for (8) must have an essential support is imposed out of necessity, not by choice:

Remark 7 explains why the essential support assumption cannot be dropped without

forfeiting the uniqueness of a power index. It may be of interest to explore the em-

bedding of our �nite games into the setting with an in�nite universe of players, which

could make the recursive aspect of consistency in OSCoA more potent, possibly

allowing for a weakening or removal of the essential support assumption.29

If, instead of OSCoA, we assume that a power index a priori satis�es its stronger

version �speci�cally, the SCoA in De�nition 1 that imposes (8) for all games v 2
SGno�veto supported on a given T �then the essentiality of support becomes moot,
and Theorem 1 yields the same axiomatization of the SSPI. Note, however, that

replacing OSCoA with a stronger SCoA does not eliminate the need for either T
28In particular, the assumption in Corollary 1(i) does not imply the cross-invariance axiom of

Chen et al. (2024).
29Such an embedding is an important feature of the �nite TU games framework in Dubey et

al. (1981) and of the simple games framework in Einy (1987). However, these works consider

semivalues, which in the simple games context are power indices that, in addition to T and D, are a

priori assumed to satisfy the symmetry (anonymity) axiom and to be non-negative. Since we do not

make these latter two assumptions, the semivalue characterization results provided in these works

are not directly applicable in our setting.
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or D. This is because the indices described in Remark 6, which satisfy OSCoA and

only one of the axioms T and D, in fact have the (full) SCoA property. But, just

as mentioned in the previous paragraph, considering an in�nite universe of players �

in which (O)SCoA would have a stronger recursive aspect �might allow for some

weakening of the other two axioms.

7 Appendix

7.1 Proof of Proposition 1

The following recursive formula30 for the SSPI (and, more generally, the Shapley

value SH) is due to Maschler and Owen (1989) and Hart and Mas-Colell (1989): for

every v 2 SG and i 2 T (v);

SSPI (v) (i) =
1

jT (v)j
X

j2T (v)nfig

SSPI (v�j) (i) +
1

jT (v)j [v(T (v))� v(T (v)nfig)] :

(12)

If v 2 SGno�veto then no i is a veto player, and thus the second term of the RHS

of (12) is zero. Also, since i is obviously a null player in v�i; SSPI (v�i) (i) = 0

by (2), and hence one may take the sum over all j 2 T (v) in the �rst term of the

RHS of (12). It therefore follows from (12) that � = SSPI satis�es (5) for every

v 2 SGno�veto and every i 2 T = T (v):

7.2 Proof of the claims in Remark 4

(i) Clearly,

cT (v)(v)mod 2
by (7)
=

0@ X
S�T (v)

(�1)jT (v)j�jSj v(S)

1Amod 2
=

0@ X
S�T (v)

v(S)

1Amod 2 = jW(v)jmod 2 6= 0
and hence cT (v)(v) 6= 0:
30For its explicit statement see, e.g., Pérez-Castrillo and Wettstein (2001, p. 282).
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(ii) Order all non-empty coalitions T1 = T; T2; :::; T2jT j�1 contained in T in such a

way that Tk � Tk+1 for every 1 � k < 2jT j�1: Then, given any jT j+1 � m � 2jT j�1;
it is easy to verify that for vm := uT1 _ uT2 _ ::: _ uTm ; we have T (vm) = T and

W(vm) = fT1; T2; :::; Tmg; hence jW(vm)j = m:

(iii) Notice that jW(v)j is an even number, since otherwise T = T (v) would have
been essential by (i). Thus jW(v)j < 2jT j � 1; and so W(v) does not contain at least
one non-empty subset of T: Let 1 � m < jT j be the highest number for which W(v)
does not contain at least one subset of T of size m; and pick some T 0 =2 W(v) with
jT 0j = m: Then v0 := v _ uT 0 2 SGno�veto is a game with T (v0) = T that is obtained
from v by adding just one winning coalition: W(v0) = W(v) [ fT 0g: Accordingly,
jW(v0)j = jW(v)j + 1: This is an odd number, which implies by (i) that v0 has an
essential support.

7.3 Proof of the claim in Remark 5

A game v described in the remark is necessarily a q-majority game31 on T (v) for

some integer 1 � q � jT (v)j ; and so, by (7),

cT (v)(v) =
X

S�T (v)

(�1)jT (v)j�jSj v(S) =
jT (v)jX
s=q

(�1)jT (v)j�s
�
jT (v)j
s

�

=

jT (v)jX
s=q

(�1)jT (v)j�s
�

jT (v)j
jT (v)j � s

�
=

jT (v)j�qX
k=0

(�1)k
�
jT (v)j
k

�
= (�1)jT (v)j�q

�
jT (v)j � 1
jT (v)j � q

�
6= 0;

where the last equality is based on a known formula.32

7.4 Proof of Lemma 1

It is easy to see (by induction on k) that

v = uT1 _ uT2 _ ::: _ uTk =
P

? 6=L�f1;2;:::;kg
(�1)jLj+1

V
l2L
uTl : (13)

31That is, v(S) = 1 if and only if jS \ T (v)j � q:
32The equality used here,

Pm
k=0 (�1)

k �r
k

�
= (�1)m

�
r�1
m

�
for m � r � 1; appears, e.g., as (5.16)

in Graham et al (1989, p. 165). It can also be easily established by induction on m.
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Since for any non-empty L � f1; 2; :::; kg;V
l2L
uTl = u[l2LTl ; (14)

the preceding equality also yields

v =
P

? 6=L�f1;2;:::;kg
(�1)jLj+1 u[l2LTl : (15)

Using the assumption that � satis�es T, it can be shown by induction on k that

� (v) can be represented as follows,33 in full analogy with (13):

� (v) =
P

? 6=L�f1;2;:::;kg
(�1)jLj+1 �

�V
l2L
uTl

�
:

This yields (9) via (14).

Finally, notice that (15) reduces into a representation of v as a linear combination

of unanimity games, with the coe¢ cient of uT (v) beingP
? 6=L�f1;2;:::;kg;[l2LTl=T (v)

(�1)jLj+1 :

But, as stated between equations (6) and (7), this coe¢ cient is uniquely determined

and is equal to cT (v)(v), which establishes (10).

7.5 Proof of Lemma 2

Proof of Lemma 2. Fix any T � N with jT j = m (� 2), and consider some i 2 T:
By OSCoA, there exists v 2 SGno�veto with essential support T = T (v) for which
(8) holds. But, since jT (v�j)j < jT (v)j = jT j = m for every j 2 T; by the induction
hypothesis the RHS of (8) is equal to 1

jT j
P

j2T SSPI (v�j) (i) ; which in turn equals

SSPI (v) (i) by Proposition 1. Since the LHS of (8) consists of � (v) (i); we conclude

that

� (v) (i) = SSPI(v)(i): (16)

Now, for the game v above, write v = uT1_uT2_ :::_uTk for a list T1; T2; :::; Tk � T
of the elements of Wmin(v): By applying (9) of Lemma 1 to both � and the SSPI

and using (16), we obtainP
? 6=L�f1;2;:::;kg

(�1)jLj+1 �
�
u[l2LTl

�
(i) =

P
? 6=L�f1;2;:::;kg

(�1)jLj+1 SSPI
�
u[l2LTl

�
(i):

(17)
33This representation is also a corollary of Lemma 2.3 of Einy (1987).
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By the induction hypothesis, �
�
u[l2L

�
= SSPI

�
u[l2LTl

�
whenever [l2LTl 6= T; and

it thus follows from (17) that P
? 6=L�f1;2;:::;kg;[l2LTl=T

(�1)jLj+1
!
� (uT ) (i) (18)

=

 P
? 6=L�f1;2;:::;kg;[l2LTl=T

(�1)jLj+1
!
SSPI (uT ) (i): (19)

By (10) in Lemma 1, (18)-(19) can be restated as

cT (v)� (uT ) (i) = cT (v)SSPI (uT ) (i):

However, recall that v was chosen byOSCoA in such a way that its support T = T (v)

is essential, and so cT (v) 6= 0, implying that � (uT ) (i) = SSPI (uT ) (i): Since the

above argument can be made for any i 2 T; and then for any T � N of size m, the

lemma is established.

7.6 Proof of the claim in Remark 7

Let n = 4, and construct a power index � as follows: let � (uT ) = SSPI (uT )

whenever jT j � 3; and let � (uN) be the zero vector; then extend � onto SG by the
equation

� (v) =
X

? 6=T�T (v)

cT (v)� (uT ) (20)

for every v 2 SG, using the coe¢ cients fcT (v)g? 6=T�T (v) de�ned in (7). Using an
argument in Einy (1987, bottom of p. 186),34 it can be readily seen that � is well-

de�ned on SG and satis�es T. By (2) and (6), we also have

SSPI (v) =
X

? 6=T�T (v)

cT (v)SSPI (uT ) (21)

for any v 2 SG; and so � (v) = SSPI (v) whenever jT (v)j � 3: It follows in particular
that � satis�es D, and that (8) holds for any v 2 SGno�veto (with or without an
essential support) and all players i 2 T (v) whenever jT (v)j � 3 (because that is so
for the SSPI). Now consider v = uf1;2g _ uf2;3g _ uf3;4g 2 SGno�veto: We already
34Speci�cally, by applying (20) to every v 2 G, � can be extended into a well-de�ned linear

operator on G, and hence its restriction to SG is well-de�ned and satis�es T.
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noted in Remark 3 that v�s support T (v) = N is not essential, i.e., cT (v)(v) = 0:

This, together with (20) and (21) taken for v = v, implies that �
�
v
�
= SSPI

�
v
�

because � coincides with SSPI for all simple games (and in particular all unanimity

games) with support of size 3 and below. So � coincides with SSPI on v as well,

and therefore (8) holds for T = N and v that is non-essentially supported on N (and

for all players i 2 N). We conclude that � is an index that is di¤erent from SSPI

(since � (uN) 6= SSPI (uN) by construction); but it would satisfy all the conditions
of Theorem 1 if we were to drop the requirement in OSCoA that all v used for (8)

must have an essential support.
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