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Abstract

We prove the existence of a behavioral-strategy Bayesian Nash equilibrium

in contests where each contestant�s probability to win is continuous in e¤orts

outside the zero-e¤ort pro�le, monotone in his own e¤ort, and greater that 1=2

if that contestant is the only one exerting positive e¤ort. General type spaces,

and in particular a continuum of information types, are allowed. As a corollary,

the existence of a pure-strategy Bayesian Nash equilibrium is established in

generalized Tullock contests, where the probability to win is strictly concave in

one�s own e¤ort.

Journal of Economic Literature classi�cation numbers: C72, D72, D82.

Key words: Contests, Tullock lottery, Bayesian Nash Equilibrium, equilib-

rium existence, absolute continuity of information, continuum of types.

1 Introduction

Krishna and Morgan (1997) brought to the fore two incomplete-information auction

games, the war of attrition and the all-pay auction, which correspond to the standard

notions of the second- and �rst-price auctions but di¤er from them in one major

respect: all players must pay their bids and not just the winners. In these auctions,

Krishna and Morgan (1997) showed the existence and uniqueness of equilibrium in

Milgrom and Weber�s (1982) framework of a¢ liated signals. Recent advances in the

�Department of Economics, Ben-Gurion University of the Negev, Israel. e-mail: orih@bgu.ac.il.

1



equilibrium existence literature provided important results for discontinuous Bayesian

games, with a particularly strong claim in the case of all-pay auctions. Speci�cally, He

and Yannelis (2016) and Carbonell-Nicolau and McLean (2018) have shown that when

the value of winning in an all-pay auction is common, the Bayesian Nash equilibrium

(henceforth, BNE) exists for any absolutely continuous1 information structure.

The "all-pay" feature is also present in the model of imperfectly discriminating

auctions, or contests, where the players incur the cost of their bids/e¤orts regardless

of their ultimate winning status, but the winning player is no longer identi�ed by

the highest e¤ort; instead, anyone typically stands a chance to be a winner, with

the probability of winning being a monotonically increasing function of one�s own

e¤ort. The Tullock lottery (see, e.g., Tullock (1980)) is the best known form of such

a contest, where the probabilities of winning are assumed to be proportional to the

players�e¤orts; it has been widely used in modeling R&D races, political contests, and

rent-seeking and lobbying activities. In a more general variant of the Tullock lottery

due to Szidarovszky and Okuguchi (1997), players�e¤orts are evaluated via certain

concave "e¤ort impact" functions, and the probabilities are proportional to e¤ort

impacts. Einy et al. (2015) considered a general class of contest success functions that

possess three features that these lotteries have in common: the probability of winning

is (a) continuous with respect to the e¤orts of all players whenever the total e¤ort is

positive; (b) non-decreasing and strictly concave in the player�s own e¤ort; and (c)

equal to 1 if the player is the only one exerting positive e¤ort. The expected payo¤ in

the corresponding generalized Tullock contests is therefore necessarily discontinuous

at the zero-e¤ort pro�le, and continuous elsewhere.2 This stands in contrast to all-

pay auctions, which are discontinuous along entire "diagonal" curves containing equal

bids.

Despite having discontinuities at a single e¤ort pro�le,3 generalized Tullock con-

1Absolute continuity of information, introduced by Milgrom and Weber (1986), is a mild and

nearly universally assumed condition, requiring the joint distribution of the players� types to be

absolutely continuous with respect to the product of its marginals. It will also be assumed throughout

in this work.
2Under the commonly made assumption of continuous costs of e¤ort (which is also maintained in

this work), continuity of the expected payo¤s for any realization of the players�types is tantamount

to continuity of the success function.
3We stress the discontinuity of payo¤s in contests because that is, in general, the primary

reason for equilibrium non-existence. Indeed, in Bayesian games where the payo¤s are continuous
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tests with incomplete information have seen rather limited BNE existence results. The

earlier works on incomplete information Tullock contests in which BNE existence was

shown considered uncertainty only on some parameters and assumed speci�c forms of

information endowments, such as one-sided incomplete information on continuously

distributed valuation (Hurley and Shogren (1998a)), discrete valuations (Hurley and

Shogren (1998b), Malueg and Yates (2004) and Schoonbeek and Winkel (2006)), a

continuously distributed common valuation (Harstad (1995), Wärneryd (2012) and

Rentschler (2009)), and continuously and independently distributed marginal costs

(Fey (2008), Ryvkin (2010), Wasser (2013) and Ewerhart (2014)).4 Two later works

that addressed BNE existence, Einy et al. (2015) and Ewerhart and Quartieri (2020),

admitted all modes of incomplete information on both the valuations and the costs,

but restricted the cardinality of type sets. Speci�cally, the assumption on generalized

Tullock contests in Einy et al. (2015) amounted to the type sets of any player being

at most countable, while Ewerhart and Quartieri (2020) worked with �nitely many

states of nature.5

This work will show that a pure-strategy BNE exists in generalized Tullock con-

tests for general, possibly uncountable, type-spaces. In fact, BNE existence, albeit

in behavioral and not necessarily pure strategies, will be established for much more

general contests, where there may be no winner with positive probability, the prob-

abilities of winning/costs need not be concave/convex in one�s own e¤ort, and even

a player who is the only one exerting positive e¤ort may lose (though with prob-

ability less than 1=2). It is important to note that, although the discontinuity of

these contests is very mild, being con�ned to the zero-e¤ort pro�le, the recent results

that guarantee BNE existence in discontinuous Bayesian games, of He and Yannelis

(2016) and Carbonell-Nicolau and McLean (2018), can only be applied to contests �

and we will show how �when the value of winning is common and there is always a

winner. That is partially because most of the results require upper semi-continuity

for every realization of players�types, the classical results of Milgrom and Weber (1986) and Balder

(1988) guarantee BNE existence under quite mild conditions (such as compactness of action sets

and absolutely continuous information).
4This latter list and the classi�cations therein are taken, with some minor modi�cations, from

Ewerhart and Quartieri (2020).
5Compared with Einy et al. (2015), Ewerhart and Quartieri (2020) worked with the smaller

domain of Szidarovszky and Okuguchi�s (1997) variant of success functions, but allowed player- and

type-dependent budget caps on each player�s set of admissible e¤orts.
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of the payo¤s�sum for every realization of players�types; but such a sum inherits the

discontinuity at zero possessed by the contest success function if the value for winning

is not common or if there may be no winner (in the common-value case where there

is always a winner, the sum of the expected shares of the value is equal to just the

value, hence independent of the players�e¤orts and trivially continuous).

It turns out that a BNE can be arrived at by an extension of the method that has

been employed in Einy et al. (2013), Ewerhart (2014), and Ewerhart and Quartieri

(2020) in their treatment of simpler cases. The method consists of approximating the

contest by a sequence of "constrained" contests, where all e¤orts are required to be

above a small positive constant. The positive constraints make all payo¤s continuous

in e¤orts for any realization of types, and therefore the constrained contests fall

under the scope of the familiar BNE existence result of Balder (1988) that imposes no

restriction on the type-spaces. Because the sets of behavioral strategies in the contest

are compact in a certain "weak" topology de�ned in Balder (1988), constrained BNEs

have a weak accumulation point as the constraints become vanishingly small. It is

this accumulation point that is a candidate for a BNE in the (unconstrained) contests.

The weak topology on behavioral strategies, however, is quite unwieldy, and makes

ascertaining that the accumulation point is indeed a BNE a rather heavy technical

task, which will take up the bulk of our proof.

The paper is organized as follows. In section 2 we o¤er a general model of a contest

that subsumes generalized Tullock contests but still allows discontinuity only at the

zero-e¤ort pro�le. Section 3 contains our results on BNE existence, beginning with

common-value contests in order to illustrate the power and limitations of directly

applying ready-made results, and then considering general contests. All proofs are

gathered in Section 4. Section 5 discusses various extensions of our contest framework

that are compatible with BNE existence. The Appendix expands on some indirectly

relevant technical points.

2 Contests with incomplete information

2.1 The model

A group of players N = f1; :::; ng; with n � 2; compete for a prize. For each i 2
N; a measurable type-space (Ti; Ti) constitutes i�s information endowment, with a
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common prior probability p on the product space (T; T ) := (�i2NTi;
i2NTi) of all
type pro�les. In common with much of the literature, it will be assumed that p is

absolutely continuous w.r.t. the product of its marginals, 
i2Npi:
Upon privately observing their respective types, players simultaneously choose

their e¤ort levels. It is assumed that e¤ort choices may not exceed some universal

bound M > 0 that will be �xed throughout,6 and hence any e¤ort pro�le x =

(x1; :::; xn) is an element of the cube [0;M ]
n. The state-dependent value for the prize

of each player i 2 N is given by Vi : T ! R++, i.e., if t 2 T is the realized type pro�le
then player i�s value is Vi(t) > 0. The state-dependent cost of e¤ort of each player

i 2 N is described by ci : T � [0;M ]! R+. The following assumptions will be made
on the functions Vi and ci :

(i) Vi is T -measurable and ci is T 
 B ([0;M ])-measurable7;
(ii) Vi and supxi2[0;M ] ci(�; xi) are p-integrable;
(iii) for any t 2 T; the function ci(t; �) is non-decreasing and continuous.
The prize is awarded in a probabilistic fashion, according to a success function

� : [0;M ]n ! [0; 1]n: For each i 2 N and x 2 [0;M ]n ; �i (x) is the probability that
player i will be the recipient of the prize when x is the realized action pro�le; we will

assume that �i (x) is a sub-probability vector, i.e.,
P

i2N �i (x) � 1: Thus, we allow

the possibility that the prize is withheld from the players with some probability, for

some (or even all) e¤ort pro�les.

Denote by 0 2Rn the zero vector, and, for any e¤ort pro�le x 2 [0;M ]n, i 2 N
and yi 2 [0;M ] ; let (yi; x�i) 2 [0;M ]n be the pro�le obtained from x by replacing xi

with yi: We impose the following conditions on �:

(iv) � is continuous on [0;M ]n nf0g;
(v) �i (yi; x�i) is non-decreasing in i�s e¤ort yi; for any i 2 N and any �xed

x�i 2 [0;M ]n�1.

De�nition 1. An incomplete-information contest is given by the collection G =

(N; (Ti; Ti)i2N ; p; fVigi2N ; fcigi2N ; �) of the above-described attributes, such that (i)�
(v) are satis�ed. If the allowable e¤orts of each player are additionally constrained

6See Section 5.3 on the need for this assumption, and the option for its removal.
7Here and henceforth, given a Borel set S � Rm+ for some m � 1; B (S) will denote the �-algebra

of Borel subsets of S. The measurability of real-valued functions is w.r.t. the Borel �-algebra on

their stated range.
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to lie in an interval [m;M ] ; where 0 � m < M; the resulting contest will be denoted

by G (m) and called a constrained contest, with G (0) = G:

For any realized type pro�le t 2 T and any e¤ort pro�le x 2 [0;M ]n ; the payo¤
of each player i 2 N in a contest G is given by his expected share of the prize�s value

net of his cost of e¤ort, namely,

ui (t; x) = �i (x) � Vi (t)� ci(t; xi): (1)

Below we list some obvious implications of conditions (i) �(v).

Fact 1. For any i 2 N; the payo¤ function ui : T � [0;M ]n ! R has the following
properties:

(a) ui is T 
 B ([0;M ]n)-measurable;
(b) ui (t; �) is continuous on [0;M ]n nf0g for any t 2 T ;
(c) there exists a p-integrable function 'i : T ! R such that jui (t; x)j � 'i (t) for

any t 2 T and x 2 [0;M ]n (one may take, e.g., 'i (t) := Vi(t) + supxi2[0;M ] ci(ti; xi));

(d) lim infyi!xi+ ui (t; (yi; x�i)) � ui (t; x) for any t 2 T and any x 2 [0;M ]
n :

2.2 Bayesian strategies and equilibrium

Given 0 � m < M; a pure (Bayesian) strategy of player i 2 N in a constrained contest

G (m) is a Ti-measurable function si : Ti ! [m;M ]; that is, upon leaning his type ti;

player i chooses e¤ort si(ti): A more general concept of a behavioral strategy allows

randomness in the type-dependent choice of e¤ort. Formally, a behavioral strategy

of i 2 N in G (m) is a mapping �i : Ti � B ([m;M ]) ! [0; 1] ; such that �i (ti; �) is
a probability measure on [m;M ] for every ti 2 Ti and �i (�; A) is Ti-measurable for
every A 2 B ([m;M ]) :
We denote by Si (m) the set of pure strategies of player i in G (m), and by

�i (m) the set of his behavioral strategies. The product sets S (m) = �ni=1Si (m)
and � (m) = �ni=1�i (m) contain the corresponding strategy pro�les. Any pure strat-
egy si 2 Si (m) is clearly identi�able with a behavioral strategy �sii 2 �i (m) given
by �sii (ti; A) = �si(ti) (A) for any A 2 B ([m;M ]) ; where �si(ti) stands for the Dirac
measure concentrated on si(ti): Finally, note that Si (m) and �i (m) for m > 0 are

subsets of Si (0) and of �i (0) ; respectively.
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For any strategy pro�le � = (�i)i2N 2 � (0) ; the expected payo¤ of player i 2 N
is given by

Ui(�) =

Z
T

Z
[0;M ]n

ui (t; x)�1(t1; dx1):::�n(tn; dxn)p(dt): (2)

Also, denote by (�0i; ��i) 2 � (0) the pro�le that is obtained from � by replacing �i

with some �0i 2 �i (0) : Clearly, if s = (si)i2N 2 S (0) then

Ui(s) =

Z
T

ui (t; (s1(t1); :::; sn(tn))) p(dt);

and

Ui(si; ��i) =

Z
T

Z
[0;M ]n�1

ui (t; (si(ti); x�i))

"Y
j 6=i

�j(tj; dxj)

#
p(dt): (3)

De�nition 2. For any 0 � m < M; a behavioral strategy pro�le �� = (��i )i2N 2
� (m) constitutes a Bayesian Nash equilibrium (or BNE, for short) of a contest G (m)

if

Ui(�
�) � Ui(�i; ���i) (4)

for every player i 2 N and every �i 2 �i (m). If, in addition, �� 2 S (m) ; then it is
a pure-strategy BNE.8

2.3 Special cases: sure-prize, pre-Tullock, generalized Tul-

lock contests

Einy et al. (2015) introduced a class of contests that satisfy �in addition to conditions

(i)�(v) �the following requirements, for any i 2 N :

(vi) �i (yi; x�i) is strictly concave in i�s e¤ort yi; for any �xed x�i 2 [0;M ]
n�1 ;

(vii) for any t 2 T; the function ci(t; �) is convex ;
(viii) there exists b�i > 1

2
such that �i (xi;0�i) � b�i for any 0 < xi � M (that is,

if i is the only player exerting positive e¤ort then his probability to receive the prize

exceeds 1
2
by a constant margin);9

8That is, it is only meant that the strategies comprising the BNE are pure; unilateral deviatons

by players, required to be unpro�table by (4), may be to behavioral strategies.
9Einy et al. (2015) in fact required that b�i = 1 for each i 2 N; i.e., that the only player exerting

positive e¤ort receives the prize with certainty. However, the full force of that assumption is not

needed in our results, and hence (viii) is stated in a weaker form.
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and

(ix) � (x) is a probability vector for every [0;M ]n (that is, the prize is being

awarded with certainty):

Conditions (vi)-(ix) naturally generalize a widely used and simple model of Tul-

lock lottery, where � = �T is given, for each x 2 [0;M ]n nf0g and i 2 N; by

�Ti (x) =
xiPn
j=1 xj

; (5)

and costs are linear in e¤ort. Of course, success function �T also obeys (iv) and (v),

and is, in fact, a showcase of the tension between simplicity (namely, probabilities

of winning being proportional to e¤orts) and discontinuity at zero. More generally,

conditions (iv) �(vi), (viii) and (ix) are satis�ed by any � that is given, for each

x 2 [0;M ]n nf0g and i 2 N; by

�i (x) =
gi (xi)Pn
j=1 gj (xj)

; (6)

where, for every j 2 N; the measurable e¤ort-impact function gj : R+ ! R+ is
strictly increasing, continuous, concave, and gj(0) = 0. Thus, generalized Tullock

contests include the incomplete-information version of Szidarovszky and Okuguchi

(1997) model (where the functions g1; :::; gn are in addition twice continuously di¤er-

entiable). In particular, the commonly assumed success function that is given by (6)

for gi (xi) = xri also adheres to the above speci�cation when the �impact parameter�

r is in (0; 1]:

De�nition 3. A contest G (or, if constrained, contest G(m)) is called:

(1) a sure-prize contest is it satis�es (ix);

(2) a pre-Tullock contest if it satis�es (viii);

(3) a generalized Tullock contest if it satis�es (vi)�(viii).

De�nition 3(3) utilizes the term coined by Einy et al. (2015) but gives it a slightly

broader sense, as those authors required their generalized Tullock contests to also be

sure-prize.

We now observe that, for generalized Tullock contests, attention can be a priori

con�ned to pure-strategy BNE, for a fairly obvious reason. Let us call strategy

�i 2 �i (0) almost pure if �i (�; ti) is a Dirac measure for pi-almost every ti; clearly,
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such a strategy can be replaced by a (genuine) pure strategy without a¤ecting any of

the expected payo¤s. Then:

Fact 2. Given 0 � m < M and a strategy pro�le � = (�i)i2N 2 � (m) in a
(constrained) generalized Tullock contest G(m), if �i is not an almost pure strategy

for some i 2 N then player i can strictly improve upon �i by using a pure strategy

in G(m).

Indeed, if �i is not almost pure for some i 2 N; consider a pure strategy si 2 Si (m)
that is �i�s expectation at every ti 2 Ti (namely, si (ti) :=

R
[0;M ]

xi�i(ti; dxi)).10 But

(vi) and (vii) immediately imply via (1) that the payo¤ function ui (t; (yi; x�i)) is

strictly concave in yi, and so a comparison of the expressions in (2) and (3) leads to

the conclusion that Ui((si; ��i)) > Ui(�):

The following is an immediate corollary from De�nition 2 and Fact 2:

Fact 3. For any 0 � m < M; if a (constrained) generalized Tullock contest G (m)

possesses a BNE, then that BNE consists of almost pure strategies (which can w.l.o.g.

be assumed to be pure).

3 BNE existence

Ever since Dasgupta and Maskin (1986), it has been understood that upper semicon-

tinuity of the sum of payo¤s in a game can play an important part in guaranteeing

equilibrium existence. It was shown by Reny (1999) that upper semi-continuity of the

payo¤s�sum, together with the condition of payo¤ security, su¢ ce for the existence of

equilibrium in games where the payo¤s may be discontinuous in any stronger sense.

In the context of Bayesian games, Carbonell-Nicolau and McLean (2018) showed that

a BNE exists when upper semi-continuity of the payo¤s�sum and a uniform version

of payo¤ security hold for any realization of the players�types.

The latter result immediately lends itself to establishing existence of BNE in a

variety of all-pay actions (see Corollary 3 in Carbonell-Nicolau and McLean (2018))

and contests, due to the fact that they tend to be uniformly payo¤-secure. However,

using that result necessitates the assumption that the players� value for the prize

is common and that the prize is awarded with certainty, because that is a natural

10The function si is Ti-measurable by, e.g., Proposition 7.29 of Bertsekas and Shreve (2004).
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way to obtain the continuity of the sum of payo¤s. Indeed, the sum of the players�

expected shares of the common value for the (always awarded) prize is equal to just

the value and thus independent of the players� actions, despite that the expected

shares themselves may depend on actions discontinuously;11 see the Appendix for

a simple example of the payo¤s�sum not being upper semi-continuous without the

common-value assumption.

We begin by stating the BNE existence result for common-value sure-prize con-

tests, obtained as a fairly immediate corollary of Theorem 1 in Carbonell-Nicolau and

McLean (2018).12

Proposition 1. If G is a sure-prize contest in which V1 = ::: = Vn = V for

a bounded common-value function V; and the cost functions fci (t; �)gi2N;t2T are
equicontinuous, then G possesses a BNE. If, moreover, G is a generalized Tullock

contest, then it possesses a pure-strategy BNE.

We now dispose of the sure-prize and common-value assumptions. Our preliminary

observation concerns the case of constrained contests G(m) for m > 0: This case is

trivial because (by Fact 1(b)) the payo¤ functions (ui)i2N are continuous in e¤orts,

for every realization of the players �types, when the lowest allowable e¤ort is positive;

thus, the payo¤s in such G(m) are fully continuous. The existence of BNE is then

guaranteed by the classical result of Balder (1988). Although the forced commitment

to a minimal positive e¤ort may not be plausible in many contexts, the fact that BNE

exists in constrained contests will be instrumental in showing BNE existence without

constraints.

Proposition 2. If 0 < m < M then the constrained contest G(m) possesses a

BNE. If, moreover, G (m) is a generalized Tullock contest, then it possesses a pure-

strategy BNE.

11Even if the prize may be withheld with positive probability, BNE existence can sometimes be

obtained by using another result of Carbonell-Nicolau and McLean (2018), which imposes the condi-

tion of uniform diagonal security (due to Prokopovych and Yannelis (2014)) without simultaneously

requiring upper semi-continuity of the payo¤s�sum (see their Corollary 6). However, without the

common-value assumption, there are contests that are not uniformly diagonally secure; see the

Appendix for an example.
12An alternative is to use Theorem 2 of of He and Yannelis (2016) that requires random disjoint

payo¤ matching condition, but upper semi-continuity of the payo¤s�sum is also needed alongside.
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Our main result, Theorem 1 that follows, shows BNE existence in an uncon-

strained contest G = G(0), assuming that it is pre-Tullock. The proof is rather

heavy, but the underlying idea is simple. A natural approach is to consider "limits"

of BNE strategy pro�les that exist in constrained contests G(m); as the positive lower

bound m on e¤orts tends to 0; and to check whether such a limit is a genuine BNE

in G; the contest without constraints, in which a deviating player�s e¤ort may be

arbitrarily small, or zero. This direction has been fruitfully explored in some recent

results on BNE existence in contests (see Einy et al. (2013), Ewerhart (2014), and

Ewerhart and Quartieri (2020)). We will show that the limit approach works also in

our very general framework.

In order for our strategy sets �i(0) to be amenable to the limit approach, they need

to be compact (because we seek accumulation points of constrained strategies), and

compactness of strategy sets is a natural feature in the weak topology of Balder (1988).

The use of Balder�s topology makes the proof technically demanding, however. For

greater clarity, we chose to state and prove our theorem under the condition that,

for each player i; (Ti; Ti) is countably generated, meaning that the �-algebra Ti of
events in Ti is generated by some countable subalgebra.13 This condition is genuinely

mild, as it is satis�ed in applications near universally. Indeed, it clearly holds in all

circumstances where the type sets are �nite or countable,14 but its main appeal is in

that it admits all useful variants of a continuum of types: any (Ti; Ti) in which Ti is
a (possibly uncountable) separable metric space, and Ti is the corresponding Borel
�-algebra, is countably generated.15 In particular, any Ti that is a Borel subset of a

Euclidean space (e.g., any open or closed set in some Rk) with Ti = B(Ti) is countably
generated, thereby falling under the purview of our result.

Theorem 1. If G is a pre-Tullock contest in which the type-space (Ti; Ti) is
countably generated for each i 2 N; then G possesses a BNE. If, moreover, G is a

generalized Tullock contest, then it possesses a pure-strategy BNE.

Various extensions of our framework and results will be considered in Section 5.
13This condition can be removed, however �see Section 5.1.
14In the latter case, under the assumption that Ti is the set of all subsets of Ti:
15Such (Ti; Ti) is generated by a countable algebra T 0i that consists of all �nite unions and inter-

sections of sets belonging to some countable basis for the metric topology on Ti: (A countable basis

exists by separability of Ti.)
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4 Proofs

4.1 Proof of Proposition 1

We begin by verifying that G is uniformly payo¤-secure (with reference to De�nition

9 in Carbonell-Nicolau and McLean (2018)). For any i 2 N; si 2 Si(0) and " > 0;
it must be shown that there exists si 2 Si(0) with the property that, for every

(t; x�i) 2 T � [0;M ]n�1 there is a (relatively) open neighborhood Wx�i � [0;M ]n�1

of x�i such that

ui(t; (si (ti) ; z�i)) > ui(t; (si (ti) ; x�i))� " (7)

whenever z�i 2 Wx�i :

Since (ci (t; �))t2T are equicontinuous at 0 by assumption, there exists � > 0 such
that jci (t; �)� ci (t; 0)j < "

2
for any t 2 T: Now de�ne

si (ti) :=

(
si(ti); if si(ti) > 0;

�; if si(ti) = 0

for any ti 2 Ti: By Fact 1(b), ui (t; (yi; x�i)) is continuous in x�i for any �xed yi > 0
and t 2 T: Thus, if t is such that si(ti) > 0 then (7) holds for any x�i and any z�i in
some open neighborhood Wx�i of x�i: Similarly, if t is such that si(ti) = 0 then

ui(t; (si (ti) ; z�i)) > ui(t; (si (ti) ; x�i))�
"

2
(8)

for any x�i and any z�i in a neighborhood Wx�i of x�i; also note that by increasing

his e¤ort from 0 to � player i does not decrease his expected share of the prize (as

follows from (v)); and increases his cost by at most "
2
; hence

ui(t; (si (ti) ; x�i)) � ui(t; (si (ti) ; x�i))�
"

2
: (9)

The combination of (8) and (9) establishes the claim in (7) when si(t) = 0: Therefore

G is uniformly payo¤-secure.

It follows from (ix) and the common-value assumption that
P

i2N ui (t; x) =

V (t) �
P

i2N ci (t; xi) ; and this function is continuous in x for any t 2 T by con-
dition (iii). Thus, G is uniformly payo¤-secure, has a continuous (and in particular

upper semi-continuous) sum of players�payo¤s for each type pro�le, and (by assump-

tion) p is absolutely continuous w.r.t. 
i2Npi: The three conditions in the premise

12



of Theorem 1 in Carbonell-Nicolau and McLean (2018) are thereby satis�ed,16 and

that theorem guarantees existence of a BNE in behavioral strategies. Finally, if G is

furthermore a generalized Tullock contest, then it possesses a pure-strategy BNE by

Fact 3.

4.2 Proof of Proposition 2

Since the payo¤ function ui (t; x) of each player i 2 N has properties (a)�(c) listed

in Fact 1, its restriction to T � [m;M ]n is: (a�) T 
 B ([m;M ]n)-measurable; (b�)
continuous in x 2 [m;M ]n for any �xed t 2 T ; and (c�) bounded in absolute value
from above by an integrable 'i: Furthermore, (e�) p is absolutely continuous w.r.t.


i2Npi by assumption. The contest G(m) therefore satis�es the list of conditions in
the premise of Theorem 3.1 in Balder (1988), which guarantees existence of a BNE

in behavioral strategies. If G (m) is furthermore a generalized Tullock contest, then

it possesses a pure-strategy BNE by Fact 3.

4.3 Proof of Theorem 1

The proof is divided into �ve parts.

Part 1: Topological background

We will endow the behavioral strategy set �i (0) of each player i with the weak

topology of Balder (1988). Using one of its equivalent de�nitions (see Theorem 2.2(c)

in Balder (1988)), this is the coarsest topology in which for every A 2 Ti and every
continuous function f : [0;M ]! R; the functional IA;f : �i (0)! R that is given for
any �i 2 �i (0) by

IA;f (�i) =

Z
A

Z
[0;M ]

f(xi)�i(ti; dxi)pi(dti) (10)

is continuous. By Theorem 2.3(a) of Balder (1988), �i (0) is compact in the weak

topology. Now denote by T 0i some countable subalgebra of Ti that generates Ti: By
Theorem 2.2(d) of Balder (1988), the weak topology on �i (0) is characterized by the

continuity of IA;f only for sets A 2 T 0i : The weak topology is therefore metrizable.
That is because there exists a countable set F of continuous functions on [0;M ]

16An implicit condition in that theorem, of bounded payo¤s, is also satis�ed by our assumptions

of a bounded common value and equicontinuity of costs.
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(e.g., polynomials) that can uniformly approximate any continuous function on [0;M ];

let us now arrange the elements of the countable Cartesian product T 0i � F in a

sequence f(Ak; fk)g1k=1: The metric d (�0i; �00i ) :=
P1

k=1
1
2k
jIAk;fk(�0i)� IAk;fk(�00i )j on

�i (0) induces the weak topology.

For understanding the implications of convergence of pro�les of individual strate-

gies, the following concept will be useful. A correlated behavioral strategy in G is a

mapping � : T � B ([0;M ]n) ! [0; 1] ; such that � (t; �) is a probability measure on
[0;M ]n for every t 2 T and � (�; A) is T -measurable for every A 2 B ([0;M ]n) : The
weak topology on the set � of correlated strategies may be de�ned just as this was

done above for each �i(0); with the obvious modi�cations, but it will be convenient

to use the following alternative de�nition (see Theorem 2.2(b) in Balder (1988)). A

T 
 B ([0;M ]n)-measurable function g : T � [0;M ]n ! R is called Carathéodory

integrand if g(t; �) is continuous for every t 2 T; and there exists a p-integrable func-
tion ' on T such that jg (t; x)j � ' (t) for every (t; x) 2 T � [0;M ]n : The weak
topology on � is the coarsest topology in which, for every Carathéodory integrand

g : T � [0;M ]n ! R; the functional Ig : �! R that is given for any � 2 � by

Ig(�) =

Z
T

Z
[0;M ]n

g(t; x)�(t; dx)p(dt)

is continuous. Just as the individual strategy sets, � is metrizable and compact in

the weak topology.

Any strategy pro�le � = (�1; :::; �n) 2 � (0) can be viewed as a correlated strategy

�� 2 � in which �� (dx; t) =
nY
i=1

�i (dxi; ti) for every t 2 T; i.e., given any realization

t of types players make their choices independently, w.r.t. their individual strategies.

In particular, the expected payo¤s in the contest under �; de�ned in (2), can be

expressed in the following simpler form: for any i 2 N;

Ui(�) =

Z
T

Z
[0;M ]n

ui(t; x)�
�(t; dx)p(dt):

By Theorem 2.5 of Balder (1988), if f�kg1k=1 � � (0) is a sequence of strategy

pro�les in which limk!1 �
k
i = �

�
i for every i 2 N; then the correlated strategies ��

k

corresponding to �k weakly converge to the correlated strategy ��
�
corresponding to

the pro�le �� = (��1; :::; �
�
n) 2 � (0). In accordance with the above de�nition of the

weak topology on �; this means that for any Carathéodory integrand g on T�[0;M ]n ;

lim
k!1

Z
T

Z
[0;M ]n

g(t; x)��
k

(t; dx)p(dt) =

Z
T

Z
[0;M ]n

g(t; x)��
�
(t; dx)p(dt): (11)
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Part 2: Choosing a candidate �� for BNE

Consider a sequence fmkg1k=1 � (0;M) with limk!1mk = 0; and a sequence

f�kg1k=1 where �k 2 � (mk) is a BNE in G (mk) for each k (the existence of such

BNEs is guaranteed by Proposition 2). Since �i (0) is metrizable and compact in

the weak topology for each i 2 N; f�ki g1k=1 has a subsequence that converges to some
��i 2 �i (0) ; it can w.l.o.g. be assumed that the subsequence of indices is the same for
every i 2 N; and, moreover, that the subsequence is the sequence itself. Consequently,
we will proceed under the assumption that, for every i 2 N; limk!1 �

k
i = �

�
i in the

weak topology on �i (0) : Our aim will be to show that the limit strategy pro�le,

�� = (��1; :::; �
�
n) 2 � (0) ; is a BNE of the unconstrained contest G:

Part 3: The limit pro�le �� cannot jointly put a positive mass on 0 2 Rn,
the discontinuity point of �

Here we claim that

p (ft 2 T j 8i 2 N : ��i (ti; f0g) > 0g) = 0: (12)

Indeed, suppose to the contrary that the above probability is positive: Then the

integral

� :=

Z
T

��1(t1; f0g) � ::: � ��n(tn; f0g)p(dt) =
Z
T

��
�
(t; f0g)p(dt)

is positive. For any 0 < " < M; let f" : [0;M ]
n ! [0; 1] be a continuous function that

satis�es f"(0) = 1 and f" j[0;M ]nn[0;"]n� 0: Observe that17

lim inf
k!1

Z
T

��
k

(t; [0; "]n)p(dt) � lim
k!1

Z
T

Z
[0;M ]n

f"(x)�
�k(t; dx)p(dt)

(by (11)) =

Z
T

Z
[0;M ]n

f"(x)�
��(t; dx)p(dt)

� �:

Hence,

lim inf
k!1

Z
T

��
k

(t; [0; "]n)p(dt) � � > 0 (13)

for any 0 < " < M: Since ��
k
(�; [0; "]n) � 1 and 0 < � � 1;Z

T

��
k

(t; [0; "]n)p(dt)

� p
�
ft 2 T j ��k(t; [0; "]n) > �

2
g
�
+
�

2

�
1� p

�
ft 2 T j ��k(t; [0; "]n) > �

2
g
��
;

17In what follows, (11) is applied to f"; which is viewed as a type-independent Carathéodory

integrand.
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which implies that

p
�
ft 2 T j ��k(t; [0; "]n) > �

2
g
�
�
R
T
��

k
(t; [0; "]n)p(dt)� �

2

1� �
2

;

thus, by (13),

lim inf
k!1

p
�
ft 2 T j ��k(t; [0; "]n) > �

2
g
�
�

�
2

1� �
2

=: � > 0: (14)

It follows from (14) that for any 0 < " < M there exists k (") such that

p
�
ft 2 T j ��k(")(t; [0; "]n) > �

2
g
�
� �

2
: (15)

For any given x 2 [0;M ]n; denote by i (x) 2 N the lowest-numbered player i for

whom �i(x) � 1
2
; since �(x) is a sub-probability vector for each x 2 [0;M ]n, the sets

Ei = fx 2 [0;M ]n j i(x) = ig 2 B ([0;M ]n) (16)

(for i = 1; 2) constitute a partition of [0;M ]n; and so

max
i=1;2

��
k(")

(t; [0; "]n \ Ei) �
1

2
��

k(")

(t; [0; "]n):

Now denote by j(t; ") 2 f1; 2g the lowest-numbered player for whom the maximum

in maxi=1;2 ��
k(")
(t; [0; "]n \Ei) is attained. The function j(�; ") is T -measurable, and

its de�nition implies that, whenever ��
k(")
(t; [0; "]n) > �

2
; we have ��

k(")
(t; [0; "]n \

Ej(t;")) >
�
4
: It therefore follows from (15) that

p
�
ft 2 T j ��k(")(t; [0; "]n \ Ej(t;")) >

�

4
g
�
� �

2
: (17)

Since the events Fi = ft 2 T j j(t; ") = ig 2 T (for i = 1; 2) constitute a partition of

T; it follows from (17) that there exists a type-independent bi (") 2 f1; 2g such that
p
�
ft 2 T j ��k(")(t; [0; "]n \ Ebi(")) > �

4
g
�
� �

4
> 0: (18)

Now choose a sequence f"lg1l=1 � (0;M) with liml!1 "l = 0 for which bi("l) is the
same player for all l, and assume (w.l.o.g.) that this is player 1: Denote

T l := ft 2 T j ��k("l)(t; [0; "l]n \ E1) >
�

4
g: (19)

By (18), we have p
�
T l
�
� �

4
> 0: Observe that lim inf l!1

R
T l
V1 (t) p(dt) > 0: That is

because V1 is positive by assumption, and hence p (ft 2 T j V1 > vg) > 1� �
8
for some
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su¢ ciently small positive v; meaning that p(T l \ ft 2 T j V1 > vg) > �
8
for every l:

Thus, there exists 
 > 0 such thatZ
T l
V1 (t) p(dt) � 
 (20)

for every l:

For a �xed 0 < � < M and any l; consider a modi�cation �k("l);�1 2 �1
�
mk("l)

�
of the BNE strategy �k("l)1 of player 1 in the constrained contest G

�
mk("l)

�
that

has a support in [�;M ] and satis�es �k("l);�1 (t; [a;M ]) = �
k("l)
1 (t; [a� �;M ]) for any

a 2 [�;M ] and t 2 T: (That is, if X1 is a �
k("l)
1 (t; �)-distributed random variable

on [0;M ] ; then Y1 := minfX1 + �;Mg is �k("l);�1 (t; �)-distributed; in other words,
according to �k("l);�1 ; player 1 increases his e¤ort by � compared to what his original

strategy �k("l)1 would instruct him to do, whenever possible.) Observe that �1 (x) �
�1 (minfx1 + �;Mg; x�1) for any x by property (v) of �: Also, by properties (iv) and
(viii) of �; we have

�1 (minfx1 + �;Mg; x�1) >
1

2

�b�1 + 12
�
>
1

2
; and �1 (x) �

1

2
; (21)

as long as x 2 [0; "l]n \ E1 and l is su¢ ciently large (which ensures that "l is small):
In particular, for all su¢ ciently large l; by deviating from strategy �k("l)1 to strategy

�
k("l);�
1 player 1 increases his probability of being the winner by at least 1

2

�b�1 + 1
2

�
�

1
2
= 1

2

�b�1 � 1
2

�
> 0 when t 2 T l and the correlated strategy ��k("l) chooses e¤ort

pro�les in [0; "l]
n \ E1: It follows that, for all su¢ ciently large l;

U1

�
�
k("l);�
1 ; �

k("l)
�1

�
� U1

�
�k("l)

�
(22)

�
Z
T l

1

2

�b�1 � 12
�
V1 (t) �

�k("l)(t; [0; "l]
n \ E1)p(dt) (23)

�
Z
T

Z
[0;M ]

(c1 (t;minfx1 + �;Mg)� c1 (t; x1)) d�k("l)1 (t; dx1) dp(t) (24)

� 1

2

�b�1 � 12
�
� �
4
� 
 (25)

�
Z
T

Z
[0;M ]

(c1 (t;minfx1 + �;Mg)� c1 (t; x1)) d�k("l)1 (t; dx1) dp(t); (26)

where the last inequality is obtained by recalling the de�nition of T l in (19), and (20).

It follows from conditions (ii), (iii) and the dominated convergence theorem that

the term in (26) converges to 0 when � ! 0+; and so � can be chosen in such a way
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that this term does not exceed
�b�1 � 1

2

�
� �

16
in absolute value. Thus, (22)�(26) imply

that, for all su¢ ciently large l;

U1

�
�
k("l);�
1 ; �

k("l)
�1

�
� U1

�
�k("l)

�
�
�b�1 � 12

�
� �

16
> 0:

This contradicts the assumption that �k("l) is a BNE in G
�
mk("l)

�
; and the required

equality (12) is established.

Part 4: BNE payo¤s in constrained contests converge to payo¤s in the

limit pro�le ��

We now show that, for any i 2 N;

lim
k!1

Ui
�
�k
�
= Ui (�

�) : (27)

Fix i 2 N; and, for any positive integer l; consider two functions g�l ; g+l : T�[0;M ]
n !

R de�ned as follows:

g�l (t; x) := inf fui (t; y) + l ky � xk j y 2 [0;M ]
ng

and

g+l (t; x) := sup fui (t; y)� l ky � xk j y 2 [0;M ]
ng

for any (t; x) 2 T � [0;M ]n ; where k�k stands for the Euclidean norm on Rn: It is easy
to see that, for each t 2 T; the functions g�l (t; �) ; g+l (t; �) are l-Lipschitz on [0;M ]

n,

and hence continuous. Furthermore, since ui (t; �) is continuous on [0;M ]n nf0g; the
condition y 2 [0;M ]n in the de�nition of g�l ; g

+
l can be replaced by the require-

ment that y 2 [0;M ]n and that each component of y is a rational number; thus,
g�l (respectively, g

+
l ) is an in�mum (respectively, supremum) of a countable num-

ber of T 
B ([0;M ]n)-measurable functions, and consequently g�l ; g+l are themselves
T 
B ([0;M ]n)-measurable. Lastly, Fact 1(c) implies that both g�l (t; x) ; g+l (t; x) are
bounded in absolute value by an integrable function on T , for any x: We conclude

that g�l ; g
+
l are Carathéodory integrands, for all l: Since, clearly, g

�
l � ui � g+l ; it

18



follows from (11) that, for any l,Z
T

Z
[0;M ]n

g�l (t; x)�
��(t; dx)p(dt) =

lim
k!1

Z
T

Z
[0;M ]n

g�l (t; x)�
�k(t; dx)p(dt) � lim inf

k!1

Z
T

Z
[0;M ]n

ui (t; x) �
�k(t; dx)p(dt) =

lim inf
k!1

Ui(�
k) � lim sup

k!1
Ui(�

k) =

lim sup
k!1

Z
T

Z
[0;M ]n

ui (t; x) �
�k(t; dx)p(dt) � lim

k!1

Z
T

Z
[0;M ]n

g+l (t; x)�
�k(t; dx)p(dt)

=

Z
T

Z
[0;M ]n

g�l (t; x)�
��(t; dx)p(dt):

Thus, for any l, Z
T

Z
[0;M ]n

g�l (t; x)�
��(t; dx)p(dt) � lim inf

k!1
Ui(�

k) (28)

and

lim sup
k!1

Ui(�
k) �

Z
T

Z
[0;M ]n

g+l (t; x)�
��(t; dx)p(dt): (29)

Next, notice that the sequence fg�l g1l=1 is monotonically increasing and fg+l g1l=1
is monotonically decreasing pointwise; in particular, liml!1 g�l and liml!1 g+l are

well-de�ned. Moreover, for any t 2 T and any x that is a continuity point of the
bounded function ui(t; �); it is easy to see that

lim
l!1

g�l (t; x) = ui(t; x) = lim
l!1

g+l (t; x): (30)

Thus, it follows from Fact 1(b) that (30) holds for every x 2 [0;M ]n nf0g: By ((12))
in Part 3, the joint strategy ��

�
avoids 0 with probability 1 for p-almost every t, and

so (30) holds almost surely w.r.t. the probability measure ��
�
(t; dx)p(dt): It therefore

follows, by the monotone convergence theorem, that

lim
l!1

Z
T

Z
[0;M ]n

g�l (t; x)�
��(t; dx)p(dt)

=

Z
T

Z
[0;M ]n

ui(t; x)�
��(t; dx)p(dt) ( = Ui (��) )

= lim
l!1

Z
T

Z
[0;M ]n

g+l (t; x)�
��(t; dx)p(dt):

Combined with (28) and (29), this means that lim infk!1 Ui(�k) = Ui (��) = lim supk!1 Ui(�
k);

which establishes (27).
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Part 5. Payo¤s in deviations from �� approximate (from below) payo¤s

in deviations from BNE in constrained contests

Now assume by way of contradiction that �� is not a BNE in G: Then there

is a player (w.l.o.g., player 1) and �1 2 �1(0) such that U1 (��) < U1
�
�1; �

�
�1
�
:

For any 0 < " < M; consider the strategy �"1 2 �1(") (� �1(0)) that satis�es

�"1 (t; ["; a]) = �1 (t; [0; a]) for any a 2 [";M ] and t 2 T: (That is, if X1 is a �1 (t; �)-
distributed random variable on [0;M ] ; then Y1 := maxfX1; "g is �"1 (t; �)-distributed.)
By Fact 1(d),

lim inf
"!0+

u1 (t; (maxfx1; "g; x�1)) � u1 (t; x) (31)

for every t 2 T and x 2 [0;M ]n: Hence,

lim inf
"!0+

U1(�
"
1; �

�
�1) = lim inf

"!0+

Z
T

Z
[0;M ]n

u1 (t; (maxfx1; "g; x�1)) � (�1;�
�
�1) (t; dx) p(dt)

(by Fatou�s lemma) �
Z
T

Z
[0;M ]n

lim inf
"!0+

u1 (t; (maxfx1; "g; x�1)) � (�1;�
�
�1) (t; dx) p(dt)

(by (31)) �
Z
T

Z
[0;M ]n

u1 (t; x) �
(�1;���1) (t; dx) p(dt) = U1(�1; �

�
�1)

> U1 (�
�) :

It can therefore by assumed (replacing �1 by �"1 for some " > 0 if necessary) that

there exist m > 0 and �1 2 �1(m) such that U1 (��) < U1
�
�1; �

�
�1
�
.

Now de�ne g (t; x) := u1 (t;maxfx1;mg; x�1) for every (t; x) 2 T � [0;M ]n : It fol-
lows from Fact 1(a)�(c) that g is a Carathéodory integrand on T� [0;M ]n : Hence, by
applying (11) to the sequence of strategy pro�les

�
�1; �

k
�1
�
that converges component-

wise to
�
�1; �

�
�1
�
; we obtain

lim
k!1

Z
T

Z
[0;M ]n

g(t; x)�(�1;�
k
�1)(t; dx)p(dt) =

Z
T

Z
[0;M ]n

g(t; x)�(�1;�
�
�1)(t; dx)p(dt):

(32)

But, since �1 2 �1(m); g (t; x) = u1 (t; x) for every t 2 T and �(�1;�
k
�1) (t; �)-almost

every and also �(�1;�
�
�1) (t; �)-almost every x 2 [0;M ]n: Therefore, the function g in

(32) can be replaced by u1; which yields

lim
k!1

Z
T

Z
[0;M ]n

u1(t; x)�
(�1;�k�1)(t; dx)p(dt) =

Z
T

Z
[0;M ]n

u1(t; x)�
(�1;���1)(t; dx)p(dt):

(33)

The left-hand side of the equality in (33) is precisely limk!1 U1(�1; �
k
�1); and its

right-hand side is precisely U1(�1; ���1); which �nally gives us
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lim
k!1

U1(�1; �
k
�1) = U1(�1; �

�
�1): (34)

Since U1(�1; ���1) > U1 (�
�) by assumption, and limk!1 U1

�
�k
�
= U1 (�

�) by

(27), (34) implies that U1(�1; �k�1) > U1
�
�k
�
for any su¢ ciently large k: But since

�1 2 �1(m) for m > 0; �1 also belongs to �1(mk) for all su¢ ciently large k: Thus,

for any such k; the strategy �1 constitutes a pro�table unilateral deviation of player

1 from strategy pro�le �k in the constrained contest G(mk): This is a contradiction

to �k being a BNE of G(mk): We conclude that �� is, after all, a BNE of G. Finally,

if G is furthermore a generalized Tullock contest, then it possesses a pure-strategy

BNE by Fact 3.

5 Extensions

In this section we discuss possible extensions of our framework and results.

5.1 General type-spaces

The assumption in Theorem 1 that type-spaces are countably generated is only used

to ensure that Balder�s (1988) weak topology on each strategy-set �i(0) is metrizable,

thereby allowing us to work with simpler, sequential statements of compactness and

continuity. However, inspection of the proof reveals that, with no appeal to metriz-

ability, all the relevant statements can be formulated using a more general concept

of convergence of nets, without a¤ecting any of the arguments. Thus, the condition

of countable generability is not, in fact, necessary for BNE existence.

5.2 Player- and type-dependent e¤ort caps

Our framework can accommodate the case where, in addition toM being the uniform

upper bound on e¤ort expenditure, each player i has a type-dependent personal

cap Mi(ti) � M on admissible e¤orts; accordingly, i chooses his e¤ort from the

interval [0;Mi(ti)] ; given any ti 2 Ti: Assume that the graph of the correspondence
ti 7�! [0;Mi(ti)] is Ti � B ([0;M ])-measurable. For any 0 � m � M; the set of pure
(and, respectively, behavioral) strategies of i can be rede�ned as the set of those

si 2 Si (m) for which si(ti) 2 [0;Mi(ti)] for pi-almost every ti 2 Ti (respectively,
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those �i 2 �i (m) for which �i(ti; [0;Mi(ti)]) = 1 for pi-almost every ti 2 Ti), which
we denote by Si (m;Mi) (respectively, �i (m;Mi)). Furthermore, assume that the

cap function Mi of every player i is bounded from below by a positive constant

� > 0; then Si (m;Mi) (and �i (m;Mi)) is non-empty for any 0 � m � �: Denote the
corresponding contest by G

�
m; (Mi)i2N

�
:

As in the no-caps framework, although the payo¤ functions in G
�
m; (Mi)i2N

�
are

fully continuous in e¤orts only when m > 0; a BNE exists also when m = 0 if the

contest is pre-Tullock. It can be shown that Proposition 2 and Theorem 1 can be

extended to G
�
m; (Mi)i2N

�
: this contest possesses a BNE for every 0 < m � �; and

for m = 0 under the pre-Tullock assumption (the proof appears in the Appendix).

When � = 0; i.e., with zero e¤orts being allowed, we do not know whether BNE

exists if the condition that all caps exceed a positive uniform constant is relaxed to

admit caps that are merely positive for every type. What is known, however, is that

the possibility of zero caps for some types may lead to equilibrium non-existence (see,

e.g., Example 1 in Ewerhart and Quartieri (2020)).

5.3 Unbounded e¤ort sets

Our proofs utilize results that require either compactness of action sets in the game

(theorems 2.2, 2,3 and 3.1 of Balder (1988)) or (integrable) boundedness of payo¤s

across all actions if the action sets are not compact (Theorem 3.3 of Balder (1988)).

Thus, our method of proof relies on the assumption that the players�admissible e¤ort

levels belong to a closed bounded interval [0;M ] :While the assumption that all e¤orts

are uniformly bounded by an (arbitrarily large) cap seems plausible in most contexts,

this explicit assumption can often be omitted. For instance, consider the scenario

where all cost functions are di¤erentiable in e¤ort, and there exist a; b > 0 such that

Vi (t) � a and @xici(t; xi) � b for every t 2 T; i 2 N; and xi 2 R+: Then ui(t; xi) < 0
whenever xi > a

b
; meaning that players will choose e¤orts in the interval

�
0; a

b

�
in their

best responses with probability 1. Thus, assuming that admissible e¤orts belong to�
0; a

b

�
entails no loss of generality in this case.

5.4 Type-dependent success functions

We can admit T � B ([0;M ]n)-measurable type-dependent success functions � : T �
[0;M ]n ! [0; 1]n in which, for any t 2 T; � (t; �) satis�es the conditions that we
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imposed on a type-independent success function in the various categories of contests.

Propositions 1 and 2 will hold without any change, by identical arguments. However,

in order for the proof of Theorem 1 to remain valid, there will be a need to assume

that the functions f�i (t; �)gt2T are pointwise equicontinuous, for any i 2 N: This

assumption will ensure that the �rst inequality in (21) in Part 3 of the proof of

Theorem 1 is satis�ed uniformly (as long as x 2 [0; "l]n and l is su¢ ciently large)
for all type-pro�les (that now may a¤ect �). Also note that the sets Ei de�ned in

(16) that partition [0;M ]n may now be state-dependent, as the underlying function

i(x) may be state-dependent. This does not a¤ect the rest of the proof because

the functions ��
k(")
(�; [0; "]n \ Ei) remain T -measurable (by, e.g., Proposition 7.29 of

Bertsekas and Shreve (2004)).

5.5 Productive e¤orts

If one is interested in the existence of BNE in behavioral strategies only, an inspection

of our proofs reveals that the value functions (Vi)i2N may be allowed to depend on

e¤ort pro�le x, in a way that each Vi is continuous and non-decreasing in xi: However,

there will then be a need to also assume that (Vi)i2N are uniformly bounded from

below by a positive constant � > 0; as inequalities of the form (20) that are used in

Part 3 of the proof of Theorem 1 need not necessarily hold the case of e¤ort-dependent

values.

A Appendix

A.1 Non-common-value contest that is not uniformly diago-

nally secure: an example

Here we present an example of a contest which does not have the property of uniform

diagonal security and in which the sums of payo¤s are not upper semi-continuous

in e¤orts. Thus, Theorems 1 and 2 in Carbonell-Nicolau and McLean (2018) and

Theorem 2 in He and Yannelis (2016) on BNE existence do not apply to this contest.

Consider a complete-information Tullock lottery with player set N = f1; 2g; e¤ort
set [0; 1]; and costs that are equal to e¤orts. Also assume that V1 = 1 while V2 = � for

a �xed � 2 (0; 1
6
): According to (5), �T (x) = ( x1

x1+x2
; x2
x1+x2

) whenever 0 6= x 2 [0; 1]2;
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and assume that �T (0) =
�
1
2
; 1
2

�
: Thus, the payo¤ function of each player i = 1; 2 is

given by

ui(x) =

(
x1

x1+x2
Vi � xi if x 6= 0;
1
2
Vi if x = 0

for any x 2 [0; 1]2:
The notion of uniform diagonal security in a (complete-information) topological

game, due to Prokopovych and Yannelis (2014), requires that for any " > 0 and

x 2 [0; 1]2 there exist x� 2 [0; 1]2 with the following property: for any y 2 [0; 1]2 there
is a (relatively) open neighborhood Wy � [0; 1]2 of y such that, for every z 2 Wy;

2X
i=1

ui(x
�
i ; z�i)�

2X
i=1

ui(z) �
2X
i=1

ui(xi; y�i)�
2X
i=1

ui(y)� ": (35)

Now take " = �; x = (�; 0) and y = 0; and suppose that (35) holds for some x�

and Wy: Notice that

2X
i=1

ui(xi; y�i)�
2X
i=1

ui(y)� " =
1

2
� 2�: (36)

On the other hand, z := 1
k
x belongs to Wy for all su¢ ciently large k; with

u1(x
�
1; z2)� u1(z) � 1� u1(z) = 1� (1�

�

k
) =

�

k

and

u2(z1; x
�
2)� u2(z) � �;

implying that

(1 +
1

k
)� �

2X
i=1

ui(x
�
i ; z�i)�

2X
i=1

ui(z): (37)

It follows from (35), (36) and (37) that (1 + 1
k
)� � 1

2
� 2� for all su¢ ciently large k;

and therefore 3� � 1
2
: But this contradicts the choice of � 2 (0; 1

6
); and we conclude

that the contest does not have the property of uniform diagonal security.

Notice also that the sum of payo¤ in the contest is not an upper semi-continuous

function on [0; 1]2, since

lim
x1!0+

2X
i=1

ui(x1; 0) = 1 >

2X
i=1

ui(0) =
1 + �

2
:
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Finally, observe that the above contest can be embedded in any incomplete in-

formation scenario, as being played at some (or all) realizations of the players�infor-

mation types, and hence the corresponding Bayesian game would not be uniformly

diagonally secure (according to De�nition 12 in Carbonell-Nicolau and McLean (2018)

of that property for Bayesian games).

A.2 Proof of the claim in Section 5.2

Claim. The contest G
�
m; (Mi)i2N

�
possesses a BNE for every 0 < m � �, and for

m = 0 when it is pre-Tullock.

Proof. When 0 < m � �; one should proceed exactly as in the proof of Propo-
sition 2, but use Theorem 3.3 of Balder (1988) to deduce BNE existence (instead

of Theorem 3.1). Theorem 3.3 allows state-dependent action spaces, but at a cost

of some additional conditions on the game. These extra conditions are satis�ed by

G
�
m; (Mi)i2N

�
: for each t 2 T; the admissible action sets f[0;Mi(ti)]gi2N and the

action space [0;M ] are compact, and the graph of the admissible actions correspon-

dence ti 7�! [0;Mi(ti)] is Ti�B ([0;M ])-measurable for each i 2 N: Hence, according
to Theorem 3.3 of Balder (1988), G

�
m; (Mi)i2N

�
has a BNE in behavioral strategies.

As for the case of m = 0; we will �rst show that, for every i 2 N; the capped
behavioral strategy set �i (0;Mi) is a compact subset of �i (0) in the weak topology.

This will be done as in the proof of Theorem 3.3 in Balder (1988). Consider the

function hi : Ti � [0;M ]! [0;1] that is given by

hi(ti; xi) =

(
0; if xi 2 [0;Mi(ti)] ;

1; otherwise
:

Clearly, hi is Ti � B ([0;M ])-measurable because so is the graph of ti 7�! [0;Mi(ti)] ;

and it is also inf-compact (that is, for any ti 2 Ti and � 2 R; fxi 2 [0;M ] j hi(ti; xi) � �g
is compact). By Theorem 2.3(b) of Balder (1988), the functional Ihi : �i (0) ! R
that is given by

Ihi(�i) =

Z
T

Z
[0;M ]

hi(ti; xi)�i(ti; dxi)pi(dti);

for any �i 2 �i (0) ; is weakly inf-compact. The latter means that for any � 2 R;
f�i 2 �i (0) j Ihi(�i) � �g is weakly compact. Notice now that Ihi(�i) � 0 if and only
if �i(ti; [0;Mi(ti)]) = 1 for pi-almost every ti 2 Ti; i.e., if and only if �i 2 �i (0;Mi) :

Thus �i (0;Mi) is weakly compact.
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The proof of our claim for m = 0 can now be obtained by repeating parts 2�5 of

the proof of Theorem 1, with the following modi�cations: (1) all strategy sets and

strategy-pro�le sets used in parts 2�5 should be replaced by their capped versions

(e.g., each �i (0) should be replaced by �i (0;Mi))18; (2) in Part 2, the sequence

fmkg1k=1 should be chosen from the interval (0; �) ; and a sequence f�kg1k=1 should
consist of BNE �k 2 �

�
mk; (Mi)i2N

�
in constrained capped contestsG

�
mk; (Mi)i2N

�
;

(3) in Part 3, the strategy �k("l);�1 used in (22) should only be considered for 0 <

� < �; and be rede�ned as �k("l);�1 (t; [a;M1 (t)]) = �
k("l)
1 (t; [a� �;M1 (t)]) for any

a 2 [�;M1 (t)] and t 2 T; in order to be a capped strategy in G
�
mk("l); (Mi)i2N

�
;

(4) in Part 5, the strategy �"1 2 �1(";M1) (� �1(0;M1)) should only be de�ned for

0 < " < �: �
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