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Abstract

We study all-pay contests with complete information and two heterogeneous contestants who compete

for a single prize. The contest is balanced if the di¤erence between the contestants�e¤orts is not larger

than a given threshold. We show that for every balanced all-pay contest, there is a maximum e¤ort

constraint that increases the contestants�expected total e¤ort, while it is not necessarily increased by a

minimum e¤ort constraint.

1 Introduction

The goal of education systems is usually to maximize the achievements of the students, namely, to maximize

their average grades. However, if half of the students have very high grades while the other half have low ones

that are below the minimal required level such that they fail, even if the average grade of all the students

is relatively high, the students� achievements would not be interpreted as successful. Thus, in this case,

the goal would be to maximize the average grades subject to the constraint that their variance is not too

large. Similarly, the goal in sport contests is to maximize the total output of the players or equivalently

their average output, but if their variance is too large, then the contest is not competitively balanced and

as such is not interesting. Therefore, in some real-life contests the goal of the designer could be to maximize
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the players�outputs under a balance constraint. In other words, the variance of the players�e¤orts should

be bounded.

In the literature on contests, the designer usually wishes to maximize the players�expected total e¤ort

(output) or, alternatively, their average e¤ort (see, for example, Glazer and Hassin 1988, Moldovanu and

Sela 2001, Moldovanu et al. 2012, Ryvkin 2013, Franke et al. 2013, and Liu and Lu 2014), but there are

contests in which the designer wishes to maximize the competitive balance, namely, he wishes to minimize

the variance of the players�e¤orts (see, for example, Szymanski 2001, 2003, 2004, Runkel 2006, and Serena

2017). In this work, we combine these two common goals, e¤ort maximization on the one hand, and, on the

other, competitive balance. For this purpose, we study all-pay contests (auctions) with two players under

complete information in which every player exerts an e¤ort and the player with the highest e¤ort wins, but

all the players bear the cost of their e¤ort (see, for example, Hillman and Samet 1987, Hillman and Riley

1989, Baye et al. 1996, Siegel 2009, and Sela 2012). In our model, the designer wishes to maximize the

players expected total e¤ort under the constraint that the di¤erence between the players�e¤orts is smaller

than a given threshold � > 0. We refer to this model as a balanced all-pay contest.

One way to increase the expected total e¤ort under a balance constraint is to impose a maximum e¤ort

constraint. For example, in the US electoral campaign, there is a speci�c maximum campaign contribution

that a single agent can make to a candidate. In addition, several sports leagues (e.g., the NBA) implement a

salary cap that limits the total amount of money a team can spend on players�salaries. The usual reason for

applying salary caps is that they facilitate even competition between pure and rich teams, since rich teams

can pay more, buy the best talents, and ultimately remove any semblance of competition in the league.

A maximum e¤ort constraint may enhance the total e¤ort in the contest since, on the one hand, strong

players (players with high values of winning) will exert less e¤ort than they would in a contest without a

minimum e¤ort constraint, but, on the other hand, it could increase the e¤ort of other players. The reason

is that these players are aware that if they increase their e¤orts to be close to the level of the maximum

e¤ort constraint they will have a better chance to win. Hence, the e¤ect of the maximum e¤ort constraint

on the players�total e¤ort depends on the trade-o¤ between the increase of the weaker players�e¤orts and

the decrease of the stronger players�e¤orts. This trade-o¤ has been extensively analyzed in all-pay contests.
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For example, under incomplete information, Gavious et al. (2003) showed that, regardless of the number

of bidders, if agents have linear or concave cost functions then setting a maximum e¤ort constraint is not

pro�table for a designer who wishes to maximize the average e¤ort. In all-pay contest under complete

information, Che and Gale (1998) showed that if the maximum e¤ort constraint is higher than half of the

lower value of winning, the total e¤ort will not change. On the other hand, Megidish and Sela (2013) found

that for the sequential all-pay contest, the maximum e¤ort constraint is pro�table for a designer who wishes

to maximize the players�expected total e¤ort.1

We examine here if a maximum e¤ort can increase total e¤ort also under a competitive balance constraint,

namely, when the designer wishes to maximize the aggregate e¤ort but still wants to ensure a minimal level of

competitive balance. Formally, we calculate the players�expected total e¤ort for every value of the threshold

�, under the condition that if the di¤erence between two possible e¤orts of the players is larger than �, these

e¤orts are not taken into account. We show that for every � > 0 there is a maximum e¤ort constraint such

that the expected total e¤ort in the balanced all-pay contest is larger than in the same contest without any

constraint. In other words, a designer who wishes to maximize the expected total e¤ort under a balance

constraint always has an incentive to impose a maximum e¤ort constraint.

Another way to increase the expected total e¤ort under a balance constraint is to impose a minimum e¤ort

constraint. For example, researchers at universities are required to achieve a minimal quality and quantity

output in order to be promoted. Likewise, entry in professional sport competitions is often restricted,

whereby only contestants who have achieved some minimal performance level are allowed to compete. A

minimum e¤ort constraint eliminates the weak players (players with low values of winning) and accordingly

the competition becomes more balanced and intensive whereby the players increase their e¤orts. Indeed,

Myerson (1981) found that the all-pay contest under incomplete information with the optimal participation

constraint maximizes the contestants�expected total e¤ort. Additionally, La¤ont and Robert (1996) showed

that an all-pay contest with a reserve price is a revenue-maximizing mechanism for selling an object to

bidders who face linear costs and a common-knowledge �xed budget constraint.

Accordingly, we also examine the e¤ect of the minimal e¤ort constraint in our model and �nd that it is

1The e¤ect of a maximum e¤ort constraint in all-pay contests is analyzed, among others, by Dechenaux et al. (2006), Szech

(2015), Hart (2016), and Cohen et al. (2019).
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not as e¢ cient as the maximum e¤ort constraint for increasing the players�total e¤ort. We �rst show that for

relatively small or high values of the minimum e¤ort constraint, the players�expected total e¤ort decreases,

while for middle values it increases. In particular, we show that there are balanced all-pay contests, in

which for every value of the minimum e¤ort constraint, the players�expected total e¤ort is smaller than in

the balanced all-pay contest without such a constraint. In other words, it is not e¤ective in enhancing the

players�expected total e¤ort.

The rest of the paper is organized as follows: In Section 2, we introduce our balanced all-pay contest, and

in Sections 3 and 4, we analyze the e¤ect of the maximum and minimum e¤ort constraints on the players�

expected total e¤ort. Section 4 concludes. The proofs appear in the Appendix.

2 The balanced all-pay contest

We begin with an analysis of the standard all-pay contest with two players, called 1 and 2, where the

players�values for winning are v1 � v2 > 0: Valuations are common knowledge. Each player exerts an e¤ort

xi 2 [0;1) and if the players exert e¤orts of x1; x2; player 1�s utility function is

u1(x1; x2) =

8>>>>>><>>>>>>:
v1 � x1 if x1 > x2

1
2v1 � x1 if x1 = x2

�x1 if x1 < x2

:

The utility function of player 2 is similar. According to Hillman and Riley (1989) and Baye, Kovenock and

de Vries (1996), there is always a unique mixed-strategy equilibrium in which the players randomize on the

interval [0; v2] according to their e¤ort cumulative distribution functions which are given by

v1F2(x)� x = v1 � v2

v2F1(x)� x = 0:

Thus, player 1�s e¤ort is uniformly distributed such that

F1(x) =
x

v2
;
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while player 2�s e¤ort is distributed according to the cumulative distribution function

F2(x) =
v1 � v2 + x

v1
:

The total expected e¤ort is

TE� =
v2
2
(1 +

v2
v1
): (1)

We say that the contest is balanced if and only if the players�equilibrium strategies satisfy

jx1 � x2j � �;

where � is a constant larger than zero. Accordingly, the all-pay contest is referred to as a balanced all-pay

contest with a threshold of �: The players�expected total e¤ort is then given by

Proposition 1 The players�expected total e¤ort in a balanced all-pay contest with a threshold of � is

TEA =
4(v2)

2� � 3v2�2 + v1�2

2v1v2
: (2)

Proof. See Appendix.

By (2), if � = v2, namely, the contest is completely unbalanced, the players� expected total e¤ort is

TE = v2
2 (1 +

v2
v1
) which is exactly the expected total e¤ort in the standard all-pay contest. It is also worth

mentioning that the total e¤ort given by (2) is not monotonically increasing in the value of the threshold �:

3 The balanced all-pay contest with a maximum e¤ort constraint

We now assume that there is a maximum e¤ort constraint d 2 [0; v2]. Note that if d > v2 the maximum

e¤ort constraint is not e¤ective since it is not binding. According to Che and Gale (1998), if d 2
�
0; v22

�
there is an equilibrium with pure strategies in which each player exerts an e¤ort that is equal to the e¤ort

cap v2
2 . Then, each of the players wins with a probability of one-half and the expected payo¤ of player i is

vi
2 � d: On the other hand, if d 2 (

v2
2 ; v2], there is a mixed-strategy equilibrium in which players 1 and 2

randomize on the interval [0; 2d� v2][ fdg according to their e¤ort cumulative distribution functions which
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are given by

v1F2(x)� x = v1

�
F2(2d� v2) +

1� F2(2d� v2)
2

�
� d

v2F1(x)� x = v2

�
F1(2d� v2) +

1� F1(2d� v2)
2

�
� d:

Here, the LHS of the equations are the expected payo¤s of the players if they exert an e¤ort of x 2 [0; 2d�v2]

and the RHS are the expected payo¤s if they exert an e¤ort that is equal to d: Thus, player 1�s equilibrium

e¤ort is distributed according to the cumulative distribution function

F1(x) =

8>>>>>><>>>>>>:

x
v2
if x 2 [0; 2d� v2]

2d�v2
v2

if x 2 (2d� v2; d)

1 if x = d

;

while player 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

F2(x) =

8>>>>>><>>>>>>:
1� v2�x

v1
if x 2 [0; 2d� v2]

1� 2v2�2d
v1

if x 2 (2d� v2; d)

1 if x = d

:

Then, player 10s expected payo¤ is v1 � v2, while player 2�s expected payo¤ is zero. In the case where d 2 (

v2
2 ; v2] the players�probabilities of winning and their expected payo¤s are the same as in the standard all-pay

contest without a maximum e¤ort constraint.

Now, if the all-pay contest is balanced we split our analysis into two cases as follows: 1) There is a relatively

low threshold, � � d�(2d�v2) = v2�d and 2) There is a relatively high threshold, � > d�(2d�v2) = v2�d.

In the �rst case when the threshold � is relatively low we have

Proposition 2 The players�expected total e¤ort in the balanced all-pay contest with a threshold � � v2 � d

and a maximum e¤ort constraint d is

TEB =
4(2d� v2)2� � 2(2d� v2)�2 + (v1 � v2)�2 + 4d(v2 � (2d� v2))2

2v1v2
: (3)

Proof. See Appendix.

Note that if d = 0, namely, there is no maximum e¤ort constraint, we obtain by (3) that the players�

expected total e¤ort is TEB =
4(v2)

2��3v2�2+v1�2
2v1v2

= TEA .
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The following example illustrates how in this case the expected total e¤ort varies in the value of the

maximum e¤ort constraint.

Example 1 Consider a balanced all-pay contest with two players 1 and 2 who have values of winning v1 = 10

and v2 = 5, respectively. Let � = 0:1: The following �gure depicts the players� expected total e¤ort as a

function of the maximum e¤ort constraint d:

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8
0

1

2

3

d

TE

Solid line - with a maximal e¤ort constraint. Dashed line - without any constraint.

We can see that the players� expected total e¤ort decreases in the value of the maximum e¤ort constraint,

but the players�expected total e¤ort is always larger than in the same contest without any constraint.

In the second case, when the threshold is relatively high we have

Proposition 3 The players�expected total e¤ort in the balanced all-pay contest with a threshold � > v2 � d

and a maximum e¤ort constraint d is

TEC =
4(2d� v2)2� � 2(2d� v2)�2 + (v1 � v2)�2 + 4d(v2 � (2d� v2))2

2v1v2
(4)

+4(v2 � d)
5d2 + (v2)

2 � 6dv2 � �2 + 4d�
2v1v2

Proof. See Appendix.

Note that if � = v2, and d = v2, namely, the contest is completely unbalanced and there is no maximum

e¤ort constraint, we obtain by (4) that the players�expected total e¤ort is TE = v2
2 (1+

v2
v1
) which is exactly
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the expected total e¤ort in the standard all-pay contest. Moreover, if d = v2; for every �, we obtain by (4)

that the players�expected total e¤ort is exactly the expected total e¤ort obtained by (2).

The following example illustrates how in this case the expected total e¤ort varies in the value of the

maximum e¤ort constraint.

Example 2 Consider a balanced all-pay contest with two players 1 and 2 who have values of winning v1 = 10

and v2 = 5, respectively. Let � = 1: The following �gure depicts the players�expected total e¤ort as a function

of the maximum e¤ort constraint d:

4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
0.94

0.95

0.96

0.97

0.98

0.99

1.00

d

TE

Solid line - with a maximal e¤ort constraint. Dashed line - without any constraint.

We can see that similarly to the previous example, the players�expected total e¤ort decreases in the value of

the maximum e¤ort constraint, but the players�expected total e¤ort is always larger than in the same contest

without any constraint.

The following result demonstrates the e¢ ciency of imposing a maximum e¤ort constraint on a balanced

all-pay contest in order to increase the players�expected total e¤ort.

Proposition 4 For every � > 0 there is a maximum e¤ort constraint d > 0 such that the expected total

e¤ort in the balanced all-pay contest is larger than in the same contest without any constraint.

Proof. See Appendix.
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4 The all-pay contest with a minimum e¤ort constraint

We now assume that there is a minimal e¤ort of b 2 [0; v2] : Then, player 1�s equilibrium e¤ort is distributed

according to the cumulative distribution function

F1(x) =

8>>>>>><>>>>>>:

b
v2
if x = b

x
v2
if x 2 [b; v2)

1 if x � v2

;

while player 2�s equilibrium bid is distributed according to the cumulative distribution function

F2(x) =

8>>>>>><>>>>>>:

v1�v2+b
v1

if x = 0

v1�v2+x
v1

if x 2 [b; v2)

1 if x � v2

:

Then, the players�expected total e¤ort in the balanced all-pay contest is

TED =

Z v2��

b

Z x+�

x

(x+ y)f2(y)f1(x)dydx+

Z v2

b+�

Z x

x��
(x+ y)f2(y)f1(x)dydx

+
b

v2

Z b+�

b

(b+ x)f1(x)dx

=
1

v1v2

�
�2b2� � 2b�2 � 2�2v2 + 2�v22 + 2b2� +

�2b

2

�
:

Now, we split our analysis into two cases as follows: 1) There is a relatively low threshold � � b and 2) There

is a relatively high threshold � > b. In the �rst case when the threshold � is relatively low we have

Proposition 5 The players�expected total e¤ort in the balanced all-pay contest with a threshold � � b and

a minimum e¤ort constraint b is

TED =
4v2

2� � 2v2�2 � b�2

2v1v2
: (5)

Proof. See Appendix.

The following example illustrates how in this case the expected total e¤ort varies in the value of the

minimum e¤ort constraint.

Example 3 Consider a balanced all-pay contest with two players, 1 and 2, who have values of winning

v1 = 10 and v2 = 5, respectively. Let � = 1 and the minimum e¤ort constraint b 2 (1; 5): The following

�gure depicts the players�expected total e¤ort as a function of the minimum e¤ort constraint b:
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1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.80

0.85

0.90

0.95

1.00

b

TE

Solid line - with a minimal e¤ort constraint. Dashed line - without any constraint.

We can see that the players� expected total e¤ort decreases in the value of the minimum e¤ort constraint,

but the players�expected total e¤ort is always smaller than in the same contest without any constraint.

In the second, case when the threshold is relatively high we have

Proposition 6 The players�expected total e¤ort in the balanced all-pay contest with a threshold � > b and

a minimum e¤ort constraint b is

TEE =
4(v2)

2� � 3v2�2 � b�2 + v1�2 + b2(v1 � v2)
2v1v2

: (6)

Proof. See Appendix.

We can see that if b = 0; for every �;we obtain by (6) that the players�expected total e¤ort is exactly the

expected total e¤ort obtained by (2). The following example illustrates how in this case the expected total

e¤ort varies in the value of the minimum e¤ort constraint.

Example 4 Consider a balanced all-pay contest with two players, 1 and 2, who have values of winning

v1 = 10 and v2 = 5, respectively. Let � = 3 and the minimum e¤ort constraint be b 2 [0:05; 2:95]: The

following �gure depicts the players�expected total e¤ort as a function of the minimum e¤ort constraint b:
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0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

b

TE

Solid line - with a minimal e¤ort constraint. Dashed line - without any constraint.

We can see that for small (large) values of the minimum e¤ort constraint, the players�expected total e¤ort

is smaller (larger) than in the same contest without any constraint.

The following result demonstrates the ine¢ ciency of imposing a minimum e¤ort constraint if the goal is

to increase the players�expected total e¤ort.

Proposition 7 If b > � and b � �
2(v1�v2) , the expected total e¤ort in the balanced all-pay contest decreases

in the value of the minimum e¤ort constraint and if � � b > �
2(v1�v2) , the expected total e¤ort increases in

the value of the minimum e¤ort constraint

Proof. See Appendix.

By Proposition 7, there are all-pay contests in which for every value of the minimum e¤ort constraint,

the players�expected total e¤ort is smaller than in the all-pay contest without any constraint. The following

example illustrates that the minimum e¤ort constraint is not e¢ cient for increasing the players�expected

total e¤ort.

Example 5 Consider a balanced all-pay contest with two players, 1 and 2, who have values of winning

v1 = 10 and v2 = 5, respectively. Let � = 5, and the minimum e¤ort constraint be b 2 [0:05; 4:95]. The

following �gure depicts the players�expected total e¤ort as a function of the minimum e¤ort constraint b:
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3.6

3.7

3.8
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4.0

b

TE

Solid line - with a minimal e¤ort constraint. Dash line - without any constraint.

We can see that for all b � � the players�expected payo¤ in the balanced all-pay contest is smaller than in

the all-pay contest without a minimal constraint. Since for every b > �, the players �expected payo¤ deceases

in the value of b, we obtain that the players�expected payo¤ is always smaller than in the balanced all-pay

contest without any minimum e¤ort constraint.

5 Conclusion

In numerous contests the designer wants to maximize the players�total e¤ort, or, alternatively, the players�

average e¤ort. We show that the well-known methods to increase the players�total e¤ort in the standard all-

pay contest are not necessarily useful when the designer maximizes the players�total e¤ort under a balance

constraint. In particular, we show that a maximum e¤ort constraint is always e¢ cient in enhancing the

players�total e¤ort and, on the other hand, a minimum e¤ort constraint might not be e¢ cient at all. Hence,

our �ndings raise the question about the robustness of the well known results in contest theory, namely,

it is not clear if the established methods to maximize the total e¤ort in contests are still e¢ cient if the

maximization e¤ort is done under a balance constraint or under di¤erent constraints.
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6 Appendix

6.1 Proof of Proposition 1

We separate the analysis of the expected total e¤ort into �ve cases as follows:

� Case A1: Player 1 exerts an e¤ort of x 2 [0; v2 � �] and player 2 an e¤ort of y 2 [x; x + �], such that

player 2 exerts a higher e¤ort than player 1.

� Case A2: Player 1 exerts an e¤ort of x 2 [v2 � �; v2] and player 2 an e¤ort of y 2 [x; v2], such that

player 2 exerts a higher e¤ort than player 1.

� Case A3: Player 1 exerts an e¤ort of x 2 [�; v2] and player 2 an e¤ort of y 2 [x� �; x], such that player

1 exerts a higher e¤ort than player 2.

� Case A4: Player 1 exerts an e¤ort of x 2 [0; �] and player 2 an e¤ort of y 2 [0; x], such that player 1

exerts a higher e¤ort than player 2.

� Case A5: Player 1 exerts an e¤ort of x 2 [0; �] and player 2 an e¤ort of y = 0, such that player 1 exerts

a higher e¤ort than player 2.
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The sum of the expected total e¤ort in the above cases is

TEA = TEA1 + TEA2 + TEA3 + TEA4 + TEA5 =Z v2��

0

Z x+�

x

(x+ y)f1(x)f2(y)dxdy +

Z v2

v2��

Z v2

x

(x+ y)f1(x)f2(y)dxdy

+

Z v2

�

Z x

x��
(x+ y)f1(x)f2(y)dxdy +

Z �

0

Z x

0

(x+ y)f1(x)f2(y)dxdy

+
v1 � v2
v1

Z x

0

xf1(x)dx

=

Z v2��

0

Z x+�

x

x+ y

v1v2
dxdy +

Z v2

v2��

Z v2

x

x+ y

v1v2
dxdy

+

Z v2

�

Z x

x��

x+ y

v1v2
dxdy +

Z �

0

Z x

0

x+ y

v1v2
dxdy

+
v1 � v2
v1

Z x

0

x

v2
dx

= (
�3 + 2(v2)

2� � 3v2�
2v1v2

) + (
2v2� � �3

2v1v2
)

+(
2(v2)

2� � v2�2 � �3

2v1v2
) + (

�3

2v1v2
) + (

�2(v1 � v2)
2v1v2

)

=
4(v2)

2� � 3v2�2 + v1�2

2v1v2
:

Q:E:D:

6.2 Proof of Proposition 2

We separate the analysis of the expected total e¤ort into six cases as follows:

� Case B1: Player 1 exerts an e¤ort of x 2 [0; 2d � v2 � �] and player 2 an e¤ort of y 2 [x; x+ �], such

that player 2 exerts a higher e¤ort than player 1.

� Case B2: Player 1 exerts an e¤ort of x 2 [2d� v2� �; 2d� v2] and player 2 an e¤ort of y 2 [x; 2d� v2],

such that player 2 exerts a higher e¤ort than player 1.

� Case B3: Player 1 exerts an e¤ort of x 2 [�; 2d� v2] and player 2 an e¤ort of y 2 [x� �; x], such that

player 1 exerts a higher e¤ort than player 2.

� Case B4: Player 1 exerts an e¤ort of x 2 [0; �] and player 2 an e¤ort of y 2 [0; x], such that player 1

exerts a higher e¤ort than player 2.
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� Case B5: Player 1 exerts an e¤ort of x 2 [0; �] and player 2 an e¤ort of y = 0, such that player 1 exerts

a higher e¤ort than player 2.

� Case B6: Player 1 exerts an e¤ort of x = d and player 2 an e¤ort y = d.

The sum of the expected total e¤ort in the above cases is

TEB = TEB1 + TEB2 + TEB3 + TEB4 + TEB5 + TEB6

=

Z 2d�v2��

0

Z x+�

x

(x+ y)f1(x)f2(y)dxdy +

Z 2d�v2

2d�v2��

Z 2d�v2

x

(x+ y)f1(x)f2(y)dxdy

+

Z 2d�v2

�

Z x

x��
(x+ y)f1(x)f2(y)dxdy +

Z �

0

Z x

0

(x+ y)f1(x)f2(y)dxdy

+
v1 � v2
v1

Z �

0

xf1(x)dx+ 2d(1�
2d� v2
v2

)(1� v1 � v2 + 2d� v2
v1

)

=

Z 2d�v2��

0

Z x+�

x

(x+ y)

v1v2
dxdy +

Z 2d�v2

2d�v2��

Z 2d�v2

x

(x+ y)

v1v2
dxdy

+

Z 2d�v2

�

Z x

x��

(x+ y)

v1v2
+

Z �

0

Z x

0

(x+ y)

v1v2
dxdy

+
v1 � v2
v1

Z �

0

x

v2
dx+ 2d(1� 2d� v2

v2
)(1� v1 � v2 + 2d� v2

v1
)

=
�3 + 2(2d� v2)� � 3(2d� v2)�2

2v1v2
+
2(2d� v2)�2 � �3

2v1v2

+
2(2d� v2)2� � (2d� v2)�2 � �3

2v1v2
+

�3

2v1v2

+
�2(v1 � v2)
2v1v2

+ 2d
(v2 � (2d� v2))2

v1v2

=
4(2d� v2)2� � 2(2d� v2)�2 + (v1 � v2)�2 + 4d(v2 � (2d� v2))2

2v1v2
:

Q:E:D:

6.3 Proof of Proposition 3

We separate the analysis of the expected total e¤ort into eight cases, the �rst six cases being B1�B6 from

the proof of Proposition 2. The last two are:

� Case C1: Player 1 exerts an e¤ort of x = d and player 2 an e¤ort of y 2 [d � �; 2d � v2], such that

player 1 exerts a higher e¤ort than player 2.

� Case C2: Player 1 exerts an e¤ort of x 2 [d � �; 2d � v2] and player 2 an e¤ort of y = d, such that

player 2 exerts a higher e¤ort than player 1.

15



The sum of the expected total e¤ort in the above cases is

TEC = TEB + TEC1 + TEC2

= TEB +

Z 2d�v2

d��

Z v2

2d�v2
(d+ y)f1(x)f2(y)dxdy +

Z 2d�v2

d��

Z v2

2d�v2
(x+ d)f1(x)f2(y)dxdy

= TEB +

Z 2d�v2

d��

Z v2

2d�v2

(d+ y)

v1v2
dxdy +

Z 2d�v2

d��

Z v2

2d�v2

(x+ d)

v1v2
dxdy

=
4(2d� v2)2� � 2(2d� v2)�2 + (v1 � v2)�2 + 4d(v2 � (2d� v2))2

2v1v2

+
d(v2 � (2d� v2))((2d� v2)� (d� �))

v1v2
+
((2d� v2)2 � (d� �)2)((v2 � (2d� v2))

2v1v2

+
(v2 � (2d� v2))((2d� v2)2 � (d� �)2)

2v1v2
+
((2d� v2)� (d� �))d((v2 � (2d� v2))

2v1v2

=
4(2d� v2)2� � 2(2d� v2)�2 + (v1 � v2)�2 + 4d(v2 � (2d� v2))2

2v1v2

+4(v2 � d)
5d2 + (v2)

2 � 6dv2 � �2 + 4d�
2v1v2

:

Q:E:D:

6.4 Proof of Proposition 4

By Proposition 3, the players� expected total e¤ort in the balanced all-pay contest with a threshold of

� > v2 � d is

TEC =
4(2d� v2)2� � 2(2d� v2)�2 + (v1 � v2)�2 + 4d(v2 � (2d� v2))2

2v1v2

+4(v2 � d)
5d2 + (v2)

2 � 6dv2 � �2 + 4d�
2v1v2

The derivative of the expected total e¤ort with respect to the maximum e¤ort constraint is

dTEC
dd

= � 6

v1v2
(d� v2)2

Thus, for every d � v2 the expected total e¤ort decreases in the value of the maximum e¤ort constraint.

In other words, if � > v2 � d every value of the maximum e¤ort constraint d increases the players�expected

total value with respect to the same contest without any e¤ort constraint (d = v2). Therefore, for every

� > 0, we can choose a value of the maximum e¤ort constraint d such that there exists � > v2 � d, and then

we obtain an expected payo¤ larger than in the balanced all-pay contest without any constraint.
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6.5 Proof of Proposition 5

We separate the analysis of the expected total e¤ort into �ve cases as follows:

� Case D1: Player 1 exerts an e¤ort of x 2 [b; v2 � �] and player 2 exerts an e¤ort of y 2 [x; x+ �], such

that player 2 exerts a higher e¤ort than player 1.

� Case D2: Player 1 exerts an e¤ort of x 2 [v2 � �; v2] and player 2 an e¤ort of y 2 [x; v2], such that

player 2 exerts a higher e¤ort than player 1.

� Case D3: Player 1 exerts an e¤ort of x 2 [b + �; v2] and player 2 an e¤ort of y 2 [x � �; x], such that

player 1 exerts a higher e¤ort than player 2.

� Case D4: Player 1 exerts an e¤ort of x 2 [b; b+ �] and player 2 an e¤ort of y 2 [b; x], such that player

1 exerts a higher e¤ort than player 2.

� Case D5: Player 1 exerts an e¤ort of x = b and player 2 an e¤ort of y 2 [b; b + �], such that player 2

exerts a higher e¤ort than player 1.

The sum of the expected total e¤ort in the above cases is

TED = TED1 + TED2 + TED3 + TED4 + TED5 =Z v2��

b

Z x+�

x

(x+ y)f1(x)f2(y)dxdy +

Z v2

v2��

Z v2

x

(x+ y)f1(x)f2(y)dxdy

+

Z v2

b+�

Z x

x��
(x+ y)f1(x)f2(y)dxdy +

Z b+�

b

Z x

b

(x+ y)f1(x)f2(y)dxdy

+
b

v2

Z b+�

0

(b+ y)f2(y)dy

=

Z v2��

b

Z x+�

x

x+ y

v1v2
dxdy +

Z v2

v2��

Z v2

x

x+ y

v1v2
dxdy

+

Z v2

b+�

Z x

x��

x+ y

v1v2
dxdy +

Z b+�

b

Z x

b

x+ y

v1v2
dxdy

+
b

v2

Z b+�

0

b+ y

v1
dx

= (
�3 + 2(v2)

2� � 3v2�2 � 2b2� � b�2

2v1v2
) + (

2v2�
2 � �3

2v1v2
)

+(
2(v2)

2� � v2�2 � 2b2� � 3b�2 � �3

2v1v2
) + (

2b�2 + �3

2v1v2
) + (

4b2� + b�2

2v1v2
)

=
4(v2)

2� � 2v2�2 � b�2

2v1v2
:
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Q:E:D:

7 Proof of Proposition 6

We separate the analysis of the expected total e¤ort into seven cases. The �rst �ve are D1 � D5 which

appear in the proof of Proposition 5. The last two cases are:

� Case E1: Player 1 exerts an e¤ort of x = b and player 2 an e¤ort of y = 0, such that, player 1 exerts

a higher e¤ort than player 2.

� Case E2: Player 1 exerts an e¤ort of x 2 [b; �], and player 2 an e¤ort of y = 0, such that, player 1

exerts a higher e¤ort than player 2.

The sum of the expected total e¤ort in the above cases is

TEE = TED + TEE1 + TEE2

= TED + b
b

v2

(v1 � v2)
v1

+
(v1 � v2)
v1

Z �

b

xf1(x)dx

=
4(v2)

2� � 2v2�2 � b�2

2v1v2
+
b2

v2

(v1 � v2)
v1

+
(v1 � v2)
v1

(�2 � b2)
2v2

=
4(v2)

2� � 3v2�2 � b�2 + v1�2 + b2(v1 � v2)
2v1v2

:

Q:E:D:

7.1 Proof of Proposition 7

By Proposition 5, the players�expected total e¤ort in the balanced all-pay contest with a threshold � > b is

TED =
4(v2)

2� � 2v2�2 � b�2

2v1v2
:

The derivative of the expected total e¤ort with respect to the minimum e¤ort constraint is

dTED
db

= � �2

2v1v2
:

Thus, for every � > b we obtain that dTEDdb < 0. That is, if � > b, the expected payo¤ decreases in the value

of the minimum e¤ort constraint b:
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Now, if � � b, by Proposition 6, the players�expected total e¤ort in the balanced all-pay contest is

TEE =
4(v2)

2� � 3v2�2 � b�2 + v1�2 + b2(v1 � v2)
2v1v2

:

The derivative of the expected total e¤ort with respect to the minimum e¤ort constraint is

dTEE
db

=
2b(v1 � v2)� �2

2v1v2
:

Thus, if �2

2(v1�v2) � b we obtain that dTEE
db < 0, namely, the players�expected total e¤ort decreases in the

value of the minimum e¤ort constraint b, and, otherwise it increases. Q:E:D:

References

[1] Baye, M., Kovenock, D., de Vries, C.: The all-pay auction with complete information. Economic Theory

8, 291-305 (1996)

[2] Che, Y-K., Gale, I.: Caps on political lobbying. American Economic Review 88, 643-651 (1998)

[3] Gavious, A., Moldovanu, B., Sela, A.: Bid costs and endogenous bid caps. Rand Journal of Economics

33(4), 709-722 (2003)

[4] Cohen, C., Levi, O., Sela, A.: All-pay auctions with asymmetric e¤ort constraints. Mathematical Social

Sciences 97, 18-23 (2019)

[5] Dechenaux, E., Kovenock, D., Lugovskyy, V.: Caps on bidding in all-pay auctions: Comments on

the experiments of A. Rapoport and W. Amaldoss, Journal of Economic Behavior & Organization 61,

276�283 (2006)

[6] Franke, J., Kanzow, C., Leininger, W., Schwartz A.: E¤ort maximization in asymmetric contest games

with heterogeneous contestants. Economic Theory 52, 589-630 (2013)

[7] Glazer, A., Hassin, R.: Optimal contests. Economic Inquiry 26(1), 133-143 (1988)

[8] Hart, S.: Allocation games with caps: from Captain Lotto to all-pay auctions. Games and Economic

Behavior 45, 37-61 (2016)

19



[9] Hillman, A., Riley, J.: Politically contestable rents and transfers. Economics and Politics 1, 17-39 (1989)

[10] Hillman, A., Samet, D.: Dissipation of contestable rents by small numbers of contenders. Public Choice

54(1), 63-82 (1987)

[11] Liu, X., Lu, J.: The e¤ort maximizing contests with heterogeneous prizes. Economics Letters 125(3),

422-425 (2014)

[12] Megidish, R., Sela, A.: Caps in sequential contests. Economic Inquiry 52(2), 608-617 (2014)

[13] Moldovanu, B., Sela, A.: The optimal allocation of prizes in contests. American Economic Review 91,

542-558 (2001)

[14] Moldovanu, B., Sela, A., Shi, X.: Carrots and sticks: prizes and punishments in contests. Economic

Inquiry 50(2), 453-462 (2012)

[15] Myerson, R.: Optimal auction design. Mathematics of Operations Research 6(1), 58-73 (1981)

[16] Runkel, M,: Total e¤ort, competitive balance and the optimal contest success function. European

Journal of Political Economy 22(4), 1009-1013 (2006)

[17] Ryvkin, D.: Heterogeneity of players and aggregate e¤ort in contests. Journal of Economics & Manage-

ment Strategy 22(4), 728-743 (2013)

[18] Sela, A.: Sequential two-prize contests. Economic Theory 51, 383-395 (2012)

[19] Serena, M.: Quality contests. European Journal of Political Economy 46, 15-25 (2017)

[20] Siegel, R.: All-pay contests. Econometrica 77(1), 71-92 (2009)

[21] Szech, N.: Tie-breaking and bid-caps in all-pay auctions. Games and Economic Behavior 92, 138-149

(2015)

[22] Szymanski, S.: Income inequality, competitive balance and the attractiveness of team sports: some

evidence and a natural experiment from English soccer. Economic Journal 111(469), 69-84 (2001)

20



[23] Szymanski, S.: The economic design of sporting contests. Journal of Economic Literature 41(4), 1137-

1187 (2003)

[24] Szymanski, S.: Competitive balance and gate revenue sharing in team sports. Journal of Industrial

Economics 52(1), 165-177 (2004)

21


