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Abstract

We prove the existence of a behavioral-strategy Bayesian Nash equilibrium

in all-pay auctions with statistically interdependent types (signals) under quite

general assumptions on the values, costs and tie-breaking rules. Moreover, the

set of equilibria is shown to be the same for any tie-breaking rule used in the

auction.
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1 Introduction

The path-breaking paper of Reny (1999) inspired numerous works on equilibrium ex-

istence in games with discontinuities, and, in particular, in discontinuous games with

incomplete information.1 For the latter category, conditions on the ex-post payo¤s

that guarantee "better-reply security" � the central hypothesis in Reny�s result �

were explicitly formulated in He and Yannelis (2016), Carbonell-Nicolau and McLean

(2018) and Olszewski and Siegel (2023). Among other applications of their results

on the existence of Bayesian Nash equilibrium in behavioral strategies, these authors

�Department of Economics, Ben-Gurion University of the Negev, Beer Sheva, Israel. e-mail:

orih@bgu.ac.il.
1See, e.g., Reny (2020) for a survey.
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considered all-pay auctions,2 where all bidders bear the costs of their bids, because

a particular feature of these auctions �raising one�s bid in�nitesimally never reduces

the bidder�s ex-post payo¤ �is very useful in establishing better-reply security.

The results obtained therein on equilibrium existence in all pay-auctions, although

very comprehensive in terms of allowable cost and value functions and tie-breaking

rules, leave out some cases of interest. He and Yannelis (2016) and Carbonell-Nicolau

and McLean (2018) considered only common-value auctions because among their

conditions for equilibrium existence is the requirement that the sum of all players�

ex-post payo¤s be upper semi-continuous in players�bids. With common value that

requirement holds trivially since then all discontinuities in the probabilities of winning

cancel each other out in the payo¤s�sum, but if the value for winning di¤ers across

bidders then these discontinuities are typically inherited by the sum . Olszewski and

Siegel (2023), on the other hand, allow general bidder-dependent valuations,3 but

unlike the two other works they restrict their result for all-pay auctions to the setting

with independent types (or signals).

This paper aims to �ll the gap by showing that a behavioral-strategy Bayesian

Nash equilibrium exists in all-pay auctions under rather permissive conditions on

(bidder-dependent) values, costs and tie-breaking, for general information structures

(that can accommodate a vast range of statistical type interdependency because the

only limitation that we place on the type space is the standard assumption of ab-

solutely continuous information4 due to Milgrom and Weber (1986)). We prove equi-

librium existence in two stages, partially inspired by the method used in Fu et al.

(2022) for multi-prize nested lottery contests.5 We initially assume a speci�c tie-

2The concept of incomplete-information all-pay auctions is due to Amann and Leininger (1996)

(and, somewhat more widely, Krishna and Morgan (1997)), who initiated their systematic study.
3Their condition is formulated using the upper semi-continuous envelope of the payo¤s� sum,

thereby obviating the need to have upper semi-continuity of the sum itself.
4Absolute continuity of information requires the joint distribution of the players� types to be

absolutely continuous with respect to the product of its marginals. This condition is useful in appli-

cations because it holds, e.g., when the players�types are countable, or when they are uncountable

but have joint density.
5The discontinuity of the probabilities to win in lottery contests is limited to the pro�le of zero

bids, whereas in auctions the discontinuity occurs (for bidders tieing at the highest bid) at all bid

pro�les with such ties. But, although the method of Fu et al. (2022) is applied to games that are

"almost continuous," the all-pay feature that is common to contests and the auctions considered

here (alongside monotonicity properties of the probabilities to win) make that method useful in our
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breaking rule that, at any type pro�le, deterministically awards the object to one

of the top bidders at that pro�le that has the highest value.6 It is then relatively

straightforward to check that this auction satis�es the two conditions of the main

equilibrium existence result in Carbonell-Nicolau and McLean (2018), uniform pay-

o¤ security and aggregate-payo¤ upper semi-continuity. We then show that for any

tie-breaking rule in an all-pay auction, any equilibrium puts zero ex-ante probability

on bid pro�les with ties, and that all unilateral strategic improvements can be done

almost as pro�tably by avoiding ties. This implies that the particular tie-breaking

rule bears no relevance on the expected payo¤ considerations in equilibrium, and

thus does not a¤ect the equilibrium set in the auction.7 As a corollary, the claim of

equilibrium existence applies to all-pay auctions under all tie-breaking rules.8

Our results, in e¤ect, claim (and use) invariance of the equilibrium set in an all-

pay auction under changes in a tie-breaking rule. This re�ects some general results

in Carmona and Podczeck (2018), who studied games with indeterminate outcomes

(under complete and incomplete information) and were concerned with the existence

of a common equilibrium for such games under all sharing rules. All-pay auctions �t

their concept of a game with indeterminate outcomes: a tie at the highest bid means

an indeterminate outcome, which is decided by a sharing (tie-breaking) rule. However,

their incomplete information framework is more limited than ours, as it would require

�for all-pay auctions �the utilities of winning to be continuous in types (and the type

spaces themselves to be metric and compact). Since our type spaces are general (not

necessarily topological) and the link of values and costs to types is only measurable

(not necessarily continuous), we chose an independent approach.

Due to generality of our framework, equilibrium existence can only be established

in behavioral Bayesian strategies, which allow type-dependent bid choices to be ran-

setting, when the games have major discontinuities.
6Such a rule is clearly arti�cial as it presupposes that the types (or, at least, the true values)

of all bidders are fully known ex post, but it only serves us as a �rst step in a general existence

result. Other rules that choose the highest-value bidders have been known in the literature; e.g.,

Maskin and Riley (2000) considered a rule that chooses a bidder based on the maximal expected

payo¤ conditional on winning (given his realized type and the other bidders�bid functions).
7We do not have binding budget constraints in our framework. With such constraints, even in

the complete information case equilibria may depend on a particular tie-breaking rule used in the

all-pay auction (see Example 3 in Allison et al. (2022)).
8In contrast, it is known that in a standard (�rst-price) auction a change in the tie-breaking rule

may a¤ect equilibrium existence (see, e.g., Example 2 in Maskin and Riley (2000)).
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dom. This is not surprising because even in complete-information all-pay auctions

the equilibria are typically in strictly mixed strategies. Interestingly, however, pure

Bayesian strategy equilibria may exist in a reasonably broad range of circumstances

even with interdependent types: in a recent work, Prokopovych and Yannelis (2023)

o¤er su¢ cient conditions for the existence of equilibrium in monotone pure strategies

for all-pay auctions and contests when types are one-dimensional and a¢ liated.

Our paper is organized as follows. The framework is presented in sections 2.

Section 3 states our claims, which are proved in Section 4. Section 5 discusses an

extension that mixes auctions and contests.

2 All-pay auctions with incomplete information

2.1 The model

Members of N = f1; :::; ng; with n � 2; bid for a single object (or, in a common

alternative interpretation, exert e¤ort to win a prize). The information endowment

of each bidder i 2 N is given by a measurable space (Ti; Ti) of signals, or types,
and the bidders are assumed to have a common prior probability p on the product

space (T; T ) := (�i2NTi;
i2NTi) of all type-pro�les. In common with much of the
literature, it will be postulated that p is absolutely continuous w.r.t. the product of

its marginals, 
i2Npi:
Upon privately observing their respective types, bidders simultaneously choose

bids (that may alternatively be viewed as e¤ort levels), and pay them irrespective

of the �nal outcome. It is assumed that bids may not exceed some universal bound

M > 0, and hence any bid pro�le x = (x1; :::; xn) is an element of the cube [0;M ]
n.

The type-dependent cost of bid of each i 2 N is described by ci : T�[0;M ]n ! R. The
typical case is that ci (t; x) depends on just t and i�s own bid xi; but our formulation

also allows dependence on the bids of others. This captures inter alia costs that are

determined by min
�
xi;maxj2Nnfig xj

	
as in the war of attrition models.9

The type- (and possibly bid-)dependent value for the object of each bidder i 2 N
is given by Vi : T � [0;M ]n ! R++, i.e., if t 2 T and x 2 [0;M ]n are the realized type
and bid pro�les then i�s value is Vi(t; x) > 0.

For any x 2 [0;M ]n, i 2 N and yi 2 [0;M ] ; let (yi; x�i) 2 [0;M ]n be the pro�le
9See Krishna and Morgan (1997).
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obtained from x by replacing xi with yi: The following assumptions will be made on

the functions Vi and ci :

(i) Vi and ci are T 
 B ([0;M ]n)-measurable10 and bounded;
(ii) Vi(�; (M;x�i)) � ci(�; (M;x�i)) < 0 and ci(�; (0; x�i)) � 0 for any �xed t 2 T

and x�i 2 [0;M ]n�1;11

(iii) the functions fVi (t; �)gt2T are continuous and fci (t; �)gt2T are equicontinuous;
(iv) Vi (t; (yi; x�i)) is non-decreasing in yi for any �xed t 2 T and x�i 2 [0;M ]n�1 :

The object is awarded to one of the highest bidders, with ties broken proba-

bilistically. This is fully described by a type-dependent auction success function

� : T � [0;M ]n ! �n, such that:

(v) � is T 
 B ([0;M ]n)-measurable;
(vi) for any (t; x) 2 T � [0;M ]n ; � (t; x) is a probability vector with a support on

the set

Nmax(x) =

�
i 2 N j xi = max

j2N
xj

�
of the highest bidders at x.

Thus, �i (t; x) = 0 if i =2 Nmax(x) and, if Nmax(x) = fjg �i.e., the highest bid
is unique and belongs to bidder j �then �j (t; x) = 1. Note that the discontinuity

points of �i (t; �) are con�ned to the set of bid pro�les where i ties with at least one
other bidder at the highest bid, namely,

X tie
i =

�
x 2 [0;M ]n j xi = max

j2Nnfig
xj

�
; (1)

and that outside X tie
i the function �i (t; �) can obtain two values only:

(vii) if x 2 X tie
i then �i (t; (yi; x�i)) = 1 for every yi > xi and �i (yi; x�i) = 0 for

every yi < xi: In particular, �i (t; (yi; x�i)) is non-decreasing in yi 2 [0;M ] for any
�xed t 2 T and x�i 2 [0;M ]n�1 :
10Here and henceforth, B (A) denotes the �-algebra of Borel sets in a closed subset A of some Rm:
11Assumption (ii) implies that bidding 0 strictly dominates bidding M: In particular, our frame-

work does not admit binding bid caps. With binding bid caps, it is known that tie-breaking rules

may a¤ect the equilibria even in a complete information case (see Example 3 in Allison e al. (2022)).
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In the literature, it is usually assumed that the recipient of the object in Nmax(x)

is chosen by a fair lottery (which is type-independent), i.e.,

��i (x) =
1

jNmax(x)j ; if i 2 N
max(x);

0; otherwise
: (2)

Our speci�cation of �i in (vi) coincides with (2) when jNmax(x)j = 1 or i =2 Nmax(x);

but places no restriction on the lottery performed among the top bidders when

jNmax(x)j � 2: In particular, the lottery on Nmax(x) may depend in the type pro�le

t; re�ecting potential biases that may exist in the case of ties at the highest bid in

some (or all) states of nature.12

De�nition 1. An (incomplete-information all-pay) auction is given by a collection

(N; (Ti; Ti)i2N ; p; fVigi2N ; fcigi2N ; �) of the above-described attributes. As all these
attributes will be �xed throughout with the exception of the auction success function

� (which will be allowed to vary for technical reasons), an auction will be denoted by

G(�):

For any realized type pro�le t 2 T and any bid pro�le x 2 [0;M ]n ; the payo¤ of
each bidder i 2 N in an auction G (�) is given by his expected share of the object�s

value net of his cost, namely,

u�i (t; x) = �i (t; x) � Vi (t; x)� ci(t; x): (3)

Below we list some obvious implications of (i) �(vi), which will be of use henceforth.

Fact 1. For any i 2 N; the payo¤ function u�i : T � [0;M ]
n ! R has the following

properties:

(a) u�i is T 
 B ([0;M ]
n)-measurable and bounded (making the expected payo¤s,

introduced in the next section, well de�ned);

(b) u�i (t; �) is continuous on the open set [0;M ]
n nX tie

i for any t 2 T:

2.2 Behavioral Bayesian strategies and equilibrium

The concept of behavioral Bayesian strategy allows randomness in a type-dependent

choice of bids. Formally, as in Balder (1988), a (behavioral Bayesian) strategy of

12Even if a given success function is type-independent, such as �� in (2), our proof of equilibrium

existence uses an auxiliary success function that is type-dependent. Hence, we admit any type-

dependent � from the start.
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i 2 N in G (�) is a mapping �i : Ti � B ([0;M ]) ! [0; 1] ; such that �i (ti; �) is a
probability measure on [0;M ] for every ti 2 Ti and �i (�; A) is Ti-measurable for every
A 2 B ([0;M ]) : We denote by �i the set of i�s strategies, and by � = �ni=1�i the set
of strategy pro�les.

For any strategy pro�le � = (�i)i2N 2 �; the expected payo¤ of bidder i 2 N is

given by

U�i (�) =

Z
T

Z
[0;M ]n

u�i (t; x)�1(t1; dx1):::�n(tn; dxn)p(dt): (4)

Also, denote by (�0i; ��i) 2 � the pro�le that is obtained from � by replacing �i with
some �0i 2 �i:

De�nition 2. Strategy pro�le �� = (��i )i2N 2 � constitutes a Bayesian Nash
equilibrium (or BNE, for short) of an auction G (�) if

U�i (�
�) � U�i (�i; ���i) (5)

for every bidder i 2 N and every �i 2 �i.

3 BNE existence and independence of �

As a �rst step, BNE existence will be established in an auction in which all ties at

the top bid are broken in favor of the bidder with the highest value for the object.13

Let an auction success function e� be de�ned, for any (t; x) 2 T � [0;M ]n ; by
e� (t; x) = �1;0�i(t;x)� ; (6)

where (1;0�i) stands for the ith unit vector and i(t; x) denotes the lowest-numbered

bidder in the set
�
i 2 Nmax(x) j Vi(t; x) = maxj2Nmax(x) Vj(t; x)

	
: By (vii), e� (t; �)

may di¤er from another success function � (t; �) at a bid pro�le x only if there are ties
at the highest bid in x (i.e., x 2 X tie

i for some i 2 N). The winner in G(e�) is then
chosen deterministically as the (lowest-numbered) bidder with the highest value from

the set Nmax(x) of those who tie at the top bid in x:

Our initial BNE existence result, Proposition 1 below, is obtained as a fairly

straightforward application of Theorem 1 in Carbonell-Nicolau and McLean (2018).

13Such a step is used in Fu et al. (2022), who show equilibrium existence for nested multi-prize

lottery contests, and, in a much greater generality, in the proof of Theorem 5 in Carmona and

Podczeck (2018).
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That theorem identi�es the conjunction of two conditions on ex-post payo¤s, uniform

payo¤ security and aggregate-payo¤ upper semi-continuity, as su¢ cient for equilib-

rium existence in Bayesian games.

Proposition 1. G(e�) possesses a BNE.
It turns out that any BNE of G(e�) remains a BNE when any auction success

function is used instead of e�. In fact, the set of BNE in an auction does not depend
on a particular auction success function:

Proposition 2. For any two auction success functions � and �0; the auctions

G(�) and G(�0) have the same BNEs.

The proof of Proposition 2 is based on (a) ruling out the possibility that any

BNE �� of G(�0) assigns a positive ex-ante probability to bid pro�les with ties at the

highest bid (where �0 may disagree with �), thereby ensuring that the expected payo¤s

under �� are identical in both G(�0) and G(�); and (b) showing that all pro�table

unilateral deviations from �� in G(�) can be mimicked almost as pro�tably in G(�0);

thus ensuring that �� is also a BNE of G(�):

An immediate corollary of the two propositions is our main theorem:

Theorem 1. Any G (�) possesses a BNE.

The proofs of propositions 1 and 2 are presented in the next section.

4 Proofs

4.1 A Lemma

We start with a lemma that is needed in the subsequent proofs, showing that the fall

in i�s payo¤ in G(�) is minor if his bid is raised slightly (even if the other bids are

also slightly varied).

Lemma 1. Consider an auction G(�) and let " > 0: Then, for all low enough

0 < � < 1; the following holds: given any (t; x) 2 T � [0;M ]n with xi < M for some

i 2 N; there exists a (relatively) open neighborhood Wx�i � [0;M ]n�1 of x�i such

that

u�i (t; (xi + �(M � xi); z�i)) > u�i (t; x)� " (7)
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for any z�i 2 Wx�i :

Proof of Lemma 1. Since fci (t; �)gt2T are equicontinuous by assumption (iii)
(and hence, uniformly so), for all low enough 0 < � < 1 we have

jci (t; (yi; x�i))� ci (t; x)j <
"

2
(8)

for any i 2 N; (t; x) 2 T � [0;M ]n and yi 2 [0;M ] with jyi � xij � �M: We will show
that (7) holds given any such �:

First assume that x =2 X tie
i . In this case, we have

u�i (t; (xi; z�i)) > u
�
i (t; x)�

"

2
(9)

for any z�i in some open neighborhood Wx�i of x�i by Fact 1(b): Then, for any

z�i 2 Wx�i ;

u�i (t; (xi + �(M � xi); z�i))

= �i (t; (xi + �(M � xi); z�i)) � Vi (t; (xi + �(M � xi); z�i))

�ci(t; (xi + �(M � xi); z�i))

� �i (t; (xi; z�i)) � Vi (t; (xi; z�i))� ci(t; (xi; z�i))�
"

2
(10)

= u�i (t; (xi; z�i))�
"

2
> u�i (t; x)� ": (11)

Here, the inequality in (10) is implied by �i (t; x) and Vi (t; x) being non-decreasing

in xi for a �xed x�i (due to (iv) and (vii)), and by (8). The inequality in (11) is due

to (9).

We now show that (7) also holds when x 2 X tie
i . In this case, since 0 < � < 1

and xi < M , clearly (xi+ �(M �xi); x�i) =2 X tie
i . There exists an open neighborhood

Wx�i of x�i such that

u�i (t; (xi + �(M � xi); z�i)) > u�i (t; (xi + �(M � xi); x�i))�
"

2
(12)

holds for any z�i 2 Wx�i by Fact 1(b). Then, for any z�i 2 Wx�i ;

u�i (t; (xi + �(M � xi); z�i))

> u�i (t; (xi + �(M � xi); x�i))�
"

2
(13)

= �i (t; (xi + �(M � xi); x�i)) � Vi (t; (xi + �(M � xi); x�i))

�ci(t; (xi + �(M � xi); x�i))�
"

2
� �i (t; x) � Vi (t; x)� ci(t; xi)� " = u

�
i (t; x)� ": (14)
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Here, the inequality in (13) is due to (12), and the inequality in (14) follows from

�i (t; x) and Vi (t; x) being non-decreasing in xi for a �xed x�i and from (8). �

4.2 Proof of Proposition 1

To establish BNE existence in G(e�); we �rst verify that G(e�) is uniformly payo¤-
secure. This property, formulated in De�nition 9 in Carbonell-Nicolau and McLean

(2018), involves pure (Bayesian) strategies. Let us denote by Si the set of pure

strategies of bidder i 2 N; which are Ti-measurable function si : Ti ! [0;M ]. Uniform

payo¤ security requires that, for any i 2 N; si 2 Si and " > 0; there must exist si 2 Si
with the following feature: for every (t; x�i) 2 T � [0;M ]n�1 there is a (relatively)
open neighborhood Wx�i � [0;M ]n�1 of x�i such that

ue�i (t; (si (ti) ; z�i)) > ue�i (t; (si (ti) ; x�i))� " (15)

whenever z�i 2 Wx�i :

Let i 2 N; si 2 Si and " > 0; and de�ne

si (ti) :=

(
si(ti) + �(M � si(ti)); if si(ti) < M ;

0; if si(ti) =M
(16)

for any ti 2 Ti; where 0 < � < 1 is chosen to be such that the assertion of Lemma
1 holds for the auction G(e�) and ". Thus, the requisite Wx�i exists and (15) holds

whenever si (ti) < M: Thus, only the case of si (ti) = M needs to be addressed. But

then bidding si (ti) = 0 constitutes a strict improvement for bidder i regardless of the

possibly changing bids by Nnfig: Formally, for any z�i 2 [0;M ]n�1;

ue�i (t; (si (ti) ; z�i))
= ue�i (t; (0; z�i)) = e�i (t; (0; z�i)) � Vi (t; (0; z�i))� ci(t; (0; z�i))
� �ci(t; (0; z�i)) � 0 > Vi (t; (M;x�i))� ci(t; (M;x�i)) (17)

� e�i (t; (M;x�i)) � Vi (t; (M;x�i))� ci(t; (M;x�i))
= e�i (t; (si (ti) ; x�i)) � Vi (t; (si (ti) ; x�i))� ci(t; (si (ti) ; x�i))
= ue�i (t; (si (ti) ; x�i)):

Here, the last two inequalities in (17) are due to assumption (ii). We conclude that

G(e�) is uniformly payo¤-secure.
10



We now show that G(e�) is, furthermore, aggregate-payo¤ upper semi-continuous,
i.e., that for any (t; x) 2 T � [0;M ]n;

lim sup
y!x

X
i2N

ue�i (t; y) �X
i2N

ue�i (t; x) : (18)

Indeed, for any y in some open neighborhood of x we have Nmax(y) � Nmax(x); and

so

lim sup
y!x

X
i2N

ue�i (t; y)
= lim sup

y!x

X
i2Nmax(y)

e�i (t; y) � Vi (t; y)�X
i2N

ci(t; x) (19)

� lim sup
y!x

max
i2Nmax(x)

Vi (t; y)�
X
i2N

ci(t; x)

= max
i2Nmax(x)

Vi (t; x)�
X
i2N

ci(t; x) (20)

=
X
i2N

e�i (t; x) � Vi (t; x)�X
i2N

ci(t; x) =
X
i2N

ue�i (t; x) ; (21)

where the equalities in (19) and (20) are due to assumption (iii), and the �rst equality

in (21) is due to (6). Thus, (18) holds for any (t; x) 2 T � [0;M ]n:
Since G(e�) is uniformly payo¤-secure and aggregate-payo¤upper semi-continuous,

the hypotheses of Theorem 1 in Carbonell-Nicolau and McLean (2018) are satis�ed,14

and that theorem guarantees existence of a BNE in behavioral strategies for G(e�). �
4.3 Proof of Proposition 2

It clearly su¢ ces to check that any �xed BNE �� = (��1; :::; �
�
n) 2 � of G(�0) is also a

BNE of G(�): The proof proceeds in two steps.

Step 1. We will show that the ex-ante probability under �� that the realized bid

pro�le has ties at the highest bid is zero, i.e.,Z
T

Z
[0;M ]n

�S
i2N

Xtie
i

(x)��1(t1; dx1):::�
�
n(tn; dxn)p(dt) = 0; (22)

where �A denotes the characteristic function of a set A 2 B ([0;M ]
n) :

14The general conditions of the model in Carbonell-Nicolau and McLean (2018) are also satis�ed

by our assumptions on values, costs and the common prior.
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Indeed, suppose by way of contradiction that there is i 2 N withZ
T

Z
[0;M ]n

�Xtie
i
(x)��1(t1; dx1):::�

�
n(tn; dxn)p(dt) > 0:

Since i ties in X tie
i with someone else, there is j 2 Nnfig such that, in fact,Z
T

Z
[0;M ]n

�Xtie
i \Xtie

j
(x)��1(t1; dx1):::�

�
n(tn; dxn)p(dt) > 0: (23)

For any t 2 T and x 2 X tie
i \ X tie

j ; denote by k (t; x) the lowest-numbered bidder

k 2 fi; jg for whom �0k (t; x) � 1
2
: Since, clearly,

�Xtie
i \Xtie

j
= �fx02Xtie

i \Xtie
j jk(t;x0)=ig + �fx02Xtie

i \Xtie
j jk(t;x0)=jg;

we may assume w.l.o.g. �based on (23) �thatZ
T

Z
[0;M ]n

�fx02Xtie
i \Xtie

j jk(t;x0)=ig (x)�
�
1(t1; dx1):::�

�
n(tn; dxn)p(dt) > 0:

Since ��i is a BNE strategy and bidding 0 strictly dominates bidding M (due to (ii)),

for p-almost every t 2 T we have ��i (ti; fMg) = 0; and henceZ
T

Z
[0;M ]n

�Fi(t) (x)�
�
1(t1; dx1):::�

�
n(tn; dxn)p(dt) > 0 (24)

for Fi(t) :=
�
x 2 X tie

i \X tie
j j k (t; x) = i and xi < M

	
:

Now, given " > 0; choose and �x 0 < � < 1 such that

u�
0

i (t; (xi + �(M � xi); x�i)) > u�
0

i (t; x)� " (25)

and

jci(t; (xi + �(M � xi); x�i))� ci(t; x)j < ": (26)

for every (t; x) 2 T � [0;M ]n (the existence of such a � is guaranteed by Lemma 1 and
equicontinuity of fci (t; �)gt2T ). Let ��i 2 �i be a strategy determined by the equality

��i (t; [a;M ]) = �
�
i

�
t; [
a� �M
1� � ;M ]

�
: (27)

for any t 2 T and a 2 [�M;M ]: (That is, ifXi is a ��i (t; �)-distributed random variable
on [0;M ] ; then Yi := Xi + �(M �Xi) is ��i (t; �)-distributed.)
When (t; x) is such that x 2 Fi(t); then

u�
0

i (t; (xi + �(M � xi); x�i))� u�
0

i (t; x) (28)

� 1

2
Vi(t; x) + ci(t; (xi + �(M � xi); x�i))� ci(t; x) (29)

� 1

2
Vi(t; x)� ": (30)
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The inequality in (29) follows from the de�nition of Fi(t); the fact that xi+�(M�xi)
is a bid that yields a certain winning in G (�0)15 (unlike xi; which leads to i�s winning

with probability at most 1
2
; by the assumption that i = k(t; x)), and Vi(t; x) being

non-decreasing in xi for a �xed x�i by (iv): The inequality in (30) is due to (26):

Thus, the following holds:

U�
0

i (�
�
i ; �

�
�i)� U

�0

i (�
�) (31)

=

Z
T

Z
[0;M ]n

"
u�

0

i (t; (xi + �(M � xi); x�i))
�u�

0

i (t; x)

#
��1(t1; dx1):::�

�
n(tn; dxn)p(dt)

� �"+
Z
T

Z
[0;M ]n

1

2
Vi(t; x)�Fi(t) (x)�

�
1(t1; dx1):::�

�
n(tn; dxn)p(dt): (32)

Here, the inequality in (32) follows from (25) and (28)�(30).

The second term in the expression in (32) is positive, as implied by (24) and the

strict positivity of the function Vi, and it does not depend on ": By taking " to be

su¢ ciently small, it therefore follows from (31)�(32) that U�
0

i (�
�
i ; �

�
�i)� U

�0

i (�
�) > 0

for an appropriately chosen �; which contradicts the assumption that �� is a BNE of

G(�0): We conclude that (22) holds, after all.

Step 2. Here we check that �� is also a BNE of G(�): We begin by observing

that, since the ex-ante probability under �� of ties at the highest bid (i.e., of the

realized bid pro�le being in
S
i2N

X tie
i ) is 0 by (22), and �

0
i may di¤er from �i only for

bid pro�les in X tie
i by (vii); the expected payo¤s of the bidders under �� are identical

in G(�) and G(�0): That is, for every i 2 N;

U�i (�
�) = U�

0

i (�
�): (33)

Now assume, by way of contradiction, that �� fails to be a BNE of G (�) : It follows

that there exists i 2 N (w.l.o.g., i = 1) and �1 2 �1 such that

U�1 (�
�) < U�1 (�1; �

�
�1); (34)

�x one such �1: Since bidding 0 strictly dominates bidding M , it can be assumed

w.l.o.g. that �1(�; fMg) = 0:
15That is because xi + �(M � xi) > xi = maxj2Nnfig xj (the equality is due to Fi(t) � Xtie

i ).
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Consider a collection of strategies
�
��1
	
0<�<1

� �1; de�ned as in (27) for all

0 < � < 1; and denote

I� :=

Z
T

Z
[0;M ]n

�Xtie
1
(x)��1(t1; dx1)�

�
2(t2; dx2):::�

�
n(tn; dxn)p(dt) (35)

=

Z
T

Z
[0;M ]n

�Xtie
1
(x1 + �(M � x1); x�1)�1(t1; dx1)��2(t2; dx2):::��n(tn; dxn)p(dt):(36)

Notice that the integrands in (36) �namely, the functions �Xtie
1
(x1 + �(M � x1); x�1)

�have disjoint supports for distinct values of � when they are restricted to [0;M)�
[0;M ]n�1: (Indeed, if �Xtie

1
(x1 + �(M � x1); x�1) = 1 then x1+�(M�x1) = maxj2Nnf1g xj;

and so x1+�
0(M�x1) 6= maxj2Nnf1g xj for any �0 6= �; implying that �Xtie

1
(x1 + �

0(M � x1); x�1)
= 0:) Thus, given any sequence of distinct numbers f�kgk�1 � (0; 1);X

k�1

�Xtie
1
(x1 + �k(M � x1); x�1) � 1 (37)

for all x 2 [0;M)� [0;M ]n�1: Because �1 places zero mass on M; (35)�(36) and (37)
imply that the sum

P
k�1 I�k cannot exceed 1. It follows that I� > 0 for at most

countably many values of �: Consequently, there exists a sequence
�
�0k
	1
k=1

� (0; 1)
such that limk!1� �

0
k = 0 and I�0k = 0 for every k; that is,Z

T

Z
[0;M ]n

�Xtie
1
(x)�

�0k
1 (t1; dx1)�

�
2(t2; dx2):::�

�
n(tn; dxn)p(dt) = 0: (38)

Let

" :=
1

2

�
U1(�1; �

�
�1)� U1(��)

�
> 0 (39)

(" is positive by (34)). By Lemma 1, for all su¢ ciently large k and for every (t; x) 2
T � [0;M ]n,

u�1(t; (x1 + �
0
k(M � x1); x�1)) > u�1(t; x)� ": (40)

It follows from (40) that

U�1 (�
�0k
1 ; �

�
�1) (41)

=

Z
T

Z
[0;M ]n

u�1 (t; x)�
�0k
1 (t1; dx1)�

�
2(t2; dx2):::�

�
n(tn; dxn)p(dt)

=

Z
T

Z
[0;M ]n

u�1
�
x1 + �

0
k(M � x1); x�1

�
�1(t1; dx1)�

�
2(t2; dx2):::�

�
n(tn; dxn)p(dt)

�
Z
T

Z
[0;M ]n

u�1 (t; x)�1(t1; dx1)�
�
2(t2; dx2):::�

�
n(tn; dxn)p(dt)� "

= U�1 (�1; �
�
�1)� ": (42)
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Since, by (38), the ex-ante probability under (��
0
k
1 ; �

�
�1) of the realized bid pro�le

being in X tie
1 is 0, and �01 may di¤er from �1 only on X

tie
1 by (vii); the expected

payo¤s of bidder 1 under (��
0
k
1 ; �

�
�1) are identical in G (�

0) and G (�) : for every i 2 N;

U�
0

1 (�
�0k
1 ; �

�
�1) = U

�
1 (�

�0k
1 ; �

�
�1): (43)

We thus obtain

U�
0

1 (�
�0k
1 ; �

�
�1) � U

�
1 (�1; �

�
�1)� " > U

�
1 (�

�) = U�
0

i (�
�);

where the �rst inequality follows from combining (43) with the inequality established

in (41)�(42), the second inequality uses the de�nition of " in (39), and the third

inequality is just (33). But the implication is that U�
0

1 (�
�0k
1 ; �

�
�1) > U�

0

i (�
�); which

cannot be the case because �� is a BNE of G (�0) : This contradiction shows the

impossibility of a pro�table unilateral deviation (34) in G(�); and proves that �� is

also a BNE of G(�): �

5 An extension: mixing auctions and contests

In addition to the extensively discontinuous success functions in all-pay auctions we

may, in principle, consider functions that � at least for some type pro�les � are

discontinuous only on a strict a subset of
S
i2N

X tie
i : The corresponding game may

sometimes be amenable to a treatment similar to that o¤ered in Section 4. The well

known and much used model of contests represents one interesting case of limited

discontinuity.

Contests can be easily incorporated into our framework. Let us assume that, for a

subset T cont 2 T of type pro�les, instead of an all-pay auction the bidders engage in

an "imperfectly discriminating" contest, where below-top bids also have a chance to

win. Formally, for any t 2 T cont; � (t; �) : [0;M ]n ! �n is assumed to be continuous

on [0;M ]n nf0g, and the discontinuity at the zero-bid pro�le 0 is brought about by
an additional assumption that �i (t; (xi;0�i)) = 1 for any xi > 0; i.e., that any bid

ensures winning if it is the only positive one.16 The category of such success functions

�taken from the description of general "pre-Tullock" contests in Haimanko (2021) �

16In line with the description of pre-Tullock contests in Haimanko (2021), we further postulate

that, for any i 2 N; �i (t; x) is non-decreasing in xi for any �xed x�i 2 [0;M ]
n�1 (just as is trivially

the case in all-pay auctions, see (vii)).
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captures many contest models, from lottery contests to more general Tullock contests

(Tullock (1980)) to their extensions in Szidarovszky and Okuguchi (1997). For type

pro�les in TnT cont; a regular all-pay auction is performed. Thus, a bidder i may be
uncertain (given his type ti) whether the winner will be determined with perfect or

imperfect discrimination, or the uncertainty may be only ex ante if his type ti fully

reveals whether t 2 T cont or t 2 TnT cont:17

It is easy to see what needs to be changed in our approach in order to accommodate

a given hybrid auction Ghyb(�) described above. Let us modify the notion of X tie
i by

making it type-dependent: X tie
i (t) remains as in (1) for t 2 TnT cont; but turns into

X tie
i (t) = f0g for t 2 T cont; thus, X tie

i (t) now represents the set of bid pro�les where

�i (t; �) is discontinuous. Also, e� (t; �) will now depend on the given � (t; �) : let e� (t; �)
be de�ned by (6) for t 2 TnT cont; and by

e� (t; x) = � (t; x) ; if x 6= 0,�
1;0�i(t;0)

�
if x = 0

for t 2 T cont: Thus, as in an all-pay auction, here e� (t; �) may di¤er from � (t; �) only
on bid pro�les in

S
i2N

X tie
i (t). When t 2 T cont; e� (t;0) prescribes declaring as a winner

the bidder with the highest value in N at the zero-bid pro�le.

Our Proposition 1 on BNE existence (with the success function being e�) and its
proof apply fully to the hybrid auction Ghyb (e�) : In the premise of Proposition 2 on
the invariance of BNE when �0 is replaced by �; one now needs to speci�cally require

that, for any t 2 T; � (t; �) and �0 (t; �) may only di¤er on bid pro�les in
S
i2N

X tie
i (t)

(this condition holds by de�nition in the case of an all-pay auction). The proof of

Proposition 2 then also goes through. As a consequence, the existence of BNE is

established for any Ghyb (�) : Finally, note that by taking T cont = T; BNE existence

is implied also for (pure) contests (it was established in Haimanko (2021) using a

di¤erent method18).

17Our narrative assumes for simplicity that knowing t 2 T fully determines whether an auction
or a contest are used in determining the winner. If a realized decision mechanism (including its

speci�c tie-breaking rule) depends on extraneous factors, one may simply add to N a dummy player

("nature"), whose type set T0 accounts for the choice of the decision mechanism. Our proofs and

the changes described next will still achieve their goal, with some straightforward adjustments.
18Haimanko (2021) showed that a BNE in a contest can be obtained by taking an appropriate

limit of a sequence of BNEs in contests with positive but diminishing �oor on bids (e¤orts), where

ex-post payo¤s are continuous and BNE existence is guaranteed by Balder (1988).
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