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Abstract

We prove the existence of a pure-strategy Bayesian Nash equilibrium in

Bayesian games with absolutely continuous information and a Bayesian poten-

tial that is upper semi-continuous in actions for any realization of the players�

types. In particular, all �nite Bayesian potential games with absolutely con-

tinuous information possess a pure-strategy Bayesian Nash equilibrium.
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1 Introduction

Potential games, formally introduced by Monderer and Shapley (1996) but brought

to attention already by Rosenthal (1973), are used in applications in very diverse

�elds. From oligopoly theory to team decisions to congestion and network problems,

important insights have been gained due to the fact that potential games naturally

arise in the corresponding contexts (to mention just a sample, see, e.g., Radner (1962),

Raith (1996), Fabrikant et al. (2004), Ui (2009)). Having a potential is, in particular,

a signi�cant facilitating factor in establishing the most basic and desirable feature of
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a game, which is the existence of a pure-strategy equilibrium: �nding an equilibrium

may be accomplished by maximizing the potential, as if the latter were the common

payo¤ of all players, because any potential maximizer is an equilibrium of the game.

The existence of a pure-strategy equilibrium in all �nite1 potential games is there-

fore self-evident. However, when incomplete information is allowed the situation is

somewhat less clear. For a �nite Bayesian game, its Bayesian potential was de�ned

by van Heumen et al. (1996) (with a subsequent extension by Ui (2009) and Einy and

Haimanko (2020) for in�nite information structures) as a common surrogate payo¤

function that mimics all marginal changes in payo¤s produced by the players uni-

lateral deviations for any realization of uncertainty. The ex-ante evaluation of the

Bayesian potential, namely its expectation, acts as a potential of the game�s normal

form: any pure Bayesian strategy pro�le that maximizes the expected potential is a

(Bayesian Nash) equilibrium of the game. When the game�s information structure is

discrete, the expected potential clearly has a maximum in pure Bayesian strategies,

and hence the game has a pure-strategy equilibrium.2 But when the players have

uncountable type sets, the existence of an expected potential maximizer is in ques-

tion because the topologies in which the set of pure Bayesian strategy pro�les may

be compact tend to be too weak to ensure that the expected potential is continuous

on that set.3

The problem underlined above can sometimes be avoided if the action sets of

players are in�nite but convex and compact. That is for instance the case in many

Bayesian potential games with semi-quadratic payo¤s that appear in works summa-

rized and extended in Raith (1996), Ui (2009) and Einy and Haimanko (2020).4 These

authors mainly focus on such games under the assumption that their Bayesian po-

tential is concave in actions, and there is a strong underlying reason for that. Indeed,

as Einy and Haimanko (2020) have shown, the concavity of a Bayesian potential

(coupled with the latter�s ex-post continuity in actions) is a su¢ cient condition for

a pure-strategy equilibrium existence in general games, precisely because that con-

1By �nite games we refer to games with a �nite action set.
2This was observed by Heumen et al. (1996).
3For a detailed discussion of the tension between compactness and continuity in the context of

general utility functions see, e.g., p. 626 in Balder and Yannelis (1993).
4Manifesting the extent of a Bayesian potential applicability, these games arise inter alia in

the context of oligopolies with linear demand, team decision problems, coordination problems and

networks.
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dition makes the expected potential upper semi-continuous in the weak topology on

the set of pure Bayesian strategy pro�les, which is weakly compact, and hence the

expected potential attains its maximum in pure strategies.

Here we consider the question of pure-strategy equilibrium existence in Bayesian

potential games where the action sets are not necessarily convex (and the infor-

mation structure not necessarily discrete). In particular, the question applies to

�nite Bayesian potential games, examples of which abound. Standard �nite conges-

tion games with incomplete information naturally come to mind because (complete-

information) congestion games are the best-known instances of a potential game.5

But many other �nite Bayesian potential games have come under speci�c scrutiny,

such as, e.g., the public good provision game of Palfrey and Rosenthal,6 and the

investment and regime change games of Morris et al. (2022). Yet another source of

�nite Bayesian potential games can be obtained by restricting the games with convex

action space mentioned in the preceding paragraph to have �nitely many feasible

actions. Examples of such games would be, e.g., linear-demand oligopolies consid-

ered in Einy and Haimanko (2020)7 where quantities/prices are restricted to discrete

units/scale.

We will show that any Bayesian game with a Bayesian potential that is ex-post

upper semi-continuous in actions possesses a pure-strategy equilibrium, and hence, in

particular, any �nite Bayesian potential game has such an equilibrium. Unlike in the

existence result of Einy and Haimanko (2020) for concave Bayesian potential games,

however, here we impose the condition of absolute continuity of information, common

to nearly all results on Bayesian Nash equilibrium existence.8 Introduced by Milgrom

and Weber (1986), absolute continuity of information requires the joint distribution

of the players�types to be absolutely continuous with respect to the product of its

marginal distributions. This condition is useful in applications because it holds, e.g.,

when the players�types are independent, or have a joint density.

Our method of proof deviates from the standard one because, as mentioned previ-

ously, compactifying the set of pure Bayesian strategy pro�les by endowing it with the

5As shown by Monderer and Shapley (1996), any �nite potential game is in fact isomorphic to a

congestion game.
6See the rendering of that game on pp. 211-213 in Fudenberg and Tirole (1991).
7See Example 1 in Section 4 therein.
8See, e.g., Carbonell-Nicolau and McLean (2018) for a survey of results on equilibrium existence

in Bayesian games.
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weak topology may leave the expected potential discontinuous. Instead, the game is

extended into behavioral Bayesian strategies, on whose product set the narrow topol-

ogy of Balder (1988) leads both to that set�s compactness and to upper-continuity of

the expected potential. That ensures the existence of an expected potential�s maxi-

mizer in behavioral strategies, which can then be puri�ed to produce a pure-strategy

maximizer. The latter is a desired pure-strategy equilibrium.

In the literature on pure-strategy equilibrium existence in general Bayesian games,9

the recent result of He and Sun (2019) invites comparison to ours because those au-

thors also allow uncountable type spaces, do not use structural assumptions10 on

types, and purify a behavioral-strategy equilibrium in order to obtain a pure-strategy

one. They rely, however, on the type spaces being atomless, and on a further "coarser

inter-player information" condition that requires a modicum of conditional freedom

in each player�s type. It is due to these assumptions that a sophisticated puri�cation

procedure,11 whereby a given behavioral strategy is replaced by a pure one without

a¤ecting any of the players�expected payo¤s in all associated strategy pro�les, can

be performed. In contrast, in our set-up there is no assumption of atomlessness.12

Also, our puri�cation claim concerning an expected potential�s maximizer is more

straightforward, requiring no appeal to classical puri�cation results. Speci�cally, on

account of its multi-linearity in behavioral strategies, the expected potential is �rst

shown to have a maximizer whose components are extreme points of convex sets of

strategies; these extreme points are then shown to be pure strategies.

The paper is organized as follows. The framework is presented in sections 2 and

3. Section 4 states the main result, which is proved in Section 5. Section 6 concludes.

9See, e.g., He and Sun (2019, pp. 14�15) for a brief summary.
10Such as, e.g., the assumption that the type sets are lattices, as in Van Zandt and Vives (2007)

or Reiny (2011).
11This procedure in particular extends the puri�cation results in Khan et al. (2006), which are in

turn based on the classical puri�cation introduced in Dvoretsky et al. (1951).
12Atomlessness of type spaces is well known to be necessary for the standard puri�cation pro-

cedures in Bayesian games, so it is of particular note that it is not required for pure-strategy

equilibrium existence in Bayesian potential games. Furthermore, our result allows in�nite action

sets, unlike most of puri�cation literature.
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2 Bayesian games

A Bayesian game G considered in this work has a �nite player set N = f1; :::; ng.
The information endowment of each player i 2 N is given by a standard Borel (mea-

surable) type space (Ti; Ti). The players are assumed to have a common prior � on
the product space (T; T ) := (�i2NTi;
i2NTi) of all type pro�les. The Milgrom and

Weber (1986) condition of absolute continuity of information holds: � is postulated

to be absolutely continuous w.r.t. the product of its marginals, 
i2N�i:
Each player i 2 N has a set Ai of actions that is a metrizable compact space. The

compact product set A = A1� :::�An is comprised of all action pro�les. Each i 2 N
has an ex-post payo¤ function ui : T � A ! R. We assume that ui is T 
 B (A)-
measurable13 and that supa2A jui(�; a)j is �-integrable:
A pure (Bayesian) strategy of player i 2 N in the game G is a Ti-measurable

function si : Ti ! Ai; that is, upon learning his type ti; player i chooses an action

si(ti) 2 Ai: The set of all strategies of player i is denoted by Si, with the product
set S = �ni=1Si comprising all strategy pro�les. Each player i evaluates his ex-ante
prospect in the game via the expected payo¤ function Ui on S; given by

Ui(s) =

Z
T

ui (t; (s1(t1); :::; sn(tn)))�(dt);

for any s = (si)i2N 2 S: As usual, s 2 S is a pure-strategy Bayesian Nash equilibrium
of the game G; or PS-BNE for short, if it is a Nash equilibrium of the normal form

of G, namely, if the inequality

Ui(s) � Ui(ri; s�i)

holds for every i 2 N and ri 2 Si; where (ri; s�i) 2 S denotes the strategy pro�le
obtained from s by substituting ri for si:

3 Bayesian potential and expected potential

As in Einy and Haimanko (2020), who extend the corresponding notion of van Heumen

et al. (1996) and follow Ui (2009), G is said to be a Bayesian potential game (or BP

game, for short) if there exists p : T � A ! R (called a Bayesian potential, or BP,
for G) that satis�es the following:

13Here and henceforth, B (K) will denote the Borel �-�eld on a metric space K.
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(a) p is T 
 B (A)-measurable;
(b) supa2A jp(�; a)j is �-integrable;
and

(c) for �-almost every t 2 T; every i 2 N; and every a 2 A, bi 2 Ai;

ui(t; (bi; a�i))� ui(t; a) = p(t; (bi; a�i))� p(t; a) (1)

(where (bi; a�i) 2 A is the action pro�le obtained from a by substituting bi for ai).

Thus, the marginal change in the ex-post payo¤ resulting from a unilateral deviation

by any player is precisely re�ected by marginal change in the BP.

If G has a BP p, consider the corresponding expected potential (or EP for short),

E(p) : S ! R, given by

E(p)(s) =

Z
T

p (t; (s1(t1); :::; sn(tn)))� (dt) (2)

for any s = (si)i2N 2 S: The EP obviously retains the property expressed in (1), now
given in terms of the expected payo¤s:

Ui(ri; s�i)� Ui(s) = E(p)(ri; s�i)� E(p)(s) (3)

for every i 2 N and every s 2 S; ri 2 Si: Thus, if G is a BP game then it is a normal-
form potential game (in the sense of Monderer and Shapley (1996)), and, clearly, any

maximizer s 2 S of its normal-form potential E(p) is a PS-BNE of G:

4 PS-BNE existence

The straightforward way of establishing PS-BNE existence in a BP game G is by

showing that the EP attains a maximum on S. That was done, e.g., by van Heumen

et al. (1996) for Bayesian games with �nite information structures and by Einy

and Haimanko (2020) for games possessing a BP that is concave and (ex-post) upper

semi-continuous on A. In general, however, the natural topology in which the strategy

pro�le set S is compact �with each strategy set Si having the weak topology �is too

weak to obtain continuity of the EP, and hence to imply existence of an EP maximizer

even if the BP is ex-post continuous.

It turns out that the existence of a PS-BNE in any Bayesian game with an ex-post

upper semi-continuous BP can still be established:
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Theorem 1 If G has a BP p such that p(t; �) is upper semi-continuous on A for

every t 2 T , then G possesses a PS-BNE.

The proof of Theorem 1, given in the next section, proceeds in an indirect manner.

First, G needs to be extended into behavioral strategies because the behavioral strat-

egy sets can then be equipped with a topology that resolves the previously mentioned

tension between compactness of the strategy sets and continuity of the expected payo¤

functions. Indeed, Balder (1988) showed that in the narrow topology14 the behavioral

strategy sets are compact and the expected payo¤s are continuous (provided the ex-

post payo¤s are continuous in actions and the information is absolutely continuous);

furthermore, the continuity in that claim can be replaced by upper semi-continuity.

The existence of an EP maximizer in behavioral strategies is then a corollary. But,

with the EP being a¢ ne in each strategy separately, the components of its behavioral-

strategy maximizer can be sequentially "puri�ed" (i.e., replaced by pure strategies in

such a way that the resulting strategy pro�les remain EP maximizers), thus producing

a genuine PS-BNE.

Also notice that if G is �nite (i.e., all action sets Ai are �nite) and has a BP,

then its BP is trivially ex-post continuous. Thus, we have the following immediate

corollary:

Corollary 2 If G is a �nite BP game then it possesses a PS-BNE.

5 Proof of Theorem 1

5.1 Part 1: Existence of an EP maximizer in behavioral

strategies

We begin by extending the game into behavioral strategies. Formally, a behavioral

strategy of i 2 N in G is a mapping �i : Ti � B (Ai) ! [0; 1] ; such that �i (ti; �)
is a probability measure on Ai for every ti 2 Ti and �i (�; B) is Ti-measurable for
every B 2 B (Ai) : Let �i denote the set of i�s behavioral strategies; the product
set � = �ni=1�i consists of strategy pro�les. Any pure strategy si 2 Si is clearly
identi�able with a behavioral strategy in �i in which, for every ti 2 Ti, �i (ti; �) is the
14We borrow this term from Carbonell-Nicolau and McLean (2018).
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Dirac measure concentrated on si(ti); henceforth, such an identi�cation will be made

whenever convenient, and the symbol si will be used both for a pure strategy in Si

and for its behavioral form in �i.

For any strategy pro�le � = (�i)i2N 2 �; the expected payo¤ of player i 2 N is

given by

Ui(�) =

Z
T

Z
A

ui (t; a)�1(t1; da1):::�n(tn; dan)�(dt):

In the same fashion, the expected potential E(p) extends into a function E(p) : �!
R given by

E(p)(�) =

Z
T

Z
A

p (t; a)�1(t1; da1):::�n(tn; dan)�(dt): (4)

We endow the behavioral strategy set �i of each player i with the narrow topology

of Balder (1988). Using one of its equivalent de�nitions (see Theorem 2.2(b) in Balder

(1988)), this is the coarsest topology in which, for every Carathéodory integrand15

g : Ti � Ai ! R; the functional Ig : �i ! R that is given for any �i 2 �i by

Ig(�i) =

Z
Ti

Z
Ai

g(ti; ai)�i(ti; dai)�i(dti) (5)

is continuous. By Theorem 2.3(a) of Balder (1988), each �i is compact in the narrow

topology, and hence � is compact in the product topology.

According to Lemma 3 of Carbonell-Nicolau and McLean (2018), upper semi-

continuity of ex-post payo¤s on A implies upper semi-continuity of the expected

payo¤ functions on �: We will apply this lemma16 to E(p): since, by assumption,

p(t; �) is upper semi-continuous on A for every t 2 T; it follows that E(p) is upper
semi-continuous on �: Also, as remarked earlier, � is compact, and it follows that

there exists � 2 � which maximizes E(p):

5.2 Part 2: Puri�cation of the EP maximizer

In this part of the proof we will show that, given a maximizer � of E(p) over �; the

components of � may be sequentially replaced by pure strategies with the resulting

15Carathéodory integrand is a Ti 
 B (Ai)-measurable function g : Ti � Ai ! R such that g(ti; �)
is continuous for every ti 2 Ti; and there exists a Ti-measurable and �i-integrable ' : Ti ! R+
satisfying jg (ti; ai)j � ' (ti) for every (ti; ai) 2 Ti �Ai:
16To use that lemma, take all players�ex-post payo¤s to be equal to p:
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strategy pro�les remaining E(p)�s maximizers. In such a way, a pure-strategy pro�le

(in S) that maximizes E(p) will be obtained.17

We �rst de�ne a modi�cation of the set �1 that will be a Hausdor¤ space,18

proceeding as in Section 2 of Balder (1988). Denote by b�1 the space of uniformly �nite
transition measures, de�ned as mappings b�1 : T1�B (A1)! R for which: (i) b�1 (t1; �)
is a signed bounded measure on A1 for every t1 2 T1; (ii) supt12T1 jb�1j (t1; A1) < 1;
and (iii) b�1 (�; B) is T1-measurable for every B 2 B (A1) : The narrow topology on b�1
is de�ned in the same way as on �1 (with Ig(b�1) being de�ned by (5) using b�1 2 b�1
instead of �1). Notice that, clearly, �1 is a subset of b�1, and its narrow topology is
the same as the relative narrow topology induced from b�1:
Consider the set

bN1 := nb�1 2 b�1 j Ig(b�1) = 0 for every Carathéodory integrand on T1 � A1o ;
which is closed in the narrow topology. As observed in Balder (1988, p. 267), bN1
consists precisely of b�1 2 b�1 such that b�1 (t1; �) is the zero measure for �1-almost every
t1: Under the usual quotient mapping �1 : b�1 ! b�1= bN1, given by �1 (b�1) = b�1+ bN1 :=nb�1 + b�01 j b�01 2 bN1o ; the quotient space b�1= bN1 = �1

�b�1� is a Hausdor¤ locally
convex topological vector space when equipped with the narrow quotient topology.

Now �x a maximizer � 2 � of E(p) whose existence was established in Part 1 of
the proof, and consider the compact set E1 � �1 of the maximizers of E(p)(�; ��1);
which is non-empty because �1 2 E1. The quotient set �1 (E1) is then a compact
subset of �1

�b�1� because �1 is trivially continuous. Being a compact subset of a
Hausdor¤ locally convex topological vector space, �1 (E1) has an extreme point (see,

e.g., Lemma in Holmes (1975, p. 74)). Consider one such extreme point, which must

have the form �1 (� 1) = � 1 + bN1 for some � 1 2 E1: We will show that the strategy
� 1 makes a pure choice of action with �1-probability 1; the following lemma will be

17Had the set Si of each player i�s pure strategies been a closed subset of �i; the existence of a

maximizer of E(p) over S would have been guaranteed from the beginning, but Si is not necessarily

closed in the narrow topology. For instance, if Ai = [�1; 1]; Ti = [0; 1] (with Ti = B ([0; 1]) and �i
being the Lebesgue measure), then the sequence fsmi g

1
m=1 � Si of Rademacher functions �namely,

smi (ti) = sgn [sin (2m�ti)] for every m � 1 �converges in the narrow topology to �i 2 �i�Si for
which �i (ti; �) is the uniform distribution on f�1; 1g for every ti 2 Ti:
18�1 itself is not a Hausdor¤ space because changing any strategy �1 2 �1 on a �1-null set of

types in T1 produces a distinct element �01 2 �1; but �1; �01 cannot be separated by disjoint open
sets in �1:
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crucial.

Lemma 3 For any B 2 B (A1) ; �1 (ft1 j � 1 (t1; B) 2 f0; 1gg) = 1:

Proof of Lemma 3. Suppose to the contrary that, for some C 2 B (A1),

�1 (ft1 j � 1 (t1; C) =2 f0; 1gg) > 0: (6)

It follows that there exists 0 < " < 1
2
and a set T 0 2 T1 such that �1 (T 0) > 0 and

" < � 1 (t1; C) < 1� " for every t1 2 T 0:
Fix some � 2

�
2� 1

1�" ; 1
�
(which must be positive since " < 1

2
), and de�ne two

transition measures ��1 ; �
+
1 2 b�1 as follows: for any B 2 B (A1) ; if t1 2 T 0 then

��1 (t1; B) := � � � 1 (t1; B \ C) +
1� �� 1 (t1; C)
1� � 1 (t1; C)

� � 1 (t1; B�C)

and

�+1 (t1; B) := (2� �) � � 1 (t1; B \ C) +
1� (2� �)� 1 (t1; C)

1� � 1 (t1; C)
� � 1 (t1; B�C) ;

and if t1 =2 T 0 then
��1 (t1; B) = �

+
1 (t1; B) := � 1 (t1; B) :

It is easy to see that ��1 ; �
+
1 2 �1; i.e., that ��1 ; �+1 are behavioral strategies. Further-

more, clearly,
1

2
��1 +

1

2
�+1 = � 1; (7)

and hence
1

2
�1
�
��1
�
+
1

2
�1
�
�+1
�
= �1 (� 1) : (8)

Also,

�1
�
��1
�
6= �1

�
�+1
�

(9)

because ��1 (�; C) = ��� 1 (�; C) 6= (2� �)�� 1 (�; C) = �+1 (�; C) on a positive-probability
set T 0 of types.

Since E(p)(�), by (4), is a¢ ne in �1; it follows from (7) that

E(p)(� 1; ��i) =
1

2
E(p)(��1 ; ��i) +

1

2
E(p)(�+1 ; ��i): (10)

But because � 1 2 E1; the two summands in the right-hand side of (10) cannot exceed
E(p)(� 1; ��i); and hence E(p)(� 1; ��i) = E(p)(��1 ; ��i) = E(p)(�+1 ; ��i); implying

that ��1 ; �
+
1 2 E1: Therefore �1

�
��1
�
; �1

�
�+1
�
2 �1 (E1) : However, in light of (8) and
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(9), �1 (� 1) is not an extreme point of �1 (E1). This is a contradiction to the choice of

�1 (� 1). We conclude that there exists no C 2 B (A1) satisfying (6), which establishes
the lemma. �

Since A1 is a metrizable compact space, we can �x some metric that induces the

topology on A1, and �nd a sequence of closed balls fBmg1m=1 � A1 whose diameters
converge to 0 as m ! 1; and which satisfy [1m=kBm = A1 for every k � 1: By

applying Lemma 3 to every set B = Bm for m � 1, we have

�1 (ft1 j 8m � 1 : � 1 (t1; Bm) 2 f0; 1gg) = 1;

i.e., there exists T 01 2 T1 with �1(T 01) = 1 such that � 1 (t1; Bm) 2 f0; 1g for every
t1 2 T 01 and every m � 1: For any �xed t1 2 T 01; consider a subsequence fBmk

g1k=1
such that � 1 (t1; Bmk

) = 1 for every k; since the diameter of the (closed) sets in

fBmk
g1k=1 converges to 0 and A1 is compact; there exists s1(t1) 2 A1 such that

\1k=1Bmk
= fs1(t1)g:19 By letting s1(t1) to have some constant value a01 2 A1 for

every t1 2 T1�T 01; a function s1 : T1 ! A1 is fully de�ned.

Observe now that s1 is T1-measurable. Indeed, for every set Bm; s�11 (Bm) \ T 01 is
precisely the set � 1 (�; Bm)�1 (f1g) \ T 01 2 T1: Because s�11 (Bm) \ (T1�T 01) = T1�T 01
if a01 2 Bm and s�11 (Bm) \ (T1�T 01) = ? if a01 =2 Bm; it follows that s�11 (Bm) 2 T1
for every Bm: But the sets fBmg1m=1 generate B (A1) by Theorem 3.3 of Mackey

(1957) since they obviously separate points, and hence s1 is T1-measurable by, e.g.,
Proposition 2.3 of Çinlar (2010). Therefore, s1 : T1 ! A1 is in fact a pure strategy of

player 1.

We conclude that � 1 makes deterministic choices (given by s1) for all types in

T 01; while the di¤erence between � 1 and s1 may only occur for types in T1�T 01; but
�1 (T1�T 01) = 0; and therefore that di¤erence is (expected) payo¤-irrelevant for player
1. The implication is that E(p)(� 1; ��i) = E(p)(s1; ��i); and hence that s1 2 E1:
We have thus shown that the set E1 � �1 of the maximizers of E(p)(�; ��1)

contains a pure strategy s1: One may, therefore, replace the �rst component �1 of the

EP maximizer � 2 � by a pure strategy (if �1 is not pure to begin with). Identical
19Indeed, the sets in fBmk

g1k=1 have the �nite intersection property because \lk=1Bmk
is of

�1 (t1; �)-probability 1 for any l � 1; and hence non-empty. Thus \1k=1Bmk
6= ? by the compact-

ness of A1: Furthermore, because the diameters of fBmk
g1k=1 become vanishingly small as m!1,

\1k=1Bmk
cannot contain two distinct elements.
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treatment can now be sequentially applied to the other components of �; leading to

the conclusion that E(p) attains its maximum at a pure strategy pro�le. From (3),

any pure-strategy maximizer of E(p) is a PS-BNE of the game G.

6 Concluding remark

It is easy to see why a treatment akin to the one used in the proof of Theorem 1

cannot be applied to show PS-BNE existence in a general, non-BP, Bayesian game.

Indeed, assume that the existence of a behavioral-strategy Bayesian Nash equilibrium

(henceforth, BS-BNE) is guaranteed; that is the case, e.g., if all ex-post payo¤s

fui(t; �)gi2N are continuous on A for every t 2 T; by Theorem 3.1 of Balder (1988).

Fixing any BS-BNE �, one would be able (arguing as in Part 2 of the proof of

Theorem 1) to change the behavioral strategy �1 of player 1 into a pure strategy s1

that gives player 1 the same expected payo¤, i.e., U1(s1; ��1) = U1(�); and hence

remains his best response. However, without advanced puri�cation techniques that

would have been enabled by assuming atomlessness and other conditions on the types�

distribution (as in, e.g., He and Sun (2019)), the replacement of �1 by s1 would

typically alter the expected payo¤s of players other than 1, and in particular some

player i 6= 1 could now have a pro�table unilateral deviation given the strategy

pro�le (s1; ��1): Thus, there is no guarantee that a sequential puri�cation of BS-

BNE strategies results in a BS-BNE, even after just one step.

Only in BP games, with the EP being a surrogate expected payo¤ that is common

to all players, any chain of unilateral strategy puri�cations that starts from an EP

maximizer � creates a new EP maximizer at each stage; thus, sequentially purifying

the strategies of all players leads to a pure-strategy outcome that is an EP maximizer

and a PS-BNE.
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