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Abstract

We establish existence of a pure-strategy Bayesian Nash equilibrium in

Bayesian games with convex and compact action sets that have an upper semi-

continuous and concave potential (or a weighted version thereof) at any state of

nature. No assumptions are made on the information structure in these games;

in particular, there may be uncountably many states of nature or information

types, and in the latter case the common prior need not be absolutely con-

tinuous w.r.t. the product of its marginals. As an application, we show that

Bayesian Nash equilibrium exists in many well-known games and their gener-

alizations that have semi-quadratic payo¤s, including Bertrand and Cournot

oligopolies with linear demand.

Journal of Economic Literature classi�cation numbers: C62, C72, D82.

Key words: Bayesian games, (weighted) Bayesian potential, equilibrium

existence, concave payo¤s, absolute continuity, information structures.

1 Introduction

The extensive use of Bayesian games in economic theory has been made possible by

the fact that quite general categories of games with incomplete information possess a
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Bayesian Nash equilibrium (henceforth, BNE). The path-breaking work of Milgrom

and Weber (1985) was the �rst to prove BNE existence beyond the �nite framework

of Harsanyi (1967), and it did so with remarkable generality: players�action and type

sets were allowed to be (possibly uncountable) metric spaces.1 The restriction im-

posed on the Bayesian game in their BNE existence result combined two conditions.

One is the continuity of the players�payo¤ functions on the set of action pro�les for

any realization of the players�types; the other requires absolute continuity of infor-

mation, meaning that the joint distribution of the players�types must be absolutely

continuous with respect to the product of its marginal distributions.

The usefulness of the absolute continuity condition is demonstrated by its applica-

bility in many benchmark cases considered in economic theory, such as those where

the players�types are independently distributed, or merely have joint density, and

also when the type sets are �nite or countable. Most of the literature devoted to

extensions of the Milgrom and Weber result has, too, assumed absolute continuity

of information or its variants, while focusing on a relaxation of the payo¤ continuity

assumption (see, e.g., Carbonell-Nicolau and McLean (2018), He and Yannelis (2016)

and the references therein). Restricting attention to absolutely continuous informa-

tion is de�nitely not a matter of convenience, however. That is because BNE may

fail to exist without that restriction even if each player has �nitely many actions, as

was shown by Simon (2003). (This notwithstanding, there are classes of games where

information is not absolutely continuous, in a particularly �agrant way, that possess

a BNE.2)

A natural question that arises is whether there are plausible requirements on

games that are played at every state of nature3 that would guarantee existence of a

BNE in the corresponding Bayesian game for any underlying information structure,

1While action sets need to be compact, all topological assumptions on the type sets in Milgrom

and Weber�s BNE existence result were removed in Balder (1988).
2Hellman and Levy (2017) characterize such a class in the domain of Bayesian games with �nitely

many actions that are "purely atomic," i.e., such that all type-sets are a non-atomic continuum, but,

given his type, each player knows with certainty that the others�types belong to a �nite or countable

set.
3Henceforth, we will consistently refer to the states of nature model of incomplete information,

which supersedes a simpler model of Harsanyi types. In the context of the latter model, "state" is

simply a realization of all players�information types.
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absolutely continuous or not. One set of such requirements was suggested by Mamer

and Schilling (1986) and Einy et al. (2008): they have shown that when state-payo¤s

are zero-sum and continuous in each action separately, then a BNE exists for general

information structures in a two-player setting. In this work, we will show that another

condition on the state-game �having a Bayesian potential with certain properties �

guarantees BNE existence for any information structure.

In a Bayesian potential game, a notion that was introduced by Heumen et al.

(1996), a potential game4 is played at any state of nature.5 The state-dependent

potential function for the state games, called Bayesian potential, is a natural tool

as far as proving BNE existence is concerned: it has been well understood that any

maximizer of the expectation of a Bayesian potential over the set of all pure Bayesian

strategy pro�les is a BNE of the Bayesian potential game.6 We will use a generalized

version of Bayesian potential games, in which the state-dependent potential is not

(necessarily) exact but weighted, in the way that players�(possibly state-dependent)

weights w are measurable w.r.t. their private information.7 Although, unlike in the

weight-free context, the expected w-Bayesian potential is not (necessarily) a normal-

form weighted potential for the w-Bayesian potential game, we will show that the

expected potential�s maximizer, if one exists, is a BNE.

When the space of states of nature in a game is uncountable, what stands in the

way of proving the existence of such a maximizer is the fact that topologies in which

the expected w-Bayesian potential would normally be continuous are in general too

strong to make the set of pure Bayesian strategy pro�les compact.8 However, it turns

out that, with action sets being compact and convex subsets of a Euclidean space,

the topological tension between continuity and compactness does not arise when a

w-Bayesian potential is continuous and concave in all states of nature. The proof is

4Here a standard, Monderer and Shapley (1996) potential game, is meant.
5While Heumen et al. (1996) con�ned themselves to �nitely many states of nature, Ui (2009)

extended the concept of a Bayesian potential game to in�nite information structures.
6That is because the expected Bayesian potential is a Monderer and Shapley (1996) potential for

the normal form of the Bayesian potential game.
7This also generalizes the notion of a weighted Bayesian potential game of Ui (2009), in which

the weights are state-independent.
8For a detailed discussion in the context of general utility functions, see, e.g., p. 626 in Balder

and Yannelis (1993).
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based on results of Balder and Yannelis (1993). They characterized weakly compact

sets of contingent consumption plans, and showed that, for concave and upper semi-

continuous state-utilities, the expected utility is upper semi-continuous in the weak

topology on such sets of contingent plans. In the Bayesian games context, their results

can be directly applied to the set of pro�les of "pseudo-strategies" (which �ctitiously

endow all players have full information), showing that this set is weakly compact

and, assuming the w-Bayesian potential to be upper semi-continuous and concave at

each state, that the expected w-Bayesian potential is weakly upper semi-continuous.

Our proof will show that constraints of measurability w.r.t. private information

can be added in pseudo-strategy pro�les (turning them into true strategy pro�les)

without a¤ecting the conclusions. This combination of compactness and upper semi-

continuity implies the existence of a Bayesian potential maximizer, and hence of a

BNE in pure strategies. Importantly, this argument for BNE existence does not

exploit any particular attributes of the information structure, and thus our existence

result holds in fullest possible generality in that respect.9

The method of �nding a BNE as a maximizer of a common, real or �ctitious,

expected payo¤ function has been considered previously, in a strand of literature

that grew out of the work of Radner (1962). Radner considered "team games," where

the players have a common payo¤ (hence, a potential) that is a concave quadratic

polynomial in the players�actions at each state of nature. He showed existence of a

maximizer of the expected payo¤ in pure Bayesian strategies, under the assumption

that uncertainty a¤ects only the linear term of the payo¤, and that the players�signals

and the coe¢ cients of the linear term have a joint normal distribution.10 The games

of Radner (1962) were found to be useful in studying information e¤ects in linear

Cournot and Bertrand oligopoly models, as it was implicitly recognized that some

speci�cations of Radner�s quadratic payo¤ function can serve as concave Bayesian

9There is a considerable strand of literature that studies existence of pure strategy BNE in

Bayesian games, that began with Radner and Rosenthal (1982). Their framework and results have

been since signi�cantly extended (see, e.g., He and Sun (2019) and the references therein), but the

assumptions consistently exclude non-absolutely continuous information and type sets with atoms.
10When all parameters of the quadratic payo¤ are uncertain and have a general distribution,

Radner o¤ered a su¢ cient condition for the maximum existence. It is summarized in Footnote 24

of our Section 4.2.
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potentials for such oligopolies with incomplete information on various parameters (see

Raith (1996) for a unifying approach and a survey). The �rst explicit use of Radner�s

game as a concave Bayesian potential was in Ui (2009), who applied Radner�s BNE

characterization in a study of e¢ cient information use in a class of Bayesian games

with quadratic payo¤s.11

Our result on BNE existence applies in the above-mentioned contexts because,

for those Bayesian games, Radner�s payo¤ function constitutes (an exact) Bayesian

potential that is continuous and concave at each state. But our result also extends

the scope of the earlier �ndings in two important respects. First, since it asserts BNE

existence without any restriction on the information structure, players�signals and

the game parameters need not have a joint normal distribution, and, in fact, need not

have joint (or any) density. And second, the speci�c quadratic form of payo¤s can

be generalized to a semi-quadratic one, which allows components that are non-linear

(but concave) functions of own actions, without a¤ecting BNE existence.12

The paper is organized as follows. In Section 2 we describe the general set-up,

recall the notions of a Bayesian game and BNE, and de�ne w-Bayesian potential

games. Section 3 contains our BNE existence result, and applications are discussed

in Section 4. All proofs are given in the Appendix.

2 Bayesian potential games

2.1 Bayesian games

Let N = f1; :::; ng be a �nite set of players. Games are played in an uncertain envi-
ronment. The underlying uncertainty is described by a probability space (
;z; �) ;

where 
 is a set of states of nature, z is a �-�eld of measurable events, or subsets

of 
; and � is a countably additive probability measure on (
;z) ; representing the

common prior belief of the players about the actual state of nature: Private informa-

tion of player i 2 N is given by a �-sub�eld zi of z; consisting of events that are
11That class includes linear oligopolies as well as variants of games considered in Crémer (1990)

and Morris and Shin (2002).
12That is because a Bayesian potential that is concave at each state would still be easily con-

structible for such games.
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discernible by i:

For each i 2 N there is di 2 N such that, at any ! 2 
; player i has a set

Ai (!) of actions that is a non-empty, convex and compact subset of Rdi; that is, i�s

action set may depend on the state of nature. Let us denote by Ai the corresponding

set-valued function Ai : 
 ! 2R
di ; and de�ne A : 
 ! 2R

d
(where d :=

Pn
i=1 di) as

A (!) = A1 (!) � ::: � An (!) for every ! 2 
; the values of A are also non-empty,

convex and compact. We will assume that the graph of A (and, respectively, of

each Ai) is z
B
�
Rd
�
-measurable13 (respectively, zi
B

�
Rdi
�
-measurable) and that

supa2A(�) kakRd is �-integrable (i.e., A and each Ai are integrably bounded).
Each i 2 N has a payo¤ function ui : 
 � Rd ! R. We will assume that ui

is z 
 B
�
Rd
�
-measurable and that supa2A(�) jui(�; a)j is �-integrable. A Bayesian

game will be identi�ed with the collection of its above-described attributes, G =

(N; (
;z; �) ; (zi; Ai; ui)ni=1) :

A (pure Bayesian) strategy of player i 2 N in the game G is an zi-measurable

function xi : 
 ! Rdi, with xi (�) 2 Ai (�) �-a.e. The set of all strategies of player i
will be denoted byXi; which is non-empty by the measurable selection theorem. Each

player i evaluates his ex-ante prospect in the game via the expected payo¤ function

Ui on the product set X = X1 � :::�Xn of strategy pro�les, given by

Ui(x) =

Z



ui(!; x(!))d� (!) (1)

for any x = (x1; :::; xn) 2 X:14 As usual, x 2 X is a (pure-strategy) Bayesian Nash

equilibrium of the game G; or BNE for short, if it is a Nash equilibrium of the normal

form of G, namely, if the inequality

Ui(x) � Ui(yi; x�i)

holds for every i 2 N and yi 2 Xi; where (yi; x�i) 2 X denotes the strategy pro�le

obtained from x by substituting yi for xi:

13Here and henceforth, B (K) will denote the Borel �-�eld on a Borel set K in some Euclidean

space.
14Note that the function ui(�; x(�)) is z-measurable as a composition of an z
B

�
Rd
�
-measurable

ui with an z-measurable 
�Rd-valued function ! 7! (!; x1 (!) ; :::; xn (!)) : The function ui(�; x(�))
is therefore also �-integrable, being bounded in absolute value from above by supa2A(�) jui(�; a)j
(which is �-integrable by assumption).
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2.2 w-Bayesian Potential games

Consider a Bayesian game G = (N; (
;z; �) ; (zi; Ai; ui)ni=1) and an n-tuple w =

(wi)i2N of weight functions such that wi : 
 ! (0;1) is zi-measurable for each
i 2 N . We say that G is a w-Bayesian potential game (or w-BP game for short)

if there exists p : 
 � Rd ! R (called a w-Bayesian potential, or w-BP, for G) that

satis�es the following:

(a) p is z
 B
�
Rd
�
-measurable;

(b) there exist a �-integrable  : 
! [0;1) and a constant M > 0 such that

jp (!; a)j �  (!) +M kakRd (2)

for every ! 2 
 and a 2 Rd;
and

(c) for �-almost every ! 2 
; every i 2 N; and every a 2 A (!), bi 2 Ai (!) ;

ui(!; (bi; a�i))� ui(!; a) = wi (!) [p(!; (bi; a�i))� p(!; a)] (3)

(where (bi; a�i) 2 A (!) is the action pro�le obtained from a by substituting bi for

ai).

Note that a w-BP game G consists of playing a weighted potential game (in the

sense of Monderer and Shapley (1996)) at any state of nature !, but the weights

(w (!))i2N may vary with the state of nature. Our notion of a w-BP game has two

well-known simpler versions that it generalizes.15 When the weight functions w are

constant, that is, invariant of the state of nature, G is known as a weighted Bayesian

potential game; these games were introduced by Facchini et al. (1997) for a �nite


, and by Ui (2009) for general 
. In turn, the weighted notion extends the basic

concept of an (exact) Bayesian potential game (BP game, for short), originally due to

van Heumen et al. (1996), for which all weights are identical and equal to 1. If G is

a BP game, condition (3) on the corresponding p (which in the weight-free context is

referred to simply as Bayesian potential, or BP) becomes particularly straightforward:

it is required that

ui(!; (bi; a�i))� ui(!; a) = p(!; (bi; a�i))� p(!; a) (4)

15Our notion is also related to the one that was described in the statement of Theorem 5 in Ui

(2009), in the context of di¤erentiable payo¤ functions.
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for �-almost every ! 2 
; every i 2 N; and every a 2 A (!), bi 2 Ai (!) : Thus,

changes in the state-payo¤ resulting from unilateral deviations by any player are

precisely accounted for by changes in the BP, at every state of nature.

Given a w-BP game G with a w-BP p, consider its expected potential (or EP for

short), E(p) : X ! R, given by

E(p)(x) =

Z



p(!; x(!))d� (!) (5)

for any x = (x1; :::; xn) 2 X: If G is a BP game and p is its BP, then the corresponding
EP obviously retains the property expressed in (4), which is now given in terms of

the players�expected payo¤s:

Ui(yi; x�i)� Ui(x) = E(p)(yi; x�i)� E(p)(x) (6)

for every i 2 N and every x 2 X; yi 2 Xi: Thus, if G is a BP game then its normal

form is a potential game in the usual sense (of Monderer and Shapley (1996)), and,

clearly, any maximizer x 2 X of its normal-form potential E(p) is a BNE of G:

It is important to note that (4) would not typically hold if G is a w-BP game

for weight functions w that are not identically 1; in general, there need not be any

simple relation between the marginal changes of the expected payo¤s and those of the

EP.16 However, one obvious implication of (4), that a unilateral maximization of the

player�s expected payo¤ leads him to the same strategies as a unilateral maximization

of the EP, turns out to be a property common to all w-BP games. According to the

following lemma, unilateral maximization of the EP preserves all best responses in

such games (or, using the terminology of Ui (2009), the EP is a "Bayesian best-

response potential" for the game).

Lemma. LetG be a game with a w-BP p for some collection w of weight functions.

Then, for any x 2 X and any i 2 N; argmaxyi2Xi Ui(yi; x�i) = argmaxyi2Xi E(p)(yi; x�i):

The proof is given in the Appendix.

Remark. The assumption of zi-measurability of each player i�s weight function

wi in the de�nition of a w-BP is necessary in order for the Lemma to hold. Indeed,
16One such relation exists when G is a weighted Bayesian potential game: if all weight functions

wi have constant (but possibly distinct) values, (6) holds in a modi�ed form, with the right-hand

side expression being multiplied by the constant value of wi.
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consider a one-player game (i.e., a decision problem) with two equiprobable states of

nature in 
 = f0; 1g, z1 = f?;
g; A1 = [0; 1]; and the payo¤ function u1(!; a1) =
� (! + 1) (a1 � !)2: Clearly, strategies of player 1 can be identi�ed with his actions,

and argmaxy12X1 U1(y1) = f23g: Now notice that p(!; a1) = �(a1 � !)2 satis�es (3)

for i = 1 and w1 (!) = ! + 1; and that the function w1 is not z1-measurable. Also;

argmaxy12X1 E(p)(y1) = f12g: Thus, p cannot be just any weighted potential (or, more
generally, ordinal potential) in the state-games.

The following is an obvious but important corollary of the Lemma:

Corollary. IfG is a game with a w-BP p for some collection w of weight functions,

then any maximizer x 2 X of E(p) is a BNE of G:

3 BNE Existence

The existence of a w-BP that is concave and upper semi-continuous at almost every

state implies existence of a BNE in the game without any assumption on the infor-

mation structure. In particular, the set of states of nature 
 may be uncountable,

and players�private information may be given by �-�elds that are not generated by

partitions of 
:

Theorem. Let G = (N; (
;z; �) ; (zi; Ai; ui)ni=1) be a game with a w-BP p for

some collection w of weight functions. Assume that, for �-almost every ! 2 
: (i)
p(!; �) is concave on A (!) ; and (ii) p(!; �) is upper semi-continuous17 on A (!). Then
G possesses a (pure-strategy) BNE.

We will now comment on the method of the theorem�s proof (which appears

in the Appendix), and describe its structure. It follows from the Corollary that

establishing BNE existence is reducible to showing that the expected potential E(p)

attains a maximum over the set X of strategy pro�les. The existence of a maximum

is explored in the following way. The de�nition of E(p) in (5) allows to extends its

17It is well-known that any concave function on a convex polytope is lower semi-continuous (see,

e.g., Gale et al. (1968)). Hence, if A (!) is a polytope then we, in e¤ect, assume that p (!; �) is
continuous.
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domain from X to X 0 = the set of all A-valued and z-measurable functions on 
: (In

de�ning X 0, we drop the the condition of zi-measurability that characterizes each

i�s component of a strategy pro�le in X, and so X 0 can be regarded as consisting of

pro�les of "pseudo-strategies," in which all players have the same information �eld

z).18 We then apply some of the results of Balder and Yannelis (1993) (who in turn

obtain them using strong tools19 from functional analysis) to establish the following

two facts: given our assumptions on A and p; the set X 0 is compact in the weak

topology and E(p) is (weakly) upper semi-continuous on X 0.

Although the above implies existence of maxx02X0 E(p) (x0) ; it remains to show

that a maximum exists on a smaller domain of true strategy-pro�les, X:We will prove

that X is, in fact, a weakly closed subset of X 0 by �rst showing that it is strongly

closed, and then applying Mazur�s theorem on the equivalence of strong and weak

closedness of convex sets in a Banach space. The implied weak compactness of X

then guarantees the existence of maxx2X E(p) (x) ; and hence of a BNE in the game

G.

4 Applications

Our existence result can be applied in a number of well-recognized contexts, which

are presented in the following subsections. The player set N; the space (
;z; �) and

the private information �elds (zi)ni=1 will be �xed throughout. Although not by any

means necessary, it will be assumed for simplicity of presentation that all players�

action sets are state-independent, and so A and each Ai will henceforth be treated

as subsets of the corresponding Euclidean spaces, not as set-valued functions. The

payo¤ functions and the BPs will only be de�ned on 
 � A; they can be extended

arbitrarily in a measurable way onto 
 � Rd in order to �t into the framework of
Section 2.
18The notation X 0 is used, for brevity, only in this summary; the actual set of "pseudo-strategies"

is L1 ((
;z; �) ;A), precisely de�ned in the proof.
19These are Mazur�s theorem (see, e.g., Corollary 23 in Royden (1988)) and Diestel�s theorem (see

Diestel (1977)).
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4.1 Motivating model: oligopoly with linear demand

Cournot oligopoly is a showcase of the usefulness of a Bayesian potential approach.

We consider the following description of the model, partially based on Raith (1996).

The members of N are �rms; each i 2 N produces a separate good (also denoted

by i), and its action set Ai � R+ is a compact interval of possible output levels of

good i: In choosing output level ai; �rm i incurs a state-dependent production cost

of ci(!; ai), where ci : 
 � Ai ! R+ is an z 
 B (Ai)-measurable function that is
continuous and convex in its second variable ai; and integrably bounded. The state-

dependent linear inverse demand (i.e., price function) of the �rms�output is given

by

Pi(!; a) = Ai (!)�
X
j 6=i

" (!) aj � � (!) ai (7)

for every ! 2 
, a 2 A; where (Ai)
n
i=1 ; " and � are z-measurable and �-integrable

functions, with (Ai)
n
i=1 and � being strictly positive and " (!) 2 (� �(!)

n�1 ; � (!)] for

every ! 2 
: The state-dependent net-pro�t function of �rm i is therefore

ui (!; a) =

 
Ai (!)�

X
j 6=i

" (!) aj � � (!) ai

!
ai � ci (!; ai) ; (8)

for every ! 2 
 and a 2 A: It is easy to see that the following function p : 
�A! R

is an (exact) BP for our incomplete information oligopoly:

p (!; a) =
nX
i=1

Ai (!) ai �
 
� (!)

nX
i=1

a2i + " (!)
X

1�i<j�n
aiaj

!
�

nX
i=1

ci (!; a) (9)

for every ! 2 
 and a 2 A: By our assumptions on (Ai)
n
i=1 ; ", � and (ci)

n
i=1 ; p is z


B (A)-measurable and integrably bounded, and it can be readily seen that the function
p (!; �) is concave and continuous for any �xed ! 2 
: Hence, the oligopoly falls within
the purview of our theorem �it has a BNE, and BNE existence is obtained without

any direct restriction on the information structure. In contrast, the BNE existence

result in Raith (1996) is predicated upon "; � being state-independent (i.e., known),

costs being linear, and all uncertain parameters having a joint normal distribution

with the players�private signals.20

20Since prices are rarely negative in reality, the functional form in (8) �even if believed to be a

good approximation of the real-world consumer demand �may need to be truncated when reaching
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As a particular case, when Ai = A for all i and " = �; we obtain a Cournot

oligopoly with a single homogeneous good, which (in the complete information set-

ting) served as the �rst example of a potential game in Monderer and Shapley (1996).

On the other hand, when all (ci)
n
i=1 are taken to be zero, and the actions of �rms are

the prices they charge for their goods rather than the quantities that they produce,

equation (7) can be viewed as a description of a state-dependent linear demand for

good i given the vector a of prices, and hence (8) can be viewed as a payo¤ function

in a Bertrand oligopoly with price competition. Thus, such Bertrand oligopoly is also

a BP game, with the ensuing claim of BNE existence.21

4.2 Games with semi-quadratic payo¤s

The �rst, quadratic, term of the �rm�s utility function (8) in the oligopoly model

of Section 4.1 points towards some natural generalizations. Common concave pay-

o¤s of quadratic form have been considered by Radner (1962) in the context of

"team games," for which he established the existence of a BNE under an implicit

integrability-related condition linking the game parameters and its information struc-

ture. We will follow Ui�s (2009) account22 that views those common payo¤s as (exact)

BPs for a sizable category of payo¤ functions. Ui�s payo¤s will be generalized in the

following respect: the term that depends on the player�s own action will not neces-

sarily be linear.

Assume that Ai is a compact interval for each i 2 N; and that each i�s payo¤

function has the following, semi-quadratic, form:

ui (!; a) = �
1

2
qii (!) a

2
i � ai

X
j 6=i

qij (!) aj + fi (!; ai) + hi (!; a�i) ; (10)

for every ! 2 
 and a 2 A; where Q (!) = [qij (!)]n�n is an z-measurable, �-

integrable and symmetric matrix, fi : 
 � Ai ! R is z 
 B (Ai)-measurable and
zero. This truncation may cause non-existence of BNE even in two-states-of-nature settings, as

shown by Einy et al. (2010). It is, therefore, advisable to check that any positive-price BNE found

in the current model remains such when the inverse demand is truncated to keep prices non-negative.
21Notice also that linear costs of output can be added to payo¤ functions, and accommodated by

the potential.
22Following Radner (1962), Ui (2009) found closed-form expressions for the unique BNE equilibria

in certain contexts when the game�s linear parameters and the players�signals have a joint normal

distribution.
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integrably bounded, and hi : 
�A�i ! R is z
B (A�i)-measurable and integrably
bounded.23 It is easy to see that the game has an (exact) BP, p; that is given by

p (!; a) = �1
2

nX
i=1

nX
j=1

qij (!) aiaj +

nX
i=1

fi (!; ai) (11)

for every ! 2 
 and a 2 A:
We will henceforth assume that, at every ! 2 
; the matrix Q (!) is positive semi-

de�nite and each fi (!; �) is continuous and concave, which obviously implies that the
BP p is concave (and continuous) in a: BNE existence is, therefore, guaranteed by

our theorem, regardless of what information structure is imposed on the game. To

compare, the su¢ cient condition in the general existence result of Radner (1962)

(namely, his Theorems 2 and 3) links together the information structure and the

parameters of the game,24 requires Q to be (strictly) positive de�nite, and, most

importantly, the functions (fi)
n
i=1 in (10) need to be linear in the second variable.

What Radner�s result a¤ords, however, is the possibility to work with an unrestricted

action set R, instead of a priori con�ning actions to compact intervals as we do.

Notice that when qii (!) = 2� (!), qij (!) = " (!) if i 6= j; fi (!; ai) = Ai (!) �
ci (!; ai) and hi � 0; (10) and (11) correspond to (8) and (9) in the case of Cournot
oligopoly with linear demand that was analyzed in Section 4.1. In the following

examples we will brie�y describe some other speci�c classes of incomplete information

games that the semi-quadratic functional form in (10) can accommodate.

Example 1 (Network games). In a network game, players�payo¤s depend

on the realized action pro�le a 2 RN+ and on the network (i.e., a graph) that links
di¤erent players to one another. We consider a semi-quadratic generalization of one

of the network game analyzed in Bramoullé et al. (2014) (based, in turn, on the

model in Ballester et al (2006)), in which player i�s payo¤ is

ui(ai; a�i) = fi(ai)� 1
2
a2i � �

nX
j=1

gijaiaj;

23Here, as usual, A�i stands for �j 6=iAj ; and a�i 2 A�i is obtained by omitting the ith coordinate
of a:
24If stated in the present set-up, the condition requires an z-measurable state-by-state maximizer

z of the potential p to have a �nite "distance" from at least one strategy pro�le x 2 X; in the sense
that

R



Pn
i=1

Pn
j=1 qij (!) (xi (!)� zi (!)) (xj (!)� zj (!)) d� (!) <1:
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where fi is an increasing, continuous and concave function that vanishes at 0, � > 0,

the values gij 2 f0; 1g indicate whether players i and j are linked or not, gii � 0

and gij = gji for every i 6= j; w.l.o.g., each player i can be constrained to use actions

in some compact interval Ai = [0;M ] : Thus, each player�s activity has decreasing

returns to scale, and he is subject to negative externality from being linked to other

players. By making fi; the externality parameter � and the link matrix [gij]n�n state-

dependent (in a measurable, integrable fashion), this game turns into a BP game,

with a BP p that is given by

p(!; a) =
nX
i=1

fi(!; ai)�
1

2

nX
i=1

a2i � � (!)
nX

1�i<j�n
gij (!) aiaj

for every ! 2 
 and a 2 [0;M ]n: The function p (!; �) is obviously continuous. It
is also concave if the matrix25 [�ij + � (!) gij (!)]n�n is positive semi-de�nite at each

state of nature, and a BNE then exists by our theorem.

Example 2 (Coordination games). In Ui�s (2009) two-player version of the

game of Morris and Shin (2002), each player needs to take an action serving two

possibly con�icting objectives: being close to (what is required by) the fundamental

state � (!) ;26 and being close to the action of the other player (in the spirit of Keynes�s

"beauty contest" example). His utility function additively combines two loss terms

representing the two objectives: for each i = 1; 2;

ui(!; a) = ��(ai � � (!))2 � (1� �)(ai � aj)
2

for some 0 < � < 1; and for every ! 2 
 and a 2 R2+: As a BP, one may use the
function given by

p(!; a) = ��(a1 � � (!))2 � �(a2 � � (!))2 � (1� �)(a1 � a2)
2

that is obviously continuous and concave in a. As long as �2 is �-integrable and action

sets are truncated from above (with a weak inequality), our theorem assures BNE

existence under any information structure.

25Here �ij is the Kronecker delta.
26In Ui�s (2009) speci�cation, � has a joint normal distribution with signals that the two player

obtain (and that constitute their private information).
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Example 3 (Team-theoretical model of a �rm). Crémer (1990) considered

a model in which two agents with a common interest have uncertainly about a single

integrable parameter27 � (!) that a¤ects as follows their (identical) utilities:

u1(!; a) = u2(!; a) = � (!) (a1 + a2)�
B(a1 + a2)

2 � C(a1 � a2)
2

2
(12)

for some B;C > 0, and for every ! 2 
 and a 2 R2+: (The case of B > C corresponds

to strategic substitutability of actions, while the case of C > B to strategic com-

plementarity.) Our result guarantees BNE existence in general when the action sets

are weakly truncated from above, since the common utility �which is also a BP �is

clearly continuous and concave in a: Moreover, the in�uence of the parameter � on

the actions�direct impact need not be linear: the �rst term in (12) can be replaced

by any integrably bounded function of ! that is continuous and concave in a1 and a2

without a¤ecting BNE existence.

Our last example retains the quadratic form of utility functions but has multi-

dimensional strategy sets.

Example 4 (Routing problems). In a class of routing problems described

in Altman et al. (2007), a transportation network is modelled as a directed graph.

Each player i decides how to split his tra¢ c of size �i > 0 (that needs to pass from

an i-speci�c "source" node to a "destination" node on the graph) between the links

in the graph. The action set Ai of player i is thus a subset of [0;�i]
L (where L

denotes the set of links) of tra¢ c volume assignments that satisfy �ow-conservation

constraints,28 which is convex and compact. It is assumed that a per-unit common

congestion (dis)utility at a link l has the form cl (v) = bl + dlv for a total tra¢ c

volume v passing through l (where bl; dl < 0). Player i�s utility is then the total of

his (dis)utility experienced at all links, namely,

ui (a) =
X
l2L

"
bl + dl

nX
j=1

aj (l)

#
ai (l)

for each a =
�
(ai(l))l2L

�n
i=1

; where aj (l) denotes the volume of tra¢ c put by player

27See the previous footnote.
28For a full desription, see p. 2 in Altman et al. (2007).
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j through link l: Clearly, the function p that is given by

p (a) =
X
l2L

"
bl

nX
i=1

ai (l) + dl

 
nX
i=1

a2i (l) +
X

1�i<j�n
ai (l) aj (l)

!#
;

for any a =
�
(ai(l))l2L

�n
i=1

; is a potential for the game, and it is strictly concave and

continuous in a: The extension to the incomplete information case, with a concomitant

claim of BNE existence, can be performed e¤ortlessly (similarly to what has been

done, e.g., in Example 1), by adding uncertainty on the parameters (bl)l2L and (dl)l2L.

5 Appendix

Proof of the Lemma. Fix i 2 N; and notice that zi 2 argmaxyi2Xi Ui(yi; x�i) if
and only if the inequalityZ

C

[ui(!; (zi(!); x�i(!)))� ui(!; (yi(!); x�i(!)))]d� (!) � 0 (13)

holds for every yi 2 Xi and C 2 zi (the "if" direction is trivial, and to see the "only
if" direction consider only those deviations yi that coincide with zi on 
nC).
Next, for any �-integrable random variable Z on (
;z; �) ; denote by E [Z (�) j zi]

the conditional expectation29 of Z given the �eldzi: By taking Z (�) = ui(�; (zi(�); x�i(�)))�
ui(�; (yi(�); x�i(�))) for some yi; zi 2 Xi; the de�ning property of the conditional ex-

pectation guarantees that, for every C 2 zi;Z
C

[ui(!; (zi(!); x�i(!)))� ui(!; (yi(!); x�i(!)))]d� (!)

=

Z
C

E [ui(�; (zi(�); x�i(�)))� ui(�; (yi(�); x�i(�)))] j zi] (!) d� (!) :

Thus, (13) holds for every yi 2 Xi and C 2 zi if and only if

E [ui(�; (zi(�); x�i(�)))� ui(�; (yi(�); x�i(�)))] j zi] (!) � 0 (14)

for every yi 2 Xi and �-a.e. ! 2 
: It follows that the last condition on zi characterizes
the set argmaxyi2Xi Ui(yi; x�i): Similarly, zi 2 argmaxyi2Xi E(p)(yi; x�i) if and only
if

E [E(p)(�; (zi(�); x�i(�)))� E(p)(�; (yi(�); x�i(�)))] j zi] (!) � 0 (15)

29For a de�nition see, e.g., Section 34 in Billingsley (1995).
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for every yi 2 Xi and �-a.e. ! 2 
:
Now observe that

E [ui(�; (zi(�); x�i(�)))� ui(�; (yi(�); x�i(�)))] j zi]

(by (3)) = E [wi (�) [E(p)(�; (zi(�); x�i(�)))� E(p)(�; (yi(�); x�i(�)))]] j zi]

= wi (�)E [p(�; (yi; x�i)(�))� p(�; x(�))] j zi] ;

where the last equality is a consequence of zi-measurability of wi (see, e.g., The-

orem 34.3 in Billingsley (1995)). But wi (�) > 0, and so (14) holds if and only

if (15) holds. This shows that zi 2 argmaxyi2Xi Ui(yi; x�i) if and only if zi 2
argmaxyi2Xi E(p)(yi; x�i); establishing the claimed equality. �

Proof of the Theorem. We begin by recalling the notion of an L1 space. In

what follows, � will denote a �-�eld on 
 that is equal to either z or zi for some

i 2 N; and by a set-valued map B : 
 ! 2R
m
we will mean either A : 
 ! 2R

d
or

Ai : 
! 2R
di for some i 2 N:

The Banach space L1 ((
;�; �) ;Rm) consists of all (equivalence classes30 of) Rm-

valued, �-measurable and �-integrable functions on 
; with the L1-norm given by

kxk1;Rm =
Z



kx (!)kRm d� (!) (16)

for every x 2 L1 ((
;z; �) ;Rm) ; where k kRm denotes the Euclidean norm on Rm:

The topology that the L1-norm induces on L1 ((
;�; �) ;Rm) is called strong. The

weak topology on L1 ((
;�; �) ;Rm) is the minimal one in which, for every y 2
L1 ((
;�; �) ;Rm)(�the space of equivalence classes of all Rm-valued, bounded and
�-measurable functions on 
), the linear functional x 7�!

R


hx(!); y(!)i d� (!) is

continuous (where h; i denotes the scalar product on Rm).
Given any B : 
 ! 2R

m
as above, denote by L1 ((
;�; �) ;B) the set of all

x 2 L1 ((
;�; �) ;Rm) with x (!) 2 B (!) for �-almost every ! 2 
. The strong (re-
spectively, the weak) topology on L1 ((
;�; �) ;Rm) induces the strong (respectively,

the weak) topology and on its subset L1 ((
;�; �) ;B). Since B (= A or Ai) has con-

vex and compact values and is integrably bounded, L1 ((
;�; �) ;B) is weakly com-

pact by Corollary 2.5 of Balder and Yannelis (1993). In particular, L1 ((
;�; �) ;B)

is also weakly (and hence strongly) closed.
30The underlying equivalence relation identi�es any two �-measurable functions that coincide

�-almost everywhere on 
.
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We will now apply the above to the issue at hand. Notice that X; the set of

strategy pro�les in G; can be naturally viewed as a convex subset of the weakly

compact (and also strongly closed) L1 ((
;z; �) ;A) :31 We will �rst show that X

is a strongly closed subset of L1 ((
;z; �) ;A) : To this end, let
�
xk
	1
k=1

� X be a

strongly (k k1;Rd-)convergent sequence:32 In particular,
�
xk
	1
k=1

is a Cauchy sequence

w.r.t. k k1;Rd :
For each i 2 N and k � 1; xki 2 Xi represents an equivalence class in L1 ((
;zi; �) ;Ai).

Since kyik1;Rdi � kyk1;Rd for any y 2 L1
�
(
;z; �) ;Rd

�
and its restriction yi to

(any) di coordinates;
�
xki
	1
k=1

� Xi is a Cauchy sequence in L1 ((
;zi; �) ;Ai) w.r.t.

k k1;Rdi : Being a Banach space, L1
�
(
;zi; �) ;Rdi

�
is complete, and so is its strongly

closed subset L1 ((
;zi; �) ;Ai) : Therefore,
�
xki
	1
k=1

k k1;Rdi -converges to a limit
xi 2 L1 ((
;zi; �) ;Ai) (and, being in L1 ((
;zi; �) ;Ai) ; xi belongs to Xi). It follows

that
�
xk
	1
k=1

converges to x = (x1; :::; xn) in k k1;Rd ;33 and x 2 X: This shows that

X is a strongly closed subset of L1 ((
;z; �) ;A) :

Due to Mazur�s theorem on the equivalence between the strong and weak closed-

ness of convex sets in a Banach space (see, e.g., Corollary 23 in Royden (1988)), a

convex and strongly closed X is also weakly closed. It is, moreover, a subset of the

weakly compact L1 ((
;z; �) ;A) : Therefore, X is weakly compact.

The EP function E(p) can be (well-)de�ned by (5) on the entire L1 ((
;z; �) ;A).

Since the w-BP p satis�es conditions (a), (b) stated in Section 2.2, and (i), (ii) in the

premise of the theorem, by Theorem 2.8 of Balder and Yannelis (1993) p�s expectation

E(p) is weakly upper semi-continuous on L1 ((
;z; �) ;A) : In particular, E(p) is

weakly upper semi-continuous on the weakly compact subset X of L1 ((
;z; �) ;A) :

As such, E(p) attains its maximum on X at some x 2 X: By the Corollary, that x is
a BNE of G. �

31This is done by identifying any x = (x1; :::; xn) 2 X with the function ! 7�! (x1 (!) ; :::; xn (!));

whose values belong to A (!) for �-a.e. !:
32Now and henceforth, concrete functions will be used to represent the corresponding equivalence

classes in L1.
33This is because

x� xk
1;Rd �

Pn
i=1

xi � xki 1;Rdi :
18
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