Regulation and Frontier Housing Supply*

Dan Ben-Moshe† and David Genesove‡

September 1, 2022

Abstract

Regulation is a major driver of housing supply, yet often not easily observed. Using only apartment prices and building heights, we estimate frontier costs, defined as housing production costs absent regulation. Identification uses conditions on the support of supply and demand shocks without recourse to instrumental variables. In an application to Israeli residential construction, we find on average 43% of housing price ascribable to regulation, but with substantial dispersion, and with higher rates in areas that are higher priced, denser, and closer to city centers. We also find economies of scale in frontier costs at low building heights. This estimation takes into account measurement error, which includes random unobserved structural quality. When allowing structural quality to vary with amenities (locational quality), and assuming weak complementarity (the return in price on structural quality is nondecreasing in amenities) among buildings within 1km, we bound mean regulation from below by 19% of prices.

Keywords: Housing, regulation, stochastic frontier, real estate

*We thank Joe Tracy and Anthony Murphy for helpful comments, and Yotam Peterfreund for excellent research assistance. We thank seminar participants at the Conference on Low-Income Housing Supply and Housing Affordability 2022, UEA 2020, ESAM 2021, AFES 2021, Western Galilee College, Bar Ilan, Hebrew University of Jerusalem (Mount Scopus and Rehovot), Ben Gurion University, Tilburg University.

†Department of Economics. Ben-Gurion University of the Negev. Email: dbmster@gmail.com

‡Department of Economics. The Hebrew University of Jerusalem. Email: david.genesove@mail.huji.ac.il
1 Introduction

Housing economics ascribes a major role to regulation in determining prices and availability of housing (e.g., Glaeser and Ward, 2009; Gyourko and Saiz, 2006; Molloy, 2020). Yet the many different forms that regulation takes, as well as its often arbitrary enforcement, make it difficult to observe directly and quantify overall (e.g., Gyourko and Molloy, 2015). Our solution is to estimate frontier costs, defined as non-land costs absent regulation, and to measure regulatory tax as the deviation of price from the frontier, using data on apartment prices per square meter and building heights, that is, the number of floors in a building.

Assuming homogeneous housing and no measurement error, we show that minimum price identifies frontier average cost (AC) at building heights below minimum efficient scale (MES) and frontier marginal cost (MC) at higher building heights. Replacing standard identification assumptions of exogenous variation is an assumption on the support of supply and demand shocks, where supply shocks are taken as regulatory restrictions or fees. Simultaneous determination of price and height does not hinder identification.

Figure 1 provides intuition for identification of frontier costs. Each plotted point is an observed equilibrium price and height, with most points representing equilibria in regulated markets. The red curve, tracing out the locus of equilibria in unregulated markets as demand increases, is frontier marginal cost above MES (i.e., the firm’s inverse supply). The blue curve, tracing out the locus of equilibria with break-even demand as regulation is relaxed, is frontier average cost below MES. For illustrative purposes these curves are drawn as continuous. As the figure suggests, identification of frontier costs depends on the support of demand and supply shocks, requiring sufficient variation of demand in unregulated markets in the region of diseconomies of scale and sufficient variation in both demand and regulation in the region with economies of scale.

We summarize the total extent of regulation in money-equivalent form by the regulatory tax.\(^1\) This is the tax that, in an otherwise unregulated environment, would induce firms to choose a given height. Implicitly assuming diseconomies of scale, Glaeser et al. (2005)

\(^1\)The precise definition for regulatory tax is provided in (2).
Figure 1: Each point is an equilibrium price and height. At heights with decreasing economies of scale, the red curve is the firm’s frontier inverse supply and the regulatory tax is the deviation of price from the frontier. At heights with increasing economies of scale, the blue curve is the firm’s frontier average cost and the regulatory tax is the deviation of price from minimum average cost.

define the regulatory tax at a given price and height as the price less frontier marginal cost (see Figure 1). Because of the discreteness of building height, as number of floors, there is a range of prices on the supply frontier at any given height (see Figure 2). To accommodate this, we amend the definition of regulatory tax to be the maximum of zero and price minus the frontier marginal cost of building an additional floor.

No tax in an otherwise unregulated environment would induce firms to build below MES. The average height over multiple units of land can be less than MES in an unregulated competitive environment, with some plots left undeveloped and others developed to MES. As this occurs in equilibrium only together with price equal to minimum average cost, we accordingly set regulatory tax in the region with economies of scale equal to price less the frontier minimum average cost (see Figures 1 and 3).

Figure 1 suggests that the frontier is identified by the minimum observed price at each height. However, apartment and building level measurement errors, including structural quality independent of locational quality (amenities, in the parlance of the literature), complicate the analysis by obscuring the frontier. Identification now depends on variation in
prices within and between buildings in close proximity and the supports of measurement error and regulation. Our reliance on the supports follows from a result in Schwarz and Van Bellegem (2010) that identifies the density of a mismeasured variable by assuming that the density of the variable vanishes on some interval, but that the measurement error has support on the reals. Additional parametric distributional assumptions on the unobservables, which we base on the stochastic frontier analysis (SFA) literature (e.g., Greene, 2008; Kumbhakar et al., 2020), are not needed for identification but are useful for estimation because they result in a computationally simple maximum likelihood estimator with faster convergence rates than a nonparametric approach.

Consistent estimation of the frontier relies crucially on not restricting the parameters of the distribution of deviations from the frontier across heights. Traditionally, distributional parameters have been specified as invariant across the conditioning variables, with the unexpected implication that the estimated frontier will equal the estimated mean regression just shifted downwards by a constant (see (6) and the discussion that follows). Thus we have a separate distribution for deviations at each height.

Although we rely heavily on SFA estimation techniques, our analysis has some crucial differences. First, SFA assumes unregulated markets and uses deviations from the frontier to estimate firm efficiency, while we assume firm efficiency and use deviations from the frontier to estimate regulation. Second, we incorporate economies of scale. In unregulated markets, perfectly competitive firms never produce at output levels with economies of scale, and so in the SFA literature, there is neither a need nor the possibility to uncover the production function in this region. Regulation, however, can induce firms to produce there and so such a region must be taken into account. Third, instead of obtaining the frontier by relating a cost, production, or profit function to inputs, we obtain the frontier by estimating a supply function. We then infer the corresponding relationship between costs and outputs.

The above discussion assumes that structural quality is random and can be included in measurement error. However, structural quality may be systematically related to amenities, as when consumer demand for structural quality and amenities are correlated. The frontier
can now be reinterpreted as non-land costs for minimal, rather than average, structural quality. However, without additional information or structure, deviations from the frontier due to regulation cannot be distinguished from structural quality that is higher than the minimum. To disentangle the two, we assume that, locally, structural quality and amenities are weak complements, defined as the return in price on structural quality being nondecreasing in amenities across nearby buildings. We then show that a comparison of frontier costs and prices with nearby buildings can be used to bound the regulatory tax.

Our empirical application uses newly constructed residential buildings in Israel from 1998 to 2017 relying on variation in prices across both space and time. This market is ideal for our purposes as regulation varies extensively. Even neighboring buildings may face different effective regulation depending on builders’ success in securing permits, which they must obtain from at least two different levels of local planning committees, each with considerable discretion (see Czamanski and Roth, 2011; Rubin and Felsenstein, 2019).

There are six main findings. First, the estimated frontier is initially decreasing – indicating economies of scale at low heights – while a mean regression is steeply increasing. Second, estimates of the frontier elasticity of substitution of land for capital (defined as all non-land inputs in construction) at heights beyond MES are less than 0.5 at low and high heights but exceeds unity at medium heights, where marginal costs are flat. Thus, building upwards is easy at medium heights but hard at low and high heights. Third, the mean regulatory tax estimates are about 43% of market price. The estimates are close to those of Glaeser et al. (2005) for residential buildings in Manhattan, and of Cheshire and Hilber (2008) for UK office space, both of which rely on commercially available cost estimates. This suggests that suppliers would build taller buildings in unregulated markets, despite the difficulty in building upwards. Fourth, there is substantial dispersion in the estimated regulatory tax as a percentage of price with standard deviation of about 16%. Fifth, areas that are higher priced, denser, and closer to city centers have higher regulatory taxes.

2 The analogous difficulty for the SFA literature would be distinguishing product quality from firm inefficiency. This issue seems to have been overlooked in the SFA literature, although it is an important issue in the productivity literature (and more generally) since Klette and Griliches (1996).
tax. Sixth, when allowing for location-dependent structural quality and assuming locally weak complementarity, we estimate a lower bound for the mean regulatory tax of about 19% of market price, when using 1km radius neighbors.

Estimation of the (mean) housing production function has enjoyed a recent renaissance (e.g., Albouy and Ehrlich, 2018; Brueckner et al., 2017; Cai et al., 2017; Combes et al., 2021; Epple et al., 2010) but most of this research deals with single family housing. We are aware of only a few papers that deal with building height. Ahlfeldt and McMillen (2018) measure the land price elasticity of height, but disclaim any variation in regulatory conditions in their coverage area. Like us, Henderson et al. (2017) are interested in unobserved non-technological hindrances to building upwards. However, the hindrances they investigate are uncertain property rights, not regulation, the status of which is binary, and their methods are structural. Tan et al. (2020) infer how binding observed height restrictions are by their effect on the land price-housing price relationship.

Quantitative assessment of housing regulation tends to be indirect. The leading approach infers the presence of regulatory effects by the partial correlation of observed measures of regulatory strictures, such as the Wharton Index of Gyourko et al. (2008) or the new Wharton index of Gyourko et al. (2021), with housing market outcomes. Early studies, such as Katz and Rosen (1987) and Pollakowski and Wachter (1990), were concerned with the capitalization of regulation into mean housing prices. More recent work has focused on the effect of regulation on housing market response to demand shocks, by considering housing price variability (Paciorek, 2013), market supply elasticity (Saiz, 2010), or income pass-through to prices (Hilber and Vermeulen, 2016).

In contrast, the approach in the aforementioned Glaeser et al. (2005) and Cheshire and Hilber (2008) directly measures the regulatory tax by comparing housing prices to an external assessment of construction costs. Our analysis is similar in sharing the objective of measuring the regulatory tax, but does not require cost assessments. Such assessments are likely to underestimate the full non-land costs, are prone to measurement errors, and
may differ by structural quality levels with no obvious way of aggregating across quality.³

The measurement of housing costs and regulation is an important element for a number of policy issues. Housing supply relates to urban sprawl because building upwards expands cities using less land, thus decreasing sprawl but increasing density (e.g., Brueckner and Helsley, 2011; Nechyba and Walsh, 2004). Hsieh and Moretti (2019) have suggested that variation in housing regulation across locations has reduced productivity by causing spatial mismatches between labor and capital. Finally, housing deregulation is an important policy tool for checking growing inequality of wealth, if the latter is due to increasing land scarcity (e.g., Rognlie, 2016).

The remainder of this paper is organized as follows. Section 2 identifies the frontier. Section 3 describes our estimators. Section 4 reviews the data. Section 5 presents our empirical results. Section 6 concludes.

2 Identification

This section presents a demand and supply framework for identifying frontier costs when observing only equilibrium prices and quantities - which, as we will discuss, are essentially heights in our context. Section 2.1 analyzes frontier supply and Section 2.2 frontier average costs at low heights with economies of scale. Section 2.3 incorporates nonhomogeneous housing based on building height and apartment floor. Section 2.4 defines regulatory tax. Section 2.5 incorporates building and apartment level measurement errors. Section 2.6 discusses the identification assumptions. Section 2.7 describes how to bound regulatory taxes when structural quality and amenities are related.

2.1 Frontier supply

This section provides conditions under which frontier supply is identified by the joint distribution of equilibrium prices and quantities, in an idealized environment of perfectly competitive markets for a single homogeneous good produced by homogeneous firms.

³A third approach, although likely appropriate only for single family homes, computes the regulatory tax from the excess of the intensive value of land, measured by the hedonic price of land from housing prices, over the extensive value of land observed from land transactions (Gyourko and Krimmel, 2021).
absent measurement error. Since competitive firms supply only at quantities where there are no economies of scale, this discussion concerns such quantities only. The identifying conditions place no restrictions on the joint distribution of the unobserved and observed variables, other than their support. Simultaneity will not be a concern.

Consider multi-floor housing built on parcels of one unit of land each. For simplicity, at most one building can be built on each parcel, with the building covering the entire parcel. Buildings consist of homogeneous housing. Define one unit of housing as a 1-floor building on one unit of land. Then the quantity of housing in one building is its number of floors. We observe the price per unit of housing, $p \in (0, \infty)$, and the number of floors, which we refer to as height, $h \in \{1, 2, \ldots\}$, for each newly constructed building.

Consider parcel-level supply (analogous to firm supply in basic theory), which includes any regulatory restrictions. Since the quantity of housing is the number of floors, a supply curve can take nonnegative integer values only, and so is fully characterized by the jump discontinuities at p_1, p_2, \ldots, where p_h is the minimum price at which profit maximizing suppliers would build h units of housing under the given regulation. In other words, p_h is the marginal cost of the h-th floor. A strict maximum height restriction at h floors would take the form of $p_{h+j} = \infty$ for $j > 0$. More generally, builders may be able to overcome restrictions by sufficient expenditure (on lawyers and intermediaries legally and illegally); these additional costs explain the vertical gap between non-frontier (regulated) and frontier (unregulated) supply. We derive conditions under which the frontier marginal cost of building the h-th floor p^f_h is identified by the minimum price at height h.

Next consider, for conceptual purposes only, an area with a collection of unit land parcels. Consumers consider housing services provided on any parcel as identical to those provided on any other parcel in a given area. Inverse demand for housing in the area, which is assumed continuous, is therefore a function of the total housing consumed in the area. Define parcel-level demand as market demand for the area divided by the total number of parcels in the area.

4 In using area as a conceptual device, one need not imagine a contiguous expanse. See Piazzesi et al. (2020) for evidence of buyers searching over noncontiguous areas.
Figure 2 shows parcel-level supply and demand curves. The red curve is the inverse frontier supply curve, the object of our estimation, while the green curve is some inverse non-frontier supply curve. The blue curve is inverse demand for a low demand shock, while the orange curve is inverse demand for a high demand shock (violet will be considered later).

Equilibria are at the intersections of inverse demand and inverse supply curves. The figure shows the unique equilibrium for each combination of demand - low \((D_L)\) or high \((D_H)\) - and supply - unregulated \((S_U)\) or regulated \((S_R)\). The equilibrium with no regulation and low demand is \(E_1\). At this equilibrium, price lies between the frontier marginal cost of constructing a 3-floor building, \(p_{3f}\), and that of a 4-floor building, \(p_{4f}\), and so only 3-floor buildings are built.

The equilibrium with no regulation and high demand is \(E_2\). At this equilibrium, price equals \(p_{4f}\) with suppliers indifferent between building 3-floor and 4-floor buildings and the market clears at the fraction of 3-floor buildings built.

The two remaining points show equilibria under supply with regulation. The equilibrium with regulation and high demand is \(E_3\). Absent regulation, and at the associated equilibrium price \(p_3\), suppliers would build 4-floor buildings. Regulation costs lead suppliers to build only 3-floor buildings. Similarly, at \(E_4\), with low demand, 2-floor buildings are built, although suppliers prefer to build an additional floor.

Our empirical analysis conditions on building height. Consider 3-floor buildings, which are built at \(E_1\) (where suppliers want, and are permitted, to build 3-floor buildings), \(E_2\) (where suppliers are indifferent between three and four floors, and some build three floors), and \(E_3\) (where suppliers want to build four floors but permitted only three). The lowest price among these three equilibria is at \(E_1\), which is greater than the minimal price \(p_{3f}\) required to induce unregulated suppliers to build 3-floor buildings.

Hence, if the pictured high and low demand curves were the extent of demand variation then \(p_{3f}\) would not be identified. Identification requires a positive probability of frontier supply and a demand curve cutting it at \(p_{3f}\). The violet demand curve in Figure 2 is just
one such curve that would allow identification. Note that E_2, where the high demand curve intersects the unregulated supply curve, identifies the minimal price to build 4-floor buildings p^f_4. Identification of the frontier supply curve as a whole, then, requires sufficient variation in demand in unregulated markets.

Formally, inverse demand $P_d(h, \varepsilon)$, with random demand shock ε, is assumed continuous in height $h \geq 0$. Inverse supply is defined by the correspondence $P_s(h, W) = \{ p \mid p^W_h \leq p \leq p^W_{h+1} \}$, with random supply shock W and $h \in \mathbb{N}$. The frontier inverse supply is defined by $P_s(h, f) = \{ p \mid p^f_h \leq p \leq p^f_{h+1} \}$, with $p^f_h = \min_{w \in \text{Support}(W)} p^W_h$, for each h. An equilibrium (P, h, α) is a price $P \geq 0$, height $h \in \mathbb{N}$, and fraction $0 \leq \alpha < 1$, such that the market clears: $P = P^d(\alpha(h - 1) + (1 - \alpha)h, e) \in P^s(h, w)$, for some $(e, w) \in \text{Support}(\varepsilon, W)$. Now define $P(h) = \{ P \mid (P, h, 0) \text{ or } (P, h+1, \alpha), 0 \leq \alpha < 1, \text{ is an equilibrium, for some } (e, w) \in \text{Support}(\varepsilon, W) \}$.

If there exists e with $(e, f) \in \text{Support}(\varepsilon, W)$ and $0 \leq \alpha < 1$ such that $P^d(\alpha(h - 1) + (1 - \alpha)h, e) = p^f_h$, then p^f_h is identified by $\min\{P(h)\}$. In other words, we are assuming sufficient realizations of frontier supply and demand intersecting it at the frontier price. Note that issues of simultaneity do not arise here. This identification result suggests the sample minimum price at height h as a natural estimator for p^f_h.

Figure 2: Parcel-level inverse supply and demand curves.
2.2 Frontier average costs (heights below MES)

In perfectly competitive unregulated markets, buildings would never be observed at heights where there are economies of scale as building at or beyond MES would always be more profitable. However, under regulation, suppliers might build at heights below the frontier’s MES. Minimum price at such heights could not correspond to frontier supply. Rather, the minimum price identifies frontier average cost, under conditions shown below.

Figure 3 shows the textbook example of a U-shaped frontier average cost curve, along with its associated marginal cost curve. For simplicity, we present continuous curves. The frontier supply function maps prices below minimum AC to height equal zero (i.e., the land is left undeveloped) and maps prices above the minimum AC to the inverse MC (the red curve in Figure 3). At price equal to minimum AC, suppliers are indifferent between leaving the land undeveloped and building at MES. Thus an equilibrium where the parcel-level housing quantity demanded at minimum AC falls short of MES involves price equal to minimum AC, with some parcels left undeveloped and the remainder developed to height MES, with their shares such that the market clears. An equilibrium where the quantity demanded at minimum AC exceeds MES entails an above minimum AC price and construction on every parcel at a common height above MES.

Inferring frontier costs at heights below MES thus requires the realization of non-frontier supply. The equilibrium E_5 must be generated by some such supply curve intersecting with a demand curve (neither is shown). However, lower prices at the same height h_5 could also be observed, given appropriate demand and regulated supply shocks. The lowest possible observable price is $p_6 = AC(h_5)$, which would be generated by the joint realization of a demand and non-frontier supply that intersect at E_6.\footnote{Recall that firms are perfectly competitive and that the demand that passes through E_5 or E_6 are market demands scaled down to the parcel, and so firm, level.} No lower price is possible at h_5; otherwise, firms would suffer losses.

Hence, whereas minimum price, conditional on height, converges to MC at heights for which AC is increasing, it converges to AC where AC is decreasing.
Minimum price thus identifies the maximum of frontier AC and MC, denoted as \(G(h) = \max\{AC(h), MC(h)\} \), which in Figure 3 is the blue curve \(\min\{P(h)\} = AC(h) \) and the red curve \(\min\{P(h)\} = MC(h) \). Whereas identification at heights of increasing AC requires variation in demand in unregulated markets, identification at heights of decreasing AC requires variation in both demand and regulation.

Assuming a U-shaped frontier average cost curve is an important simplification. In principle, the cost structure might differ. First, average costs might be declining for some region at high heights. The maximum extent of the rate of decline decreases with height, however, since total costs are weakly increasing \((AC(h) - AC(h-1))/AC(h-1) \geq -1/h \). Second, there may be regions where marginal frontier costs exceed average costs yet are decreasing, where firms would ordinarily not operate, but might under regulation. This would be especially difficult to handle as the minimum observable price would actually exceed frontier marginal costs. Furthermore, incorporating such irregular cost structures would involve multiple local turning points, as opposed to the single one at MES that we have here. For these reasons, we impose the condition of a U-shaped average cost curve.
2.3 Apartment floor and building height

We account for consumers valuing apartment floor or building height by “efficiency unit” modeling of housing services, with log price

\[\ln(\text{price}) = \ln p + \ln m(f, h), \]

where \(m \) is an unknown function representing the premium that all households are assumed willing to pay for an \(f \)th-floor apartment in an \(h \)-floor building, and \(p \) is the price net of this, reflecting the value of the building’s location. Hence, per unit of land the quantity of housing in an \(h \)-floor building is the sum of the premiums, \(q(h) = \sum_{f=1}^{h} m(f, h) \).

Although building height maps one-to-one to the quantity of housing (and in our data they are very close, with \(0.05 < (q(h) - h)/h < 0.1 \)), they are not identical. Since the discrete levels of quantity will not be integers, it will usually be convenient to express cost as a function of height. Yet, with price stated per unit quantity, we make this relationship explicit. Let \(h(q) \) denote the inverse of \(q(h) \).\(^6\) Then \(C(q) = \widetilde{C}(h(q)) \), where \(C(q) \) is the frontier cost of building quantity \(q \) and \(\widetilde{C}(h) \) the frontier cost of building to height \(h \).

Break-even market price for an \(h \)-floor building is

\[AC(q(h)) = \frac{C(q(h))}{q(h)} = \frac{\widetilde{C}(h)}{\sum_{f=1}^{h} m(f, h)}. \]

This is the lowest possible observed adjusted price in a region with economies of scale.

For diseconomies of scale, the lowest possible observed adjusted price at any given height equals the marginal cost savings from building the next lowest feasible quantity,

\[MC(q(h)) = \frac{C(q(h)) - C(q(h - 1))}{q(h) - q(h - 1)} = \frac{\widetilde{C}(h) - \widetilde{C}(h - 1)}{\sum_{f=1}^{h} m(f, h) - \sum_{f=1}^{h-1} m(f, h - 1)}. \]

2.4 Regulatory tax

The regulatory tax is the money-equivalent total of regulation defined by,

\[RT(p, h) = \begin{cases}
 p - AC(q(MES)), & h < MES, \\
 \max\{0, p - MC(q(h + 1))\}, & h \geq MES,
\end{cases} \]

\(^6\)This inverse exists as long as \(m(f, h) > 0 \), for all \(1 \leq f \leq h \), which is the case empirically.
where $MES = \arg\min_{h \in \mathbb{N}}\{AC(q(h))\}$.

Below MES, the only possible equilibrium price in an unregulated market is minimum average cost $AC(q(MES))$. In such an equilibrium, parcel-level quantity demanded is $q(h)$ and firms are indifferent between not building at all and building to MES. Some parcels are left undeveloped and others built to MES, with the share such that demand equals supply. Hence, at E_5 in Figure 3, the regulatory tax is $RT(p_5, h_5) = p_5 - AC(MES)$, which would raise average costs so that h_5-floor buildings would be built absent other regulation.

Above MES, for an unregulated competitive firm to choose the quantity $q(h)$, we must have $MC(q(h)) \leq p \leq MC(q(h+1))$. Thus when price is below the marginal cost of adding another floor, the regulatory tax is zero and when price exceeds the marginal cost of adding another floor, the regulatory tax is equal to the difference. Hence, at E_3 in Figure 2, the regulatory tax is $RT(p_3, 3) = \max\{0, p_3 - MC(4)\} = p_3 - p_4^f$, which would raise marginal costs so that 3-floor buildings would be built in the area absent other regulation.

2.5 Measurement errors

Measurement errors in the outcome variable although innocuous in a mean regression, have serious consequences in frontier estimation if unaccounted for. This section discusses the identification of the frontier even when unobserved variables can take arbitrarily large negative values, as long as they are independent of amenities. Under this assumption, the frontier is obtained for mean structural quality buildings and the regulatory tax for error-free prices.

Measurement errors can occur at either the apartment or building level. At the apartment level (the unit of transaction reported in our data) especially, they may be actual transcription errors or misreports of apartment price or floor area. However, we view measurement errors as also including the price premia for structural quality differences, so long as such quality is independent of location. At the apartment level, that might include additional appliances, or unfinished wiring. At the building level, that might capture the quality of construction or exterior aesthetic enhancements. In contrast, structural quality differences that are systematically related to floor or building height are removed by the m
function discussed in Section 2.3. Finally, structural quality differences that are systemati-
cally related to amenities are taken as absent. Allowing for them restricts us to a bounding
argument, as we analyze in Section 2.7.

In principle, the frontier can be nonparametrically identified even with measurement
errors, based on results from Kotlarski (1967) and Schwarz and Van Bellegem (2010), who
identify the distribution of a mismeasured variable; the former by multiple measurements
and the latter by differences in the supports of the variable (assumed to equal zero on some
interval) and the measurement error (assumed to be nonzero on the reals). However as these
approaches lead to slow convergence rates and often complicated estimation techniques
involving tuning parameters, for practical purposes we impose distributional restrictions
(with estimation converging at the parametric root-\(n\) rate). The multilevel structure of
our data does allow us to estimate the measurement error variances independently of the
distributional assumptions.

2.6 Further discussion of identification

Identification of the frontier only requires observable prices and quantities (i.e., heights),
with the distributions of deviations from the frontier allowed to depend on height, obviat-
ing the usual need for exogenous variation. Also, no parametric or separable conditions
need be imposed on the structure of demand or (regulated or unregulated) supply. Other
characteristics of the environment become critical, though.

First, we have assumed a positive probability of observing unregulated markets at
heights for which there are diseconomies of scale and regulated markets at heights for
which there are economies scale. The frontier is not identified if these markets are not
realized. Of course, there can be no hope of uncovering costs in the absence of regulation
that is always imposed, such as nationwide safety regulations. Thus “unregulated” should
really be interpreted as “minimally regulated”, and it is the “minimally regulated” frontier
that is our estimation objective. The problem arises rather when minimal regulation is
realized at certain heights, but not at others. However, that scenario might be detectable if
one ends up estimating a nonsensible cost function.7

Second, we have assumed perfect competition and equally efficient firms with the same costs over firms, space, and time. To account for cost changes over time, we adjust prices using the Israeli Central Bureau of Statistics’ residential construction input-prices index.8 Cost differences over space are small according to industry participants.9 This is corroborated by similar frontier estimates on samples that remove the areas known to face greater technical challenges (see Figure 14 in Appendix C.1).

Assuming a perfectly competitive residential construction industry with identical cost firms is standard in the housing literature. To the extent this does not hold, identification additionally requires a positive probability of maximum competition. The frontier would now be the cost curve of the most efficient firm with the lowest markup in the least regulated market.10 However, equally efficient competitive firms reasonably approximates conditions in our application: the Israeli construction industry is structurally competitive, with a 10-firm concentration ratio of 0.15 and its larger firms operating throughout the country.11

Third, below-cost prices would undermine our frontier estimates. Below-cost prices can be due either to government subsidization or expectation mistakes. Although there have been periods of government subsidization, notably in response to the mass immigration from the ex-Soviet Union of the early 1990s in the Mechir l’Mishtaken program (Genesove, 2021), these were absent during our period of analysis.

If builders expect a higher apartment price than what materializes, then price may not cover cost. We do not think this is a major concern, however. Building specific expectation mistakes can be included in measurement error: under rational expectations,

7For an example of identification failure, consider the monocentric city model, where prices decrease from the city center. A greenbelt, where construction is forbidden, surrounding the city, would leave no way to identify marginal costs for heights that would have otherwise been built there. In this case, identification failure would be apparent from the gap in the distribution of prices, unconditional on height.

8Estimates without adjusting for construction cost changes are similar (see Figure 14 in Appendix C.1).

9Industry participants point out two variations, which are small relative to price differences: the cost of protecting the underground portion of very tall buildings from water encroachment in Tel Aviv and potentially lower labor costs in the Beer Sheva district. These interviews were conducted for Genesove et al. (2020).

10This approach is in the spirit of Sutton (1991), who in estimating the lower envelope of concentration ratios across normalized market sizes assumes a positive probability of maximally competitive conditions.

11Israel is about the size of New Jersey, with about half of it a semi-arid lightly populated desert.
the observed price is a random deviation from the expected price, which is the relevant price for determining the cost frontier. As modeled, however, measurement error fails to cover market-wide misperceptions. This should not be an issue, however, as parsimonious models forecast prices over the sample period fairly well. A yearly AR(1) specification with a trend and structural break in trend at 2009 yields a root mean squared error of 0.018. Also, we do not see large variation in mean price differences across transactions within buildings that take place the year before, the year of or the year after construction, as we would expect to see if substantial surprises were common. Finally, when repeating our estimates on the pre-2008 period only, a period with relatively stable prices, we get similar results (see Figure 14 in Appendix C.1).

2.7 Location-related structural quality

While the measurement error of Section 2.5 includes random structural quality, it fails to account for location-related structural quality. So long as tastes for locational quality (i.e., amenities) and structural quality correlate across households, these qualities are likely to be systematically related in the market. If this is indeed so, the frontier may be reinterpreted as the non-land cost of a minimal structural quality building in an unregulated market. Deviations from the frontier, however, are not so easily reinterpreted, as they are the sum of regulation and the excess of structural quality above the minimum.

We treat all apartments in the same building as having the same locational quality (apartment floor and building height are accounted for in Section 2.3), and so the same location-related structural quality. To deal with the latter, we use comparisons with nearby buildings along with an assumption that amenities and structural quality are, weakly, complements. We derive the following lower bound for the regulatory tax on building i,

$$RT_i \geq \min_{\kappa_S \in [0,1]} \max_{j \in \Omega_i(d)} \max \{0, G(h_j) - G(h_i + 1) - (P_j - P_i) + \kappa_T (P_j - T_{ij} P_j) + \kappa_S (T_{ij} P_j - P_i)\},$$

(3)

where P_i and P_j are building prices, $T_{ij} P_j$ is building j’s price deflated to building i’s time

\footnote{Housing prices rose steeply after the Bank of Israel drastically reduced interest rates at the beginning of 2009, as part of the coordinated, worldwide central bank response to the financial crisis. Unanticipated price increases do not threaten identification of the frontier.}
period using a housing price index, $G(h) = \max \{MC(h), AC(h)\}$, κ_T is a parameter to be estimated, as described below, and $\Omega_i(d) = \{j : \text{dist}(i, j) \leq d\}$ is the comparison set of nearby buildings, with dist(i, j) the distance between buildings i and j. The bound in (3) follows from the nonnegativity of deviations from the frontier, coupled with an argument that weak complementarity restricts the slope of the equilibrium relationship of structural quality on building price to the interval $[0, 1]$.

The nonnegativity of deviations is used as follows. Write the price of housing with amenities a, transaction time t, and structural quality z as $P(a, t, z)$. Suppliers’ choice of z for newly constructed housing is $z(a, t)$ with $P(a, t) \equiv P(a, t, z(a, t))$. Assume total costs are $C(h) + zh$, where $C(h)$ is the frontier-quality cost of building to h and zh is the extra cost of building at structural quality z. Thus $z = 0$ indicates frontier structural quality. We can now define the z-structural quality frontier as $G + z$, which is the marginal cost or average cost, as appropriate, for quality z. Define the deviation from the structural-quality-adjusted frontier for a building with housing price P and structural quality z as $\text{dev} = P - z - G \geq 0$. Aside from the complications arising from the discreteness of height, this deviation is the regulatory tax. Consider focal building i and nearby comparison building j. Then the deviation is bounded by

$$dev_i = P_i - z_i - G(h_i) = G(h_j) - G(h_i) + dev_j - (P_j - P_i) + (z_j - z_i)$$

$$\geq G(h_j) - G(h_i) - (P_j - P_i) + (z_j - z_i)$$

$$= G(h_j) - G(h_i) - (P_j - P_i) + \frac{z_j - z(a_j, t_i)}{P_j - T_{ij}P_j}(P_j - T_{ij}P_j) + \frac{z(a_j, t_i) - z_i}{T_{ij}P_j - P_i}(T_{ij}P_j - P_i)$$

$$\approx G(h_j) - G(h_i) - (P_j - P_i) + \kappa_{Tj}(P_j - T_{ij}P_j) + \kappa_{Si}(T_{ij}P_j - P_i),$$

where $z_j - z_i$ is decomposed into a time component (holding amenities constant) and an amenities component (holding time constant). $\kappa_{Si} = z_a(a_i, t_i)/P_a(a_i, t_i)$ captures the extent to which quality increases with housing price across space, and $\kappa_{Tj} = z_t(a_j, t_j)/P_t(a_j, t_j)$ captures the extent across time.\(^{14}\)

\(^{13}\)There is no loss of generality in writing zh instead of $f(z)h$, where f is any strictly increasing function.

\(^{14}\)We use the standard notation f_x to denote $\partial f/\partial x$.

17
Hence, the regulatory tax is bounded by

\[RT_i = \begin{cases}
 P_i - z_i - AC(q(MES)), & h_i < MES, \\
 \max\{0, P_i - z_i - MC(q(h_i + 1))\}, & h_i \geq MES,
\end{cases} \]

\[\geq \max\{0, G(h_j) - G(h_i + 1) - (1 - \kappa_{T_j})(P_j - T_{ij}P_j) - (1 - \kappa_{Si})(T_{ij}P_j - P_i)\}. \]

Considering all buildings in the comparison set \(\Omega_i(d) \), we obtain

\[RT_i \geq \max_{j \in \Omega_i(d)} \max\{0, G(h_j) - G(h_i + 1) - (1 - \kappa_{T_j})(P_j - T_{ij}P_j) - (1 - \kappa_{Si})(T_{ij}P_j - P_i)\}. \tag{4} \]

Operationalizing this bound requires choices for \(\kappa_{Si} \) and \(\kappa_{T_j} \). First, consider \(\kappa_{Si} \). Fix time \(t \). For nearby buildings in the comparison set \(\Omega_i(d) \), assume weak complementarity between amenities and structural quality, i.e., the return on price in structural quality is nondecreasing with amenities: \(P_{za} \geq 0 \). A profit-maximizing supplier, unconstrained in choice of structural quality, will choose \(z \) equal to \(z(a, t) \) to satisfy the first order condition \(P_z(a, t, z(a, t)) = 1 \). Totally differentiating this condition gives \(P_{za}da + P_{zz}dz = 0 \). Totally differentiating price gives \(dP = P_a da + P_z dz \). Hence,

\[\kappa_S = \frac{z_a}{P_a} = \frac{dz}{dP} = \frac{1}{1 - P_{zz}P_a/P_{za}}. \]

Weak complementarity \(P_{za} \geq 0 \), the second order condition \(P_{zz} \leq 0 \), and \(P_a > 0 \) (by definition) imply the bound \(0 \leq \kappa_S \leq 1 \). Hence, for each building we choose \(\kappa_{Si} \in [0, 1] \) to minimize the bound in (4).

In contrast to this building specific worst case \(\kappa_{Si} \), we estimate a single value for \(\kappa_{T_j} \). Analogous to the spatial framework, where high location demand induces a supplier to build with high quality, we model suppliers provision of structural quality as increasing in demand at construction time. However, unlike in the spatial context, the availability of prices for existing homes allow us to empirically separate out variation in structural quality from variation in constant-quality housing demand at construction time.

To begin, assume price increases proportionally with time effects \(\gamma(t) \), so that the log price of newly constructed housing is \(\ln P = \gamma(t) + \ln P^0(a, z) \). Fix amenities \(a \). Totally differentiating log price gives \(d \ln P = d\gamma(t) + (P_z/P)dz \) and totally differentiating the log
transformed first order condition gives \(d\gamma(t) + (P_{zz}/P_z)dz = 0 \). Hence,
\[
\kappa_T = \frac{z_t}{P_t} = \frac{dz}{dP} = \frac{\delta}{1 + \delta},
\]
where we use the first order condition \(P_z = 1 \), and \(\delta = -P_z^2/(PP_{zz}) \) is an inverse measure of the convexity of \(P \) as a function of \(z \) (it is a constant if \(P \) is isoelastic in \(z \)).

We now use existing home prices to estimate \(\delta \), and thus \(\kappa_T \). Generalizing our price specification above to accommodate existing homes, and noting that the choice of quality for housing constructed at time \(t \) can be written now as \(z(a, \gamma(t)) \), let the log price of housing constructed in period \(s \) and sold in period \(t \) be \(\ln P = \gamma(t) + \ln P^0(a, z(a, \gamma(s))) \).

Then a linear approximation of \(\ln P^0(a, z(a, \gamma(s))) \) around the quality provided in new construction at an arbitrary time period \(0 \), \(z(a, \gamma(0)) \), yields
\[
\ln P \approx \gamma(t) + \ln P^0(a, z(a, \gamma(0))) + \left(\frac{P_z(a, z(a, \gamma(0)))}{P(a, z(a, \gamma(0)))} \right) \cdot \frac{dz(a, \gamma(0))}{d\gamma} \cdot \gamma(s) = \gamma(t) + \ln P^0(a, z(a, \gamma(0))) + \left(\frac{P_z}{P} - \frac{P_{zz}}{-P_z^2} \right) \cdot \gamma(s),
\]
where we normalize \(\gamma(0) = 0 \) and the term in parentheses multiplying \(\gamma(s) \) is \(\delta \) but evaluated at \((a, z(a, \gamma(0))) \). Hence, we estimate \(\delta \) using a restricted log price regression that conditions on the time of transaction ('period effect') and the time of construction ('cohort effect'), where the cohort effect is restricted to be proportional to the period effect. Parcel fixed effects capture \(\ln P^0(a, z(a, \gamma(0))) \).

Decomposing the price difference between \(i \) and comparison building \(j \) into temporal \((P_j - T_{ij}P_j) \) and spatial \((T_{ij}P_j - P_i) \) differences, with \(T_{ij} = e^{\gamma(t_i) - \gamma(t_j)} \) and employing the worst case choice for \(\kappa_{Si} \) and the estimate for \(\kappa_{Tj} \) leads to the bound in (3).

The larger the set \(\Omega_i(d) \), the greater the opportunity to find nearby buildings of higher heights, and so the more effective the bound. Considering spatial comparisons only, the bound is at most the difference between the frontier costs of the tallest comparison and focal buildings. For temporal comparisons only of equally tall buildings, the bound is

\[\text{15} \]

\[\text{In principle, } \delta \text{ can vary across locations. However, allowing } \delta \text{ to vary by city in the empirical analysis does not change our results. That issue, along with depreciation and the relationship of the proportionality restriction to the well known period-cohort-age problem are discussed further in Appendix A.1.} \]
proportional to the difference between the housing price index at the focal building’s transaction time and the lowest valued index among the comparison buildings’ transaction times. Thus high-priced time periods and dense areas with capricious regulation are more likely to have useful bounds.

Our analysis is spatially local for a few reasons. First, this respects the linear approximation embedded in the bound. Second, this allows for different trade-offs between amenities and structural quality in different geographic areas, which may result from different population groups or household types clustering in these different areas. Finally, global complementarity between amenities and structural quality would imply a one-to-one relationship between price and structural quality (pace measurement error-like quality) over the entire sample, which would be inconsistent with a constant structural quality frontier. Our analysis is temporally global because identification of κ_T requires nonlinearity in $\gamma(t)$, which restricts how local an analysis can be in practice.

3 Estimation

3.1 The model

Consider the multilevel model for prices of apartments in buildings of height h,

$$y_{kij} = g(h) + u_k + w_{ki} + v_{ki j}, \quad k = 1, \ldots, K, \; i = 1, \ldots, n_k, \; j = 1, \ldots, J_{ki}, \quad (5)$$

where $y_{ki j}$ is the observed log price per square meter of apartment j in building i in bloc k, w_{ki} is a building-level measurement error, and $v_{ki j}$ is an apartment-level measurement error. The distributions of $v_{ki j}$ and w_{ki} can depend on height but have zero mean and support on the reals. The error-free price is $g(h) + u_k$, where $g(h) = \ln G(h) = \ln(\max\{AC(h),MC(h)\})$ and u_k is the deviation from $g(h)$, the distribution of which can depend on height but has support on the nonnegative reals. For convenience, we refer to $g(h)$ as the frontier, as it is the minimum error-free price achievable in equilibrium at height h. In the terminology of Section 2.1, $g(h) = p^f_h$, which is the lowest point of the economic frontier at height h, $[p^f_h, p^f_{h+1}]$. Were it not for the complications of the discreteness in the frontier, u_k would
equal the regulatory tax on buildings in bloc k of height h.

The first moment of (5) is,

$$E[y|h] = g(h) + E[u|h],$$ \hspace{1cm} \text{(6)}

as $E[w|h] = E[v|h] = 0$ by assumption. Equation (6) demonstrates the importance of having the parameters of the distribution of u depend on h. Were these parameters, instead, the same across heights, then frontier estimates would equal the height-specific means, up to a common constant, making frontier analysis pointless. Further, in this case, any endogeneity bias present in conditional mean analysis would also be present here. Hence, u (and v and w) will have separate parameters for each height. However, the distribution of u originates in the joint distribution of demand and supply shocks, conditioning on height, through the equilibrium condition; thus, unlike frontier costs $g(h)$, the parameters of the distribution of u will not be “deep parameters.”

3.2 Variances

Without invoking any distributional assumptions, we identify and estimate the variances of u, v, and w using the multilevel structure (see Appendix A.2 for formulas). Specifically, conditional on height h, the variance of the apartment-level measurement error v is identified by within building variation in apartment time-adjusted prices, the variance of the building-level measurement error w is identified by within bloc variation in building time-adjusted prices, and the variance of the deviations from the frontier u (\approx regulation) is identified by variation in prices (unadjusted for time) across both bloc and time.

3.3 The frontier

We estimate the frontier by maximum likelihood. At height h, assume that $v_{kij} \sim N(0, \sigma_v^2(h))$ and $w_{ki} \sim N(0, \sigma_w^2(h))$ are normal and that $u_k \sim TN(\mu_u(h), \sigma_u^2(h))$ is the normal distribution truncated from below at zero. \footnote{We have considered alternative estimators. The commonly used, and convenient, priors of Bayesian-based estimators are not readily compatible with a frontier objective, while minimum-price-adjusted estimators converge slowly (see, Goldenshluger and Tsybakov, 2004).} Using the multilevel structure to identify

\footnote{If $x \sim N(\mu_x, \sigma^2)$ then $x | a \leq x < b$ is truncated normal. Although the truncated normal is not new to the SFA literature, the half-normal distribution (i.e., $\mu_x = 0$) is more commonly used (e.g., Cai et al., 2021).}
the variances allows us to estimate the error distributions on the basis of second moments only. This is in contrast to a cross-section of data, where skewness in the data is crucial to identification. As it turns out, at many heights we estimate \(\mu_u(h) \) to be large relative to \(\sigma_u(h) \) (see Figure 16 in Appendix C.3), so that there is little skewness.

The global maximum of the log likelihood, constrained so that average cost decreases to MES and marginal cost increases thereafter, is attained by grid search and Dijkstra’s algorithm,

\[
\{ \hat{\text{MES}}, \hat{g}, \hat{\mu_u} \} = \arg\max_{\text{mes} \in \{1, \ldots, H-1\}} \sum_{h=1}^{H} \mathcal{L}_h(\hat{g}_h, \nu_{uh}, \cdot),
\]

(7)

subject to \(g_{\text{mes}} \leq g_{\text{mes}-1} \leq \ldots \leq g_1 \) and \(g_{\text{mes}} \leq g_{\text{mes}+1} \leq \ldots \leq g_H \),

(8)

where \(\mathcal{L}_h(\hat{g}_h, \nu_{uh}, \cdot) \) is the log likelihood at height \(h \) (see Appendix A.3 for details and formulas). The constraint allows for \(\hat{\text{MES}} = 1 \) and so no economies of scale.

We also present estimates that maximize the log likelihood \(\mathcal{L}_h(\hat{g}_h, \nu_{uh}, \cdot) \) at each height without constraining the shape of the cost function and estimates that maximize the log likelihood of a quartic cost function subject to the continuous version of constraint (8) (see Appendix A.3 for details and formulas).

3.4 Regulatory tax rates

This section describes how to estimate and bound expected regulatory tax rates of error-free prices. Using the distributions from Section 3.3 that \(u \sim TN(\mu_u, \sigma_u^2) \) and \(\eta \sim N(0, \sigma_\eta^2) \), where \(\sigma_u^2 = \sigma_w^2 + \sigma_v^2 / J \) for building price and \(\sigma_\eta^2 = \sigma_w^2 + \sigma_v^2 \) for apartment price, we get,

\[
u|u + \eta = y - g \sim TN\left(\frac{\mu_u \sigma_\eta^2 + (y - g) \sigma_u^2}{\sigma_u^2 + \sigma_\eta^2}, \frac{\sigma_u^2 \sigma_\eta^2}{\sigma_u^2 + \sigma_\eta^2} \right).
\]

(9)

Assuming that deviations from the frontier are entirely due to regulatory restrictions (taking into account the discreteness of height) the expected regulatory tax rate based on (2) is,

\[
E\left[\frac{\text{RT}(G(h_i)U, h_i)}{G(h_i)U} \right] y_i - g(h_i).
\]

(10)

However, this assumes deviations from the frontier are clustered near it, which we do not find in general.

\(^{18}\) Appendix A derives the conditional density when \(u \) is truncated normal. Jondrow et al. (1982) derive the conditional density for the half-normal, which is the truncated normal with \(\mu_u = 0 \).
where \(\ln U \) drawn from (9), conditioned on \(y_i - g(h_i) \). However, if structural quality is systematically related to amenities then the deviations also include location-related structural quality. In this case, we use the bound in (3),

\[
E \left[\min_{\kappa_S \in [0,1]} \max_{j \in \Omega_i(d)} \max \{0, G(h_j) - G(h_i + 1) - (G(h_j)U_j - G(h_i)U_i) + \kappa_T (1 - T_{ij}) G(h_j)U_j + \kappa_S (T_{ij} G(h_j)U_j - G(h_i)U_i) \} \right] y_k - g(h_k), k = i, j \in \Omega_i(d) \right],
\]

(11)

where \(\ln U_k, k = i, j \in \Omega_i(d) \), drawn independently from (9), conditioned on \(y_k - g(h_k) \).

4 Data

Apartment transaction data are obtained from CARMEN, the digitalized repository of buyer reports to the Tax Revenue Authority. The data include the transaction date, price, square meters, apartment floor, number of floors in the building, and year of construction. They also include a unique identifying number for the land parcel on which the building sits. In general, the building and parcel are coincident. However, for 300 buildings, or 1.6% of the observations, more than one building sits on the same parcel. We exploit these cases to identify the hedonic height effects presented in 2.3 and estimated below in Section 5.1, but drop them for the stochastic frontier analysis. The parcel identifier also identifies the bloc, which is a higher level geographical division that includes several parcels. The sample covers the period 1998 to 2017.

We limit the sample to transactions from CARMEN for which (1) the year of the transaction is the year before, the year of or the year after the construction year, (2) the transaction is for 100% of the asset, (3) the property type is not a single family home, (4) none of the variables listed above is missing, and (5) there is at least one other transaction observed in the building. We adjust prices for apartment floor-space area by expressing them in per-square meters. To account for inflation, we convert prices to real 2017 values. These prices are adjusted for floor and height premia, as described in Section 2.3. For

\footnote{See Figure 15 in Appendix C.2 for an example of a bloc and its division into parcels. We drop apartments with nominal prices in the bottom one percent and top one percent of the distribution.}
estimating the frontier and the regulatory tax, we further adjust for changes in construction input prices (other than land) over time by dividing the real prices by the Israeli Central Bureau of Statistics’ residential construction input prices index, expressed in 2017 values.

There are 7,429 blocs, 18,169 buildings, and 270,554 apartments in the sample. The median bloc size is about 0.21km2. Unconditional on height, the mean number of buildings in a bloc is about 7.5 in our transactions data. Conditional on height and the presence of at least one building, the mean number of buildings in a bloc is 2.4, with about 55% of these bloc-height combinations containing exactly one building.

Table 1 shows apartment-level summary statistics of price (per square meter in real 2017 NIS and adjusted for cost) and the number of floors in the building (i.e., height), and building-level summary statistics of price (average price within a building) and the number of floors in the building. The mean real, input-price, height and floor-adjusted per square meter price is such that a standard 100 square meter apartment would sell for about 1.25 million NIS in 2017 shekels (about 350,000 USD at 2017 exchange rates).

The points in Figure 4 are building prices by height. There is a large dispersion in prices at nearly all heights, with the average ratio of third to first quartile price equal to 1.6 and the 95% to 5% price ratio equal to 2.7.

<table>
<thead>
<tr>
<th>Table 1: Summary statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Apartment</td>
</tr>
<tr>
<td>Log price</td>
</tr>
<tr>
<td>Price</td>
</tr>
<tr>
<td>Number of floors</td>
</tr>
<tr>
<td>Building</td>
</tr>
<tr>
<td>Log price</td>
</tr>
<tr>
<td>Price</td>
</tr>
<tr>
<td>Number of floors</td>
</tr>
</tbody>
</table>

Notes: Prices per square meter in real 2017 NIS.

Table 7 in Appendix C.6 shows summary statistics for the number of observations by height.
5 Results

5.1 Apartment-floor, building-height adjusted price

Adjusting prices for observable attributes is especially important in our context. On the one hand, consumers may be prepared to pay a premium, or demand a discount, for apartments on high floors or in tall buildings. On the other hand, building height varies with location, with taller buildings constructed in more attractive areas, as basic land use theory predicts. The challenge is to obtain an empirical counterpart to \(p \) of (1), the price after removing apartment-floor, building-height effects. An insufficiently flexible specification could easily assign apartment floor or building height effects to location effects, thus overstating the increase in the frontier at higher heights; too much flexibility could lead to excessive noise in the estimates. Our solution is to first estimate a fully saturated model of floor and height effects, and then, after inspecting the estimates, choose a reasonable restricted model. The function \(m \) in (1) is identified using variation in apartment floor within a building and variation in building height within a parcel, as some parcels have
more than one building on them.\footnote{See Appendix \textbf{A.4} for details. We normalize $m(2,4) = 1$, so that the adjusted price represents a second-floor apartment in a 4-floor building at the given location.} We then subtract the estimated floor and height effects from the observed price and add back in the effects pertaining to a second-floor apartment in a 4-floor building. This is the price used in the remainder of the analysis.

5.2 Variances

Figure 5 shows the estimated standard deviations, by height, of apartment level measurement error v (in blue), building level measurement error w (in red), and deviations from the frontier u (in purple), using (12)-(14) in Appendix \textbf{A.2}. The measurement error variances are estimated using residuals of a nonparametric regression of log price on transaction day. The deviations variance is then estimated using log prices and the estimated measurement error variances. Thus the variance of deviations (\approx regulations) is obtained from variation in prices (unadjusted for time) across both bloc and time, while the variances of measurement errors partials out time effects. For some of the higher heights, the degrees of freedom at the building level are small or zero (see Table 7 in Appendix \textbf{C.6}) so that the estimated building-level measurement error variances do not exist or are negative, and so are missing from the figure. To deal with these cases and to avoid excessively noisy estimates, we smooth the measurement error variances using polynomial series estimates, with the polynomial degrees chosen by cross validation. The resulting curves are relatively flat. We do not smooth the standard deviations of u. Allowing these standard deviations to be unrestricted functions of height avoids imposing any endogeneity bias, as we discussed underneath (6).

The figure shows that the estimated standard deviation of u is on average about 4 times the estimated standard deviation of building error and about 2.5 times the estimated standard deviation of apartment error. Thus the variance of regulation is an order of magnitude larger than the combined measurement error variance. The standard deviations of the measurement errors, however, are clearly nontrivial.
Figure 5: The red, blue, and purple points are estimated standard deviations based on (12)-(14). The red and blue curves smooth the estimates with series estimators.

5.3 The frontier

Figure 6 shows our constrained ML frontier estimates from (7)-(8) (see also Appendix C.5). The estimates decrease until MES at five stories, increase, and then remain constant before increasing steeply. Although the upper confidence band admits marginal costs that are increasing beyond MES, each parametric bootstrapped sample produced a frontier that had long stretches of constant marginal costs. The figure also shows mean and minimum building prices. The differences between mean prices and the ML estimates, along with the relative sizes of the variances estimated in Section 5.2, show that multi-floor housing markets must be highly regulated, with some building prices more than six times frontier prices. A striking difference between mean prices and the ML estimates, is that the former increase sharply at low heights but the latter decrease.

22 Let $\hat{g}(h), \hat{\sigma}_v^2(h), \hat{\sigma}_w^2(h), \hat{\mu}_u(h)$ be the ML estimates. The parametric bootstrap at height h randomly draws v_{ki}^* from $N(0, \sigma_v^2(h))$, w_{ki}^* from $N(0, \sigma_w^2(h))$, and u_k^* from $TN(\hat{\mu}_u(h), \sigma_u^2(h))$. The bootstrapped observation is $y_{ki}^* = \hat{g}(h) + u_k^* + w_{ki}^* + v_{ki}^*$.

27
Figure 6: The minimum and mean building prices and constrained ML estimates with 95% confidence bands using 200 parametric bootstrapped samples.

are consistent estimators for the frontier absent measurement error (see Section 2.1) but with measurement error, at low heights, where there are many buildings with just two apartments, it is likely that some building has large negative measurement error and is relatively unregulated, making minimum prices biased downwards as frontier estimates. At high heights, there are relatively few buildings and so minimum prices will tend to be biased upwards as estimates of the frontier.

Figure 7 shows alternative frontier estimates: a scatter plot of ML estimates of the frontier obtained at each height separately by maximizing the log likelihood (7), and smooth AC and MC estimates from the constrained maximum likelihood of a quartic cost function as in (18)-(20) in Appendix A.3. The constrained ML estimates from Figure 6 are also shown. Across all estimates, the average cost at MES is about 10% lower than the average cost of constructing a one-floor building. The marginal cost initially increases, then remains flat, before increasing steeply reflecting that building upwards becomes increasingly difficult at high heights. This is consistent with previous research (e.g., Glaeser et al., 2005) and discussions with industry experts (see footnote 9).
Figure 7: The constrained ML estimates, the smooth ML estimates using a quartic cost function, and the ML estimates for each height separately.

Table 2 compares buildings near the frontier, defined as buildings with average apartment price at most 5% greater than the frontier, to the full sample of newly constructed buildings. About 4% of the full sample is near the frontier. Relative to the full sample, housing near the frontier is about twice as far from the city of Tel Aviv, the country’s commercial center. Depending on the radius and whether we look at buildings or apartments, ‘Near Frontier’ housing is in areas with average densities between 0.28 to 0.62 that of the full sample. The smaller standard deviations for ‘Near Frontier’ indicate a greater homogeneity of this sub-sample relative to the full sample. Although these buildings are further away from Tel Aviv, they are, perhaps surprisingly, closer to their own city centers, but the standard deviation indicates a large degree of disparity.

Consistent with our general view of regulatory variation as extremely local, buildings near the frontier are well represented throughout the country, with 59 of the 160 cities in Table 2 having at least one building near the frontier. Seven districts contain over 99% of

\[\text{Table 2 and the analysis in Section 5.6 use the subset of the data with geographical coordinates.}\]
buildings near the frontier. The remaining three districts are those closest to Tel Aviv.

Table 2: Summary statistics

<table>
<thead>
<tr>
<th></th>
<th>Full sample</th>
<th></th>
<th>Near Frontier</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>St. Dev.</td>
<td>Mean</td>
<td>St. Dev.</td>
</tr>
<tr>
<td>Apartment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory tax rate</td>
<td>0.45</td>
<td>0.16</td>
<td>0.12</td>
<td>0.04</td>
</tr>
<tr>
<td>Distance to city center</td>
<td>2.43</td>
<td>1.56</td>
<td>1.89</td>
<td>1.22</td>
</tr>
<tr>
<td>Density (1km radius)</td>
<td>5.01</td>
<td>4.98</td>
<td>3.13</td>
<td>2.71</td>
</tr>
<tr>
<td>Density (4km radius)</td>
<td>3.17</td>
<td>2.66</td>
<td>1.42</td>
<td>1.38</td>
</tr>
<tr>
<td>Distance to Tel Aviv city (km)</td>
<td>37.74</td>
<td>35.58</td>
<td>70.64</td>
<td>29.46</td>
</tr>
<tr>
<td>Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory tax rate</td>
<td>0.47</td>
<td>0.17</td>
<td>0.09</td>
<td>0.04</td>
</tr>
<tr>
<td>Distance to city center</td>
<td>2.43</td>
<td>1.57</td>
<td>1.85</td>
<td>1.38</td>
</tr>
<tr>
<td>Density (1km radius)</td>
<td>6.24</td>
<td>5.68</td>
<td>2.56</td>
<td>2.17</td>
</tr>
<tr>
<td>Density (4km radius)</td>
<td>3.50</td>
<td>2.89</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>Distance to Tel Aviv city</td>
<td>37.89</td>
<td>38.50</td>
<td>80.05</td>
<td>28.63</td>
</tr>
</tbody>
</table>

Notes: We remove observations with missing geographical coordinates so that there are 13,102 buildings and 206,835 apartments in the full sample and 354 buildings and 7,339 apartments near the frontier. Distances are in kilometers. Densities are in 1000’s per km².

5.4 The frontier elasticity of substitution of land for capital

The elasticity of substitution of land for capital is typically used to summarize housing production functions. Appendix B shows that it is equal to the elasticity of average to marginal non-land costs $\sigma = d\ln AC/d\ln MC$. The elasticity and isoquant curves implied by the smooth MC and AC estimates are shown in Figures 8a and 8b respectively. The elasticity is equal to zero at MES (AC is at its unique minimum here so $dAC = 0$ and the elasticity is zero), increases sharply because $dMC \approx 0$ (this region corresponds to the near linear - i.e., perfect substitutability - segment of the frontier isoquant), then decreases sharply, and remains well below 0.5 thereafter. Most of the literature estimates the elasticity of substitution for small residential structures to be about unity (e.g., Ahlfeldt and McMillen, 2014) and the few elasticity estimates for tall residential buildings are about 0.5 (e.g., Ahlfeldt and McMillen, 2018). Our estimates of the elasticity suggest that substituting capital for land is difficult at low and high heights and easy at medium heights.
The elasticity of substitution.

(a) The elasticity of substitution.

(b) Isoquant curve.

Figure 8: (a) Elasticity of substitution of land for capital (b) Isoquant curve.

5.5 Regulatory tax rates

For each building we estimate the regulatory tax rate based on (10) and its lower bounds based on (11) with a nearby building defined as any building within distance \(d \in \{0.25\text{km}, 0.5\text{km}, 1\text{km}\} \). The mean number of buildings within 0.25km, 0.5km, and 1km is 10, 29, and 80 respectively. The existing home price regression yields an estimate of 0.0016 for \(\kappa_T \), as reported in Appendix A.1. The estimated mean value of \(\kappa_S \) is 0.65, with standard deviation 0.35.

Across all apartments (buildings), the mean regulatory tax rate is 43% (44%), with a standard deviation of 16% (18%). Across all apartments (buildings) with height above MES (five floors), the mean regulatory tax rate is 45% (47%), with a standard deviation of 16% (18%). Restricting to buildings with geographical coordinates, and using buildings within 0.25km, 0.5km, and 1km respectively, the mean lower bounds are 10%, 15%, and 19% with standard deviations 12%, 14%, and 16%. Restricting to buildings with geographical coordinates and height above MES, and using buildings within 0.25km, 0.5km, and 1km respectively, the mean lower bounds are 13%, 18%, and 23% with standard deviations...
13%, 15%, and 17%.

Figure 9a shows the mean of the estimated regulatory tax rate and lower bounds at each height. From heights above MES to 30, the estimated regulatory tax is roughly constant at about 50%, while the lower bounds are roughly constant at about 12%, 18%, and 25% using all buildings within 0.25km, 0.5km, and 1km respectively.

Figure 9b shows the mean of the estimated regulatory tax rate and lower bounds over time for buildings with heights above MES to 30. The estimated regulatory tax and lower bounds are relatively flat through the mid-2000s and increase thereafter. For example, the lower bound using neighboring buildings within 1km, is relatively flat at about 5% until 2005 when it increases to about 35% by 2016. This is consistent with the substantial increases in apartment prices from the mid-2000s on. With a small estimate for κ_T, this demonstrates the greater usefulness of bounds in periods that follow high price growth.

Figure 9: (a) The mean estimated regulatory tax rates and lower bounds (b) The mean estimated regulatory tax rates and lower bounds for buildings with heights above MES to 30.
5.6 Characterizing regulatory tax rates

We characterize the estimated regulatory tax rate using (10) by the covariates distance to city center, density, and geographical location (summary statistics for these variables are shown in Table 2). The relationships between the regulatory tax and the covariates are shown graphically and through regression estimates below. These estimates are to be understood as descriptive only, and not causal.

We define the city center as the location within the city with the highest predicted price according to a nonparametric regression of observed building prices on buildings’ geographical coordinates (using cross-validation for choice of bandwidth). This definition is consistent with monocentric city models, while obviating the need for non-price data and choosing between employment and consumption as the dominant agglomeration force.

Figure 10a shows the estimated quartic fit of a regression of estimated regulatory tax rates on distance, in kilometers, to the city center for the three largest cities: Jerusalem, Tel Aviv, and Haifa. The figure shows that in general, and where the relationship is precisely measured, the estimated regulatory tax rate decreases with distance to city center. The negative relationship between the regulatory tax and distance to city center is supported by the regression estimates in Columns (3) and (6) in Table 3. The negative relationship is consistent with Tan et al. (2020), where the city center is defined as the location with the brightest lights at night.

We measure population density at a building’s location as the number of people residing in 1995 (three years before the start of our sample period), in thousands, within a 1 km or 4 km radius.24 Figures 10c and 10d contain scatter plots of estimated regulatory tax rates versus density, with an overlaid quartic fit and 95% pointwise confidence bands. Measuring the density with a 1 km radius, Figure 10c shows that the mean tax rate, starting at 0.39 in unpopulated areas, increases until a maximum of 0.58 at about a density of 16,571 people (the 94th quantile of the density). Measuring the density with a 4 km radius, Figure 10d

24To be precise, the density is the weighted average of 1995 population densities of census statistical areas within a 1 km or 4 km radius of the building, where the weight is the statistical area’s contribution in area to the intersection of the circle of radius 1 km and Israel’s land mass.
Figure 10: (a) The quartic fit and 95% confidence bands of regressions of the estimated regulatory tax rates on distance to city center for Jerusalem, Tel Aviv, and Haifa, (b) The kernel densities of the estimated regulatory tax rates in these cities, (c) The estimated regulatory tax rate by density (in thousands) per km2 for radius 1km, the quartic fit, and 95% pointwise confidence bands, (d) The estimated regulatory tax rate by density (in thousands) per km2 for radius 4km, the quartic fit, and 95% pointwise confidence bands.
Table 3: Regressions

<table>
<thead>
<tr>
<th></th>
<th>Estimated regulatory tax rate</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Apartment</td>
<td>Distance to city center</td>
<td>-</td>
<td>-</td>
<td>-0.0031</td>
<td>-</td>
<td>-0.0034</td>
</tr>
<tr>
<td></td>
<td>Density - 1km radius</td>
<td>0.0092</td>
<td>(0.0001)</td>
<td>-</td>
<td>0.0011</td>
<td>(0.0001)</td>
</tr>
<tr>
<td></td>
<td>Density - 4km radius</td>
<td>-</td>
<td>0.0283</td>
<td>-</td>
<td>-</td>
<td>0.0063</td>
</tr>
<tr>
<td></td>
<td>City fixed effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.0858</td>
<td>0.2296</td>
<td>0.5540</td>
<td>0.5523</td>
<td>0.5531</td>
</tr>
<tr>
<td>Building</td>
<td>Distance to city center</td>
<td>-</td>
<td>-</td>
<td>-0.0042</td>
<td>-</td>
<td>-0.0046</td>
</tr>
<tr>
<td></td>
<td>Density - 1km radius</td>
<td>0.0107</td>
<td>(0.0002)</td>
<td>-</td>
<td>0.0016</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Density - 4km radius</td>
<td>-</td>
<td>0.0324</td>
<td>-</td>
<td>-</td>
<td>0.0088</td>
</tr>
<tr>
<td></td>
<td>City fixed effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.1309</td>
<td>0.3099</td>
<td>0.6713</td>
<td>0.6675</td>
<td>0.6688</td>
</tr>
</tbody>
</table>

Notes: Standard errors are in parentheses underneath the coefficients. Distance to city center is in kilometers. Densities are 1000’s per square kilometer.

shows that the mean tax rate, starting at 0.32 in unpopulated areas, increases to about 0.73. On average, as seen in Columns (1) and (2) of Table 3, for every additional thousand people per square kilometer, the tax rate is one percent higher measured with a 1 km radius and three percent higher with a 4 km radius. The goodness of fit, measured by R^2, of regressions using various radii between 0.075km to 4km increases with the radius, suggesting that the density close to the building is less predictive of the tax rate than the density of the wider surrounding area. A positive relationship between the tax rate and density is reminiscent of Hilber and Robert-Nicoud (2013), who show a positive relationship between the developed share of developable land and the Wharton Index, consistent with their theoretical model of incumbent landowners protecting their asset value. In contrast to the Wharton Index, our measure of regulation is cardinal.
The large increases in R^2 when city fixed effects are added in the latter columns of Table 3 show that the jurisdiction itself, and not just its overall density, is important. Figure 10b shows the kernel density of the estimated regulatory tax rate for the three largest cities: Jerusalem, Tel Aviv, and Haifa. Tel Aviv, which boasts the highest housing prices in the country, has the highest tax rates among the three. This is just an example of a more general relationship in the data, that higher priced cities are characterized by higher regulatory taxes. As the scatter plot in Figure 11 shows, the relationship is tight. This is not surprising given the relative flatness of the frontier. However, it is not inevitable - a scenario in which multi-unit housing is restricted in low demand areas only, say the suburbs, would yield a negative relationship. The positive relationship is consistent with predictions in of greater regulation in high amenity cities (Hilber and Robert-Nicoud, 2013).

Figure 11: The city mean regulatory tax rate against the city mean apartment price.

5.7 Case studies: Regulation over time in newly established cities

The newly established cities of Modiin (situated about halfway between Tel Aviv and Jerusalem) and Elad (about 25 kilometers east of Tel Aviv) offer interesting case studies. Modiin and Elad were planned in the 1990s. Modiin’s first residents arrived in 1996 and
Elad’s in 1998. By 2019, Modiin had about 90,000 residents, most of high socioeconomic status, while Elad had about 50,000 residents, most religious and of low socioeconomic status. Since many political economy models of housing regulation locate the source of regulation in home owners’ attempts to increase, or at least protect, the asset value of their home, it is interesting to document the degree of regulation in newly established cities, before homeowners become politically influential. Figure 12a shows the mean estimated regulatory tax rates for the full sample (in red), in Elad (in purple) from its year of establishment, and in Modiin (in blue) from two years after its establishment (the first year in our data). Elad’s first residents moved in about two years after Modiin’s, and Elad’s curve shifted three years to the left, and a few points up, basically overlaps Modiin’s curve. The figure shows that in their nascent years the regulatory tax rates were, although not zero, much lower than the national average, and relatively stable. Then about six to eight years after their first residents moved in, the regulatory tax rates essentially doubled. Modiin’s rate settled above the national average, while Elad’s at the national average. Thereafter, their rates continue to increase at the national rate. Figures 12b and 12c show that the increase in regulation is coincident with a jump up in prices yet relatively stable building heights, suggesting that the sudden increase in the regulatory tax was driven by relatively fixed restrictions that became more binding with the price increase.
Figure 12: The mean estimated regulatory tax rates, prices, and building heights over time.

6 Conclusion

Estimating costs through conditional mean regression embeds unobserved regulatory conditions and, to the extent such unobserved regulation varies systematically with market conditions, introduce bias to estimates of supply. In this paper, we show how to identify and estimate frontier costs in multi-floor housing using just observed prices and heights, identifying frontier marginal costs for heights above MES from variation in demand in unregulated markets and identifying frontier average costs for heights below MES from variation in demand and regulation. We allow for nonhomogeneous housing units based on observed apartment floor and building height, and for apartment and building level measurement errors (including structural quality that is independent of amenities).

Using data for newly constructed buildings in the Israeli housing market from 1998-2017, we estimate regulatory tax rates, finding a mean rate of 43% and a standard deviation of 16%. Regulatory tax rates are higher in areas that are higher priced, denser, and closer to city centers. Measurement errors are small compared to regulation. When allowing for location-related structural quality, we assume that structural quality and amenities are, locally, weak complements and bound the mean regulatory tax rate from below by 19%,
using buildings within a 1km radius. Most of that bound derives from the availability in the data of nearby buildings constructed at lower priced time periods and at heights without substantially lower frontier costs. This is contingent on our estimates of a near-zero relationship between temporal demand shocks (period effects) and structural quality (cohort effects). There is no presumption that regulation is either welfare-enhancing or welfare-detracting, a determination that would require additional sources of information.

Our analysis of regulation is price-based, defining a regulatory tax that relies on vertical deviations from the frontier (i.e., the difference between a building and frontier price at the building height). A quantity-based alternative would rely on horizontal deviations from the frontier (i.e., the difference between a building and frontier height at the building price). For example, in a counterfactual world where there is no regulation, and holding prices constant, our point estimates indicate that suppliers would build about 4.6 times higher, constructing about 3,400 buildings instead of the 18,000 or so in our sample, and so freeing up about 80% of the building footprint. Assessing the resource savings in this counterfactual world would require values for land and consideration of general equilibrium effects, as well as externalities such as congestion effects. One simple exercise, however, is to consider building all apartments in buildings of heights 11 to 24, where marginal costs are constant according to our constrained ML estimates, in 24-story buildings instead. This would require 35% less land, but cost an additional 1% of non-land costs. Likewise, removing regulation so that apartments in shorter than MES-story buildings are built in MES buildings would also require 35% less land, along with saving 1% of non-land costs. We leave further analysis along these lines for future work.

References

Ahlfeldt, G. and McMillen, D. P. (2014), ‘New estimates of the elasticity of substitution of

Online Appendix

A Additional estimation details

A.1 Estimating κ_T

Our aim is to estimate κ_T through the relationship between period effects (transaction time) and cohort effects (construction time) in a regression of existing home prices on period, cohort, and age (transaction time less construction time, capturing depreciation), where the cohort effects are restricted to be a function of the period effects. In its most general form, this entails estimating

$$y_{its} = \gamma(t) + \delta(\gamma(s)) + \alpha(t-s),$$

where s is construction period, t is transaction period (so that $t-s$ is age), $\gamma(t)$ (which corresponds to its namesake in Subsection 2.7) are period effects, $\delta(\gamma(s))$ are cohort effects, and $\alpha(t)$ are age effects. This restriction on the cohort effects is implied by the model outlined in Subsection 2.7, where cohort effects capture variations in structural quality over time. So long as γ is nonlinear, the restriction provides one solution to the well-known problem of decomposing a variable into age, period, and cohort effect, as period is the sum of cohort and age (e.g., Hall et al., 2007; Hall, 1971). A number of different approaches have been taken in the hedonic pricing literature (e.g., Coulson and McMillen, 2008). Our approach is dictated by our goal of estimating κ_T and the theoretical framework in Subsection 2.7 which motivates that objective.

We set γ and α to be linear-quadratic functions, and, as we are after only a single number for κ_T, set δ as a constant. Nonlinearity is essential, as δ is unidentified if γ is linear. Thus we estimate,

$$y_{its} = \gamma t + \gamma t^2 + \delta(\gamma s + \gamma s^2) + \alpha_1(t-s) + \alpha_2(t-s)^2.$$

A consistent estimate for δ can be obtained by regressing log price on the period of transaction and its square, the square of the period of construction, age (or period of
construction) and age-squared. The estimate $\hat{\delta}$ is the ratio of the coefficient on the square of the period of construction to the coefficient on the square of the period of transaction. Column (1) in Table 4 shows the results of the regression, with parcel fixed effects and the same set of building and apartment attributes as in Table 5 of Appendix A.4, and using the data described elsewhere in the paper but for all transactions with construction years the year after or up to 40 years before the transaction year.

We estimate $\hat{\delta} = 0.0005/0.311 = 0.0016$ (s.e. = 0.0018), and so $\hat{\kappa}_T = \hat{\delta}/(1 + \hat{\delta}) = 0.0016$ (s.e. = 0.0018), indicating that structural quality barely varies with price over time. We obtain similar results for γ and α quartic functions.

Column (2) in Table 4 drops the squared year of construction, substituting instead its interaction with indicator functions for the twenty largest (by number of transactions) cities and an indicator for all other cities. This allows the relationship between period effects and cohort effects to vary across locations. The results are very similar. No city shows an absolute ratio exceeding 0.0460, while the ratio of the weighted mean of the interaction coefficients to the square of the transaction year (with weights equal to the frequency of the cities and the residual category in the regression sample) is -0.0037 (s.e. = 0.0019).

Table 4: Existing Homes Price Regression

<table>
<thead>
<tr>
<th>Variable</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of Transaction</td>
<td>-0.034</td>
<td>-0.033</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Year of Transaction Squared/100</td>
<td>0.311</td>
<td>0.310</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Year of Construction Squared/100</td>
<td>0.0005</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(+)</td>
</tr>
<tr>
<td>Age</td>
<td>0.0012</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>(0.0002)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>Age-Squared/100</td>
<td>-0.0036</td>
<td>-0.0033</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
<td>(0.0007)</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is in prices per square meter in real 2017 NIS. Year is calendar year minus 1997. The number of observations is 776,709.
A.2 Variances

Conditioning on height, we estimate the variances of \(u, v, \) and \(w \) using apartment, building, and bloc multilevel modeling,

\[
\hat{\text{Var}}(v) = \frac{1}{\sum_{k=1}^{K} \sum_{i=1}^{n_k} (J_{ki} - 1)} \sum_{k=1}^{K} \sum_{i=1}^{n_k} \sum_{j=1}^{J_{ki}} (y_{kij} - \bar{y}_{ki})^2, \tag{12}
\]

\[
\hat{\text{Var}}(w) = \frac{1}{\sum_{k=1}^{K} (n_k - 1)} \sum_{k=1}^{K} \left(\sum_{i=1}^{n_k} \sum_{j=1}^{J_{ki}} (\bar{y}_{kij} - \bar{y}_k)^2 \right) - \hat{\text{Var}}(v) \sum_{k=1}^{K} \sum_{i=1}^{n_k} \frac{n_k - 1}{n_k J_{ki}}, \tag{13}
\]

\[
\hat{\text{Var}}(u) = \frac{1}{K - 1} \sum_{k=1}^{K} (\bar{y}_k - \bar{\bar{y}})^2 - \frac{\hat{\text{Var}}(w)}{K} \sum_{k=1}^{K} \frac{1}{n_k} - \frac{\hat{\text{Var}}(v)}{K} \sum_{k=1}^{K} \sum_{i=1}^{n_k} \frac{1}{n_k J_{ki}}, \tag{14}
\]

where \(y_{kij} \) is the residual of a nonparametric series regression of log price on transaction date (in days), and where the estimated building prices are \(\bar{y}_{ki} = \frac{1}{J_{ki}} \sum_{j=1}^{J_{ki}} y_{kij}, \) \(\bar{y}_{ki} = \frac{1}{J_{ki}} \sum_{j=1}^{J_{ki}} y_{kij}, \) the estimated bloc prices are \(\bar{y}_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \bar{y}_{ki} \) and \(\bar{\bar{y}} = \frac{1}{K} \sum_{k=1}^{K} \bar{y}_k, \) and the overall average prices are \(\bar{y} = \frac{1}{K} \sum_{k=1}^{K} \bar{y}_k. \)

A.3 The frontier

Fix height \(h. \) To simplify notation, drop the height index \(h. \) Since \(u \sim TN(\mu_u, \sigma_u^2), \)

\[
\text{Var}(u) = \sigma_u^2 \left[1 - \frac{\mu_u}{\sigma_u} \cdot \hat{\lambda} \left(\frac{\mu_u}{\sigma_u} \right) \right], \tag{15}
\]

where \(\hat{\lambda}(x) = \phi(x)/\Phi(x), \) and \(\phi(.) \) and \(\Phi(.) \) are the standard normal probability and cumulative density functions. Combining (14) with (15) we obtain,

\[
\hat{\sigma}_u^2 \left[1 - \frac{\mu_u}{\sigma_u} \cdot \hat{\lambda} \left(\frac{\mu_u}{\sigma_u} \right) \right] = \frac{1}{K - 1} \sum_{k=1}^{K} (\bar{y}_k - \bar{\bar{y}})^2 - \frac{\hat{\sigma}_w^2}{K} \sum_{k=1}^{K} \frac{1}{n_k} - \frac{\hat{\sigma}_v^2}{K} \sum_{k=1}^{K} \sum_{i=1}^{n_k} \frac{1}{n_k J_{ki}}. \tag{16}
\]

So that given the data and parameters \(\hat{\mu}_u, \hat{\sigma}_v^2, \) and \(\hat{\sigma}_w^2, \) we obtain \(\hat{\sigma}_u^2 \) using (16).

For each of \(M \) parameter values for \((g, \mu_u) \) and the estimates for \(\sigma_v^2 \) and \(\sigma_w^2 \) from (12)-(14) we obtain an estimate for \(\sigma_u^2 \) and calculate the log likelihood (ignoring constants),

\[
\mathcal{L}_h(g, \mu_u, \sigma_u^2, \sigma_v^2, \sigma_w^2; \cdot) = \sum_{k=1}^{K} \left(\frac{\mu_k^2}{\sigma_k^2} - \frac{\mu_u^2}{\sigma_u^2} + \frac{\sigma_w^2}{\sigma_v^2} \sum_{i=1}^{n_k} \left(\frac{\sigma_w^2 J_{ki}}{\sigma_v^2} + J_{ki} \sigma_k^2 \right)^2 \right) + \ln \sigma_k^2 - \ln \sigma_u^2 - \sum_{i=1}^{n_k} \left(\ln(\sigma_v^2 + J_{ki} \sigma_k^2) + (J_{ki} - 1) \ln \sigma_v^2 \right) + 2 \ln \Phi \left(\frac{\mu_k}{\sigma_k} \right) - 2 \ln \Phi \left(\frac{\mu_u}{\sigma_u} \right), \tag{17}
\]
The global maximum of the likelihood, constrained so that average costs decrease to MES and marginal costs increase thereafter, is attained by a grid search and Dijkstra’s algorithm, implying marginal and average cost functions

\[\mu_k = \frac{\sigma_k^2}{\sigma_u^2 n_k} \sum_{i=1}^{n_k} \mu_u \left(\sigma_v^2 + J_{ki} \sigma_w^2 \right) + n_k \sigma_u^2 \sum_{j=1}^{J_{ki}} (y_{ki j} - g), \]

\[\sigma_k^2 = \sigma_u^2 n_k \left(\sigma_v^2 + J_{ki} \sigma_w^2 \right)^{-1}, \]

where \(\mu_k \) is a weighted average of \(\mu_u \) and the average distance of log price to the frontier.

Now, the global maximum of the likelihood at height \(h \) is obtained by maximizing (17). The global maximum of the likelihood, constrained so that average costs decrease to MES and marginal costs increase thereafter, is attained by a grid search and Dijkstra’s algorithm,

\[\{ \text{MES}, \hat{g}, \hat{\mu}_u \} = \arg\max_{g \in \mathbb{R}^H, \nu_u \in \mathbb{R}^H} \sum_{h=1}^{H} \mathcal{L}_h(g_h, \nu_{uh}, \cdot), \]

s.t. \(g_{mes} \leq g_{mes-1} \leq \ldots \leq g_1 \) and \(g_{mes} \leq g_{mes+1} \leq \ldots \leq g_H \).

Now we describe how to obtain a smooth ML estimator for a fourth order polynomial cost function, defined on a domain of continuous quantities, which we write as

\[C(q) = \beta_0 + \beta_1 q + \beta_2 q^2 + \beta_3 q^3 + \beta_4 q^4, \]

implying marginal and average cost functions

\[MC(q) = \beta_1 + 2\beta_2 q + 3\beta_3 q^2 + 4\beta_4 q^3 \text{ and } AC(q) = \frac{1}{q} \beta_0 + \beta_1 q + \beta_2 q^2 + \beta_3 q^3. \]

So \(g(q) = \ln \max \{ AC(q), MC(q) \} \). The smooth estimator maximizes the likelihood,

\[\{ \text{MES}, \hat{\beta}, \hat{\mu}_u \} = \arg\max_{\{ g \in \mathbb{R}^H, \nu_u \in \mathbb{R}^H \}} \sum_{h=1}^{H} \mathcal{L}_h(\cdot), \]

s.t. \(MC(q(mes - 1)) \leq AC(q(mes - 1)) \leq \ldots \leq AC(q(1)), \)

\[AC(q(mes)) \leq MC(q(mes)) \leq \ldots \leq MC(q(H)). \]

We now derive the likelihood in (17). Assume \(v_{ki j} \sim N(0, \sigma_v^2), w_{ki} \sim N(0, \sigma_w^2), \) and \(u_k \sim TN(\mu_u, \sigma_u^2) \). So,

\[f_{v_{ki j}}(v) = \frac{e^{-v^2/2\sigma_v^2}}{\sqrt{2\pi\sigma_v^2}}, \quad f_{w_{ki}}(w) = \frac{e^{-w^2/2\sigma_w^2}}{\sqrt{2\pi\sigma_w^2}}, \quad f_{u_k}(u) = \frac{e^{-(u-\mu_u)^2/2\sigma_u^2}}{\sqrt{2\pi\sigma_u^2} \cdot \Phi(\mu_u/\sigma_u)}, \quad u \geq 0. \]
By independence of \(u_k, w_{k1}, \ldots, w_{kn_k}, v_{k11}, \ldots, v_{k1J_k}, \ldots, v_{kn_k1}, \ldots, v_{kn_kJ_{kn_k}} \),

\[
f_{u_k+w_{k1}+v_{k11}, \ldots, u_k+w_{k1}+v_{k1J_k}, \ldots, u_k+w_{kn_k}+v_{kn_k1}, \ldots, u_k+w_{kn_k}+v_{kn_kJ_{kn_k}}}(s_{11}, \ldots, s_{1J_k}, \ldots, s_{n_k1}, \ldots, s_{n_kJ_{kn_k}})
\]

\[
= \int_0^\infty \int_{-\infty}^\infty \cdots \int_{-\infty}^\infty f_{u_k}(u) \prod_{i=1}^{n_k} \left(f_{w_{ki}}(w_i) \prod_{j=1}^{J_k} f_{v_{kij}}(s_{ij} - w_i - u) \right) dw_i \ du
\]

\[
= \int_0^\infty \frac{e^{-(u-\mu_u)^2/2\sigma_u^2}}{\sqrt{2\pi\sigma_u^2}} \cdot \Phi(\mu_u/\sigma_u) \prod_{i=1}^{n_k} \left(\int_{-\infty}^\infty \frac{e^{-(w_i^2/2\sigma_w^2)}}{\sqrt{2\pi\sigma_w^2}} \prod_{j=1}^{J_k} \frac{e^{-(s_{ij} - w_i - u)^2/2\sigma_v^2}}{\sqrt{2\pi\sigma_v^2}} \right) dw_i \ du
\]

\[
= \frac{\sigma_k \exp \left(\sum_{i=1}^{n_k} \frac{\sigma_u^2}{2(\sigma_w^2 + J_k\sigma_v^2)} - \frac{\mu_u^2}{2\sigma_u^2} - \sum_{i=1}^{n_k} \frac{J_k}{2\sigma_v^2} \left(\frac{\mu_u^2}{2\sigma_u^2} + \frac{\mu_{s_{ij}}^2}{2\sigma_v^2} \right) \Phi(\mu_k/\sigma_k) \right)}{(2\pi)^{\frac{1}{4}} \sum_{i=1}^{n_k} J_k \sigma_v \Phi(\mu_u/\sigma_u) \prod_{i=1}^{n_k} \sqrt{\sigma_v^2 + J_k\sigma_w^2}},
\]

where

\[
\mu_k = \frac{\sigma_k^2}{\sigma_u^2} \sum_{i=1}^{n_k} \frac{\mu_u(\sigma_v^2 + J_k\sigma_w^2) + n_k\sigma_u^2 \sum_{j=1}^{J_k} s_{ij}}{\sigma_v^2 + J_k\sigma_w^2},
\]

\[
\sigma_k^2 = \sigma_u^2 \sum_{i=1}^{n_k} \frac{J_k\sigma_v^2 + n_k\sigma_{s_{ij}}^2}{\sigma_v^2 + J_k\sigma_w^2} - 1.
\]

We show \(u | u + \eta \) is truncated normal in (9). Assume \(u \sim TN(\mu_u, \sigma_u^2) \) and \(\eta \sim N(0, \sigma_\eta^2) \).

\[
f_{u|u+\eta}(u,s) = \frac{e^{-(u-\mu_u)^2/2\sigma_u^2} - (s-u)^2/2\sigma_\eta^2}}{2\pi\sigma_u\sigma_\eta \cdot \Phi(\mu_u/\sigma_u)}
\]

\[
f_{u+\eta}(s) = \int_0^\infty f_{u}(u) f_{\eta}(s-u) \ du = \frac{\sigma_\eta \exp \left(\frac{\mu_u^2}{2\sigma_u^2} - \frac{\mu_\eta^2}{2\sigma_\eta^2} \right) \Phi(\mu_\eta/\sigma_\eta)}{\sqrt{2\pi\sigma_u\sigma_\eta} \cdot \Phi(\mu_u/\sigma_u)}
\]

\[
f_{u|u+\eta}(u|s) = \frac{\exp \left(-\frac{(u-\mu_u)^2}{2\sigma_u^2} - \frac{(s-u)^2}{2\sigma_\eta^2} - \frac{\mu_u^2}{2\sigma_u^2} + \frac{\mu_\eta^2}{2\sigma_\eta^2} + \frac{s^2}{2\sigma_\eta^2} \right)}{\sqrt{2\pi\sigma_u} \Phi(\mu_u/\sigma_u)} = \frac{\exp \left(-\frac{1}{2\sigma_u^2} (u - \mu_u)^2 \right)}{\sqrt{2\pi\sigma_u} \Phi(\mu_u/\sigma_u)},
\]

where \(\mu_\eta = \frac{\sigma_u^2 \mu_u + s \sigma_\eta^2}{\sigma_u^2 + \sigma_\eta^2} \) and \(\sigma_\eta^2 = \frac{\sigma_u^2 \sigma_\eta^2}{\sigma_u^2 + \sigma_\eta^2} \).

As an alternative to the truncated normal, we also considered the folded normal for the \(u_k \) distribution.\(^{25}\) The truncated normal distribution produced more stable results. Its fatter tails proved important for estimating small probabilities more accurately, which is important in our data given that \(\hat{\mu}_u / \hat{\sigma}_u \) can be as large as 4 (see Figure 16 in Appendix C.3).

\(^{25}\)If \(x \sim N(\mu_\eta, \sigma_\eta^2) \) then \(|x| \) is folded normal.
A.4 Apartment-floor, building-height adjusted prices

To obtain the adjusted prices, we begin by regressing the real, cost adjusted, per square meter log price on a full set of floor and building height interactions, dummy variables for transaction year before and transaction year after the year of construction, a nine-degree polynomial in the calendar day of transaction, eight dummies for the legal status of the property, and dummy variables for the building. Identification of the floor effects is possible because of cases in which there are multiple apartments in the same building, but on different floors. Identification of the height effects is possible because of cases in which there are multiple buildings on the same land parcel.\(^{26}\)

A selected set of the estimates for the floor \(\times\) height interactions in buildings with 5 to 10 floors are shown in Figure 13a. For given building height, the relationship between price and floor is J-shaped and right-leaning, with price falling initially, reflecting an initial preference for the ground floor and then more or less linearly increasing, until a penthouse effect at the penultimate and top floor. There is also a building height effect, with shorter buildings preferred to taller ones, especially at higher floors. Figure 13b covers a wider range of heights, grouping each 5 floor range of heights, and shows similar results.

On the basis of these estimates, we choose to model the conditioning on floor and height by a linear term in floor, dummy variables for each of the ground, first, second, and third floors, a linear term in building height, and dummies for the penultimate and top floors, as well as interaction with the sum of those two dummies and the building height. There are also interactions between a dummy for above four floors with the first, second, and third floor dummies, and interactions between heights above 10 floors and the linear term in floor.\(^{27}\) Table 5 presents the coefficients and standard errors of the main variables.

\(^{26}\)These are a small fraction of the data, but of sufficient number that the height effects can be measured.

\(^{27}\)These two cutoffs originate in the minimal regulatory requirements for a first and a second elevator.
Figure 13: Floor and building height effects

Table 5: Preliminary stage regression

<table>
<thead>
<tr>
<th></th>
<th>Log price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor</td>
<td>0.0088</td>
</tr>
<tr>
<td></td>
<td>(0.0003)</td>
</tr>
<tr>
<td>Building height</td>
<td>-0.0006</td>
</tr>
<tr>
<td></td>
<td>(0.0001)</td>
</tr>
<tr>
<td>Penthouse</td>
<td>0.0361</td>
</tr>
<tr>
<td></td>
<td>(0.0016)</td>
</tr>
<tr>
<td>Penthouse - 1</td>
<td>0.0058</td>
</tr>
<tr>
<td></td>
<td>(0.0017)</td>
</tr>
<tr>
<td>Penthouse × Building height</td>
<td>0.0027</td>
</tr>
<tr>
<td></td>
<td>(0.0002)</td>
</tr>
<tr>
<td>Year before construction year</td>
<td>-0.0037</td>
</tr>
<tr>
<td></td>
<td>(0.0009)</td>
</tr>
<tr>
<td>Year after construction year</td>
<td>0.0030</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
</tr>
</tbody>
</table>

Notes: Standard errors are in parentheses. Additional controls: polynomial in calendar time, ground, first, second, and third floor dummies and their interactions with dummies for building heights above 4 and 10 floors, eight legal status dummies, and parcel fixed effects.

B The frontier elasticity of substitution of land for capital

The elasticity of substitution of the housing production function is the rate at which the cost-minimizing capital to land ratio varies with the marginal rate of technical substitu-
tion. This is commonly used to summarize the degree of substitution of one input for the other in housing production. With price-taking firms in input markets, and normalizing the price of capital to 1, the elasticity of substitution is

$$\sigma = \frac{d \ln k}{d \ln R}$$

where k is capital per unit of land, and R is the price of a unit of land (i.e., land rent).

Given price taking firms in the input market, and normalizing the price of capital to 1, the elasticity of substitution is,

$$\sigma = \frac{d \ln k}{d \ln R} = \frac{R}{k} \times \frac{dk}{dR},$$

where $k = K/L$ is the capital to land ratio (or the capital per unit of land), K is capital, L is a given fixed amount of land, and R is the price of one unit of land, i.e., land rent.

With the constant returns to scale production function in land and capital $f_0(K, L)$, per unit of land housing output, equivalently height h, satisfies $h = f_0(K, L)/L = f_0(K/L, 1) = f(k)$. Noting that $k = C(h), h = C^{-1}(k) = f(k), C'(h) = 1/f'(k),$ and $C''(h) = -f''(k)/(f'(k))^3$, the elasticity of substitution is,

$$\sigma = \frac{f'(k)(kf'(k) - f(k))}{kf(k)f''(k)} = \frac{C'(h)(hC'(h) - C(h))}{hC(h)C''(h)} = \frac{R}{k} \times \frac{MC - AC}{h \times AC} \times \frac{MC \times dh}{h \times dMC} \times \frac{dk}{dR} = \frac{d \ln AC}{d \ln MC},$$

where the first equality follows from Arrow et al. (1961).

Since in an unregulated market, housing price equals marginal non-land cost, this is also the elasticity of average non-land cost to market price. Furthermore, since price equals total average cost (the long run, zero profit condition) the elasticity of substitution relates the growth of land rent to the growth of non-land costs as height increases.

C Additional figures and tables

C.1 Robustness of the ML estimates

Figure 14 shows the robustness of the ML estimates by comparing them to ML estimates using only data pre-2008, ML estimates without the Beer Sheva district, and ML estimates without adjusting for changes in costs over time.
C.2 An example of a bloc and its division into parcels

Figure 15: A bloc of parcels. With few exceptions each parcel contains one building.

C.3 Estimates of μ_u and σ_u

Figure 16 shows the estimates of μ_u and σ_u. The estimates of μ_u are on average 1.9 as large as the estimates of σ_u.
C.4 Prices in cities by geographical coordinates

Figures 17a-17c show the heat maps of the estimated prices (using nonparametric local constant regression with bandwidth chosen by cross validation) for the three largest cities - Jerusalem, Tel Aviv, and Haifa.

(a) Tel Aviv. (b) Jerusalem. (c) Haifa.

Figure 17: Heat map of prices in the cities Jerusalem, Tel Aviv, and Haifa.

C.5 Maximum likelihood estimates

The following table shows heights, estimated quantities, the constrained ML estimates, ML estimates by height, and the minimum and mean building prices. The equation for the smooth ML estimates appears below the table.
The estimated quartic cost function is,

$$\hat{C}(q) = 900 + 6472q + 78.43q^2 - 4.1q^3 + 0.0823q^4.$$

C.6 Number of observations by height

Table 7 shows summary statistics for the number of observations by height. The second, fifth, and sixth columns show the number of blocs, buildings, and apartments respectively. The number of observations in each of these column trends downward with height. The
third column is the percentage of blocs from column two that contain exactly one building (of a given height) and the fourth column is the mean number of buildings of the same height in these bloc. Given height, in these blocs the median number of buildings is one and the average is about 2.4.

Table 7: Number of observations

<table>
<thead>
<tr>
<th>Height</th>
<th>Blocs</th>
<th>% of blocs with one building</th>
<th>Mean # of buildings per bloc</th>
<th>Buildings</th>
<th>Apartments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>182</td>
<td>0.74</td>
<td>1.8</td>
<td>319</td>
<td>1453</td>
</tr>
<tr>
<td>2</td>
<td>629</td>
<td>0.53</td>
<td>2.6</td>
<td>1661</td>
<td>8068</td>
</tr>
<tr>
<td>3</td>
<td>606</td>
<td>0.57</td>
<td>2.3</td>
<td>1394</td>
<td>10310</td>
</tr>
<tr>
<td>4</td>
<td>874</td>
<td>0.45</td>
<td>3.4</td>
<td>2968</td>
<td>28266</td>
</tr>
<tr>
<td>5</td>
<td>866</td>
<td>0.47</td>
<td>3.0</td>
<td>2562</td>
<td>27642</td>
</tr>
<tr>
<td>6</td>
<td>826</td>
<td>0.49</td>
<td>2.8</td>
<td>2315</td>
<td>27336</td>
</tr>
<tr>
<td>7</td>
<td>663</td>
<td>0.51</td>
<td>2.5</td>
<td>1639</td>
<td>24725</td>
</tr>
<tr>
<td>8</td>
<td>572</td>
<td>0.53</td>
<td>2.3</td>
<td>1340</td>
<td>24086</td>
</tr>
<tr>
<td>9</td>
<td>472</td>
<td>0.52</td>
<td>2.4</td>
<td>1137</td>
<td>24384</td>
</tr>
<tr>
<td>10</td>
<td>341</td>
<td>0.55</td>
<td>2.0</td>
<td>674</td>
<td>15682</td>
</tr>
<tr>
<td>11</td>
<td>202</td>
<td>0.68</td>
<td>1.6</td>
<td>331</td>
<td>9214</td>
</tr>
<tr>
<td>12</td>
<td>155</td>
<td>0.64</td>
<td>1.6</td>
<td>253</td>
<td>7517</td>
</tr>
<tr>
<td>13</td>
<td>154</td>
<td>0.76</td>
<td>1.3</td>
<td>207</td>
<td>7303</td>
</tr>
<tr>
<td>14</td>
<td>121</td>
<td>0.69</td>
<td>1.7</td>
<td>202</td>
<td>6369</td>
</tr>
<tr>
<td>15</td>
<td>112</td>
<td>0.66</td>
<td>1.7</td>
<td>185</td>
<td>7434</td>
</tr>
<tr>
<td>16</td>
<td>93</td>
<td>0.68</td>
<td>1.5</td>
<td>142</td>
<td>6024</td>
</tr>
<tr>
<td>17</td>
<td>80</td>
<td>0.62</td>
<td>1.8</td>
<td>145</td>
<td>6825</td>
</tr>
<tr>
<td>18</td>
<td>76</td>
<td>0.71</td>
<td>1.6</td>
<td>122</td>
<td>4060</td>
</tr>
<tr>
<td>19</td>
<td>61</td>
<td>0.66</td>
<td>1.6</td>
<td>97</td>
<td>3407</td>
</tr>
<tr>
<td>20</td>
<td>62</td>
<td>0.73</td>
<td>1.5</td>
<td>90</td>
<td>3744</td>
</tr>
<tr>
<td>21</td>
<td>49</td>
<td>0.71</td>
<td>1.4</td>
<td>67</td>
<td>3894</td>
</tr>
<tr>
<td>22</td>
<td>42</td>
<td>0.69</td>
<td>1.6</td>
<td>69</td>
<td>2373</td>
</tr>
<tr>
<td>23</td>
<td>25</td>
<td>0.68</td>
<td>1.6</td>
<td>40</td>
<td>1623</td>
</tr>
<tr>
<td>24</td>
<td>36</td>
<td>0.78</td>
<td>1.2</td>
<td>45</td>
<td>1930</td>
</tr>
<tr>
<td>25</td>
<td>21</td>
<td>0.95</td>
<td>1.0</td>
<td>22</td>
<td>1252</td>
</tr>
<tr>
<td>26</td>
<td>18</td>
<td>0.78</td>
<td>1.4</td>
<td>26</td>
<td>902</td>
</tr>
<tr>
<td>27</td>
<td>12</td>
<td>0.83</td>
<td>1.2</td>
<td>14</td>
<td>766</td>
</tr>
<tr>
<td>28</td>
<td>15</td>
<td>0.67</td>
<td>1.4</td>
<td>21</td>
<td>925</td>
</tr>
<tr>
<td>29</td>
<td>14</td>
<td>0.71</td>
<td>1.4</td>
<td>19</td>
<td>730</td>
</tr>
<tr>
<td>30</td>
<td>14</td>
<td>0.86</td>
<td>1.1</td>
<td>16</td>
<td>659</td>
</tr>
<tr>
<td>31</td>
<td>7</td>
<td>0.71</td>
<td>1.3</td>
<td>9</td>
<td>309</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>1.00</td>
<td>1.0</td>
<td>7</td>
<td>205</td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>0.80</td>
<td>1.2</td>
<td>6</td>
<td>267</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0.83</td>
<td>1.3</td>
<td>8</td>
<td>267</td>
</tr>
<tr>
<td>35</td>
<td>11</td>
<td>0.64</td>
<td>1.5</td>
<td>17</td>
<td>603</td>
</tr>
</tbody>
</table>

Notes: The columns from left to right are the number of floors in the building, number of blocs, percentage of these blocs that contain exactly one building, mean number of buildings in these bloc, number of buildings, and number of apartments.