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1 Introduction

This paper deals with the problem of screening and, in particular, with the issue of screening biases.

Our screening problem arises when a decision maker (DM) who filters elements based on noisy unbiased

assessments, tries to maximize the average expected value of accepted elements. For that purpose, she

fixes a threshold level, namely an acceptance criterion, to filter out low-value elements.

Our first main result concerns the influence of stricter screening on performance. By and large, we

show that stricter screening not only reduces the number of accepted elements, but also could lower

their expected average value. In other words, a higher bar carries no quality assurances, as a lower

one may produce a win-win situation on both sides of the quality vs. quantity (alleged) trade-off.

To exemplify this insight, we use the well-known setting of peer-reviewed academic publishing.

Consider a set of academic papers whose potential impact on a standard 12-point grading scale is

distributed as in Figure 1. The values and distribution are unknown to the editor and therefore each

paper is evaluated via an unbiased noisy refereeing process. The evaluation process generates a mean-

preserving spread of the original valuation. Referees evaluate each paper accurately with probability

(w.p.) 0.8; otherwise they deviate by two levels, either upwards or downwards, w.p. 0.1 each. As such,

the noise is well-defined (given the original distribution of values), independent, symmetric, and of a

discrete normal-like distribution. The evaluation distribution is given in Figure 2.

Now, the editor is confronted with the problem of fixing the bar. If she chooses to publish only the

top 5%, namely all papers ranked A and above, then the expected value of the published work would

be close to B�. However, if she lowers the bar to publish the top 13%, roughly all papers ranked

A� and above, the inclusive addition of accurately evaluated A� papers would increase the expected

value of the published work to A�. In that case, not only are additional papers actually published,

but their average objective impact is higher!
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Figure 1: The distribution of papers’ impact.
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Figure 2: Noisy evaluation of papers’ impact. The distribution observed by the editor.

The driving force behind this result is the influence of unbiased noise over different values. A mass

of average elements subjected to unbiased noise evidently produces a nominally small, yet relatively

significant, amount of upward shifting, whereas a similar effect over a small group of superior elements

is mild. To put it differently, the effect of unbiased noise is potentially biased by the action of screening.

Note that this effect is locally generated and would still hold even if additional papers whose ranks

are A and A� are added to the original distribution and their evaluation is completely undistorted.

The above example and insight are based on the key assumption that a threshold strategy has

been implemented. Though such strategies are commonly used both in theory and in practice, their

optimality has yet to be established. In the example above, a screening strategy that accepts valuations

ranked A� and A� would produce a higher average expected value than the threshold strategy which

accepts every valuation of at least A�. Thus, in the second part of the paper we extend the decision

problem to include general utility functions, and address the issue of optimal screening strategies.

The second main result of this paper provides a characterization of optimal threshold strategies

for screening. We relate optimal threshold strategies to first- and second-order stochastic dominance

of the original valuation, conditional on the noisy assessment at different levels. We then apply our

characterization to previous results regarding the Peter Principle (see Peter and Hull (1969)), and

derive policy implications concerning affirmative action. Our characterization shows that eliminating

affirmative action could lead to a suboptimal outcome.

1.1 Related literature and main contribution

The problem of screening through the examination of pooling and separating equilibria has been well

known to economic researchers for decades. The study closest to our own is the seminal work of Stiglitz

and Weiss (1981) which investigates the role of interest rates as a screening device. Similarly to our

result, they showed that returns are not necessarily monotone with respect to interest rates. Once

rates rise, some “safe” borrowers refrain from taking loans, potentially lowering the bank’s expected
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return. Despite these similarities, there is a significant difference between the two non-monotone out-

comes. The result of Stiglitz and Weiss (1981) holds in equilibrium whenever borrowers strategically

react to the interest-rate mechanism. We, on the other hand, show that non-monotonicity could arise

when borrowers are not better informed. In many respects, we respond to and augment the statement

of Stiglitz (1975) that “...economies with imperfect information with respect to qualities of individuals

differ in fundamental ways from economies with perfect information” by showing that similar phe-

nomena could be attributed to uncertainty rather than asymmetric information. Furthermore, from a

technical point of view our results bear some resemblance to the Simpson Paradox in which changes

in proportions distort probabilities and produce counter-intuitive results (see, e.g., Simpson (1951),

Blyth (1972), and Wagner (1982)).

From the vast literature that considers threshold strategies for screening, the second part of our

work strongly relates to the seminal study of Lazear (2004) which provides a theoretical basis for the

Peter Principle and proves that consecutive noisy screening leads to an upwards bias. We continue this

line of thinking by questioning the incentives for applying threshold strategies. Our results indicate

that the upwards bias could be eliminated once optimal non-threshold policies are applied, underlining

the adverse effect of suboptimal threshold strategies.

Before we formalize the problem, we wish to emphasize that the widespread use of threshold

strategies is well established both in practice and in theory. Whether it be dynamic inventory problem

as in Scarf (1959) or admission criteria for top schools, threshold strategies appear to be a natural

tool for screening and carry considerable merit. For example, threshold strategies are simple, easy to

implement and transparent, thus less vulnerable to manipulation. So regardless of their optimality,

the attributes and popularity of threshold strategies make them an important aspect for analysis, as

done in the present work.

1.2 Structure of the paper

The paper is organized as follows. In Section 2 we present the basic screening model. In Section 2.1 we

establish the first main result concerning screening biases, and in Section 2.2 we derive implications

to credit markets, auctions, and general trade. In Section 3 we extend the basic model to tackle

the problem of optimal threshold strategies. In Section 3.1 we provide a characterization for these

strategies which, in Section 3.2, is applied to several well-known scenarios. Concluding remarks are

given in Section 4.
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2 The basic screening model

Consider a set of academic papers whose potential impact is distributed according to a non-constant

and bounded random variable V , referred to as an impact variable. Since the value of each paper is

unknown, every paper goes through an unbiased and noisy refereeing process and is publicly evaluated

by V �N , where N is an unbiased random variable, i.e., it is symmetrically distributed around zero

and independent of V . The editor uses the noisy evaluation to perform a screening. She fixes a cap

b P R such that a paper is filtered out if its evaluation is strictly below b. The editor’s goal is to

maximize the expected impact of the journal (i.e., the average impact of the accepted papers) which

is given by

πpbq � ErV |V �N ¥ bs.

Note that the editor is required to accept some papers in order for the impact to be well-defined. There-

fore, any cap b must be feasible, meaning that it should not exceed the maximal possible evaluation

such that PrpV �N ¥ bq ¡ 0. We denote the support of any random variable X by
�
X,X

�
.

Assuming that some papers must be published, the editor is faced with the general problem of

fixing the cap. Namely, would it be optimal to set a higher threshold, while maintaining a minimal

required volume of publications? A priori, it appears that an increased cap could only improve the

journal’s expected impact. A higher benchmark screens out less influential papers, driving the average

level of accepted papers upwards at the cost of the aggregated impact (since fewer papers are eventually

published). To put it differently using various examples: stricter job interviews should improve average

production; higher prerequisites should enhance the average student’s level; and a more selective choice

of products should advance the franchise and increase average prices.

However, this intuition turns out to be false. We prove that a stricter screening not only produces

fewer published papers, but could also lower the average level of published ones. Before we turn to

solve this paradox, we first need to accurately define a screening bias.

Definition 1. An impact variable V has a screening bias if there exists an unbiased noise variable

N , such that πpbq is non-monotonic. An impact variable V has an extreme screening bias if for every

positive ε   V � ErV s, there exist a noise variable N and feasible caps b2 ¡ b1 (which could depend

on ε) such that

πpb1q ¥ V � ε ¡ ErV s � πpb2q.

In simple terms, an impact variable has no screening biases if, independently of the noise, the

expected impact of the published work cannot decrease as the bar is set higher. These biases are

extreme if one can generate an almost optimal screening with b1, while an increase to b2 generates a

result equivalent to no screening whatsoever.
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2.1 The robustness of screening biases

We begin by establishing the existence of screening biases. Theorem 1 below states that every impact

variable has extreme screening biases. One way to derive an intuition for this result is to think of a

noise of significant magnitude which has a small probability of taking effect. Given a threshold level

that captures a mass of accurate assessments, the screening is not significantly affected by the noise.

However, for a higher threshold which is fixed above these accurate evaluations, low and high values

fluctuate independently such that the screening becomes redundant. We emphasize (and prove later

on) that this is only one possibility out of many for biases to emerge.

Theorem 1. Every impact variable has extreme screening biases.

Proof. Fix ε P
�
0, V � ErV s

�
. Without loss of generality (up to a linear transformation of

the impact variable), we prove the above statement for an impact variable supported on r0, 1s. To be

specific, we assume that V P r0, 1s w.p. 1, with a CDF F such that F p1q � 1, and Prp1�δ ¤ V ¤ 1q ¡ 0

for every δ ¡ 0.

If PrpV � 1q ¡ 0, take δ1 P p0, 1q and consider b1 � 1� δ1   1� δ1 � b2. Define N by

N �

#
�p1� δ1q, w.p. δ1

2 ,

0, w.p. 1� δ1.

It follows that V �N ¥ b2 ô N � 1� δ1; and so πpb2q � ErV s. However,

πpb1q �
E
�
V 1ltV�N¥1�δ1u

�
Pr pV �N ¥ 1� δ1q

�
PrpN � 0qErV 1ltV¥1�δ1us � PrpN � 1� δ1qErV s

PrpN � 0qr1� F p1� δ1qs � PrpN � 1� δ1q

�
p1� δ1qErV 1ltV¥1�δ1us �

δ1
2 ErV s

p1� δ1qr1� F p1� δ1qs �
δ1
2

Ñ ErV |V ¥ 1s, as δ1 Ñ 0.

Hence, the result holds true for a sufficiently small δ1 ¡ 0.

If PrpV � 1q � 0, follow the same computation with 0   δ1, δ2   1, caps b1 � 1� δ2   1 � b2, and

N �

#
�1, w.p. δ1

2 ,

0, w.p. 1� δ1.

The computation yields πpb2q � ErV s, and limδ1Ñ0 πpb1q � ErV |V ¥ 1 � δ2s. By taking sufficiently

small δ1 and δ2, the statement of Theorem 1 holds.

Remark 1. As a technical generalization, one can partially extend Theorem 1 to show that all random

variables, including unbounded ones, have screening biases.
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Once existence of screening biases is established, we move on to the important issue of robustness.

In general, one could argue that the phenomenon of screening biases is restricted to significant noises

that completely distort the screening. We approach this concern in several ways. First, note that

even mild noises instigate biases. For example, the noise used in the proof of Theorem 1 is not only

unbiased, but maintains an infinitesimal variance. Second, in Claims 1 and 2 below we demonstrate

the universal nature of the relevant noise variables. In particular, Claim 1 considers a normal-like

continuous1 noise — with a high probability it is uniformly distributed on a small interval around

zero; otherwise, it is uniformly distributed on a broader interval around zero. The claim states that

for every impact variable one can find such bias-generating noises.

Claim 1. Every impact variable has a continuous noise variable that produces screening biases.

Proof. Similarly to Theorem 1, consider V on r0, 1s with a CDF F where Prp1� δ ¤ V ¤ 1q ¡ 0

for every δ ¡ 0, and PrpV P p0, 1qq ¡ 0. Fix ε, c P p0, 1q such that N is, w.p. c, distributed uniformly

on p�ε, εq, and w.p. 1 � c is distributed uniformly on p�1,�εq Y pε, 1q. Take b1 � 1 and b2 � 1 � ε.

A direct computation shows that

πpb2q �

³1
ε vpv � εqdF pvq³1
εpv � εqdF pvq

,

πpb1q �
1�c
2�2ε

³1�ε
0 v2dF pvq � 1

2ε

³1
1�ε vrε� cpv � 1qsdF pvq

1�c
2�2ε

³1�ε
0 vdF pvq � 1

2ε

³1
1�εrε� cpv � 1qsdF pvq

.

If cÑ 1, then

πpb1q Ñ

³1
1�ε vrε� v � 1sdF pvq³1
1�εrε� v � 1sdF pvq

.

In addition, if ε Ñ 0, then πpb1q Ñ 1, while πpb2q   1. Thus, Claim 1 holds for ε and c sufficiently

close to 0 and 1, respectively.

Claim 1 shows that the DM can have a very accurate screening system, such that errors are mild in

terms of magnitude and plausibility and still encounter biases. Moreover, the fact that the screening

process is highly accurate (but still noisy) actually enables biases to emerge. The expected value is

sensitive to changes in valuations relative to their mass; therefore biases are amplified by the fact that

valuations are highly accurate although some errors are still possible.

The next result further extends the last conclusion. By restricting the discussion to finitely discrete

distributions, one can prove that biases exist as long as the noise is not completely negligible relative

to the impact variable. Formally, given finitely supported variables V and N , the noise variable is

considered V -distinguishable if for every two adjacent values, v1   v2, of the impact variable it follows

1We use the term “continuous” to describe a non-atomic random variable that is fully supported on an interval.
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that
��N �N

�� ¡ v2�v1. That is, a noise variable is V -distinguishable if its support cannot be bounded

by two adjacent values of V . The following claim shows that any distinguishable noise produces biases.

Claim 2. For every finitely supported impact and noise variables where the noise is V -distinguishable,

there exists α P p0, 1q such that αN produces screening biases.

Proof. Consider V and N where N is V -distinguishable, SupppV q � tv1   v2   � � �   vmu, and

SupppNq � tn1   n2   � � �   nku. Denote βij � vi � nj for any i and j. Since the two variables have

finite support, we can take any contraction αN such that the βijs are distinct. Fix a cap of b1 � βm1.

Then

PrpV �N ¥ b1q � PrpV � vm, N � n1q �
¸
n¡n1

PrpV ¡ βm1 � n,N � nq,

so that the second term in the RHS contains positive-probability events where V   vm due to the

assumption on N .

If the cap is infinitesimally increased to b2 ¡ b1, without crossing the following βij , we get PrpV �

N ¥ b2q � PrpV � N ¥ b1q � PrpV � vm, N � n1q, and the probability PrpV � vm|V � N ¥ bq

decreases. Since vm � maxtV u, the conditional probability of non-maximal values of V increases as

well. Thus, the weighted average of V (given V �N ¥ b) decreases if the cap is increased from b1 to

b2, and Claim 2 follows.

The role of the scaling factor α is twofold. On the one hand, it is technically used to eliminate

potential equalities and ensure that all assessments are distinct. On the other hand, the factor shows

that a high-magnitude noise is not a necessary condition for a screening bias. These two attributes

exemplify how the noise magnitude is relevant only to the extent to which it enables strict ordinal

changes of the original valuations. Moreover, the proof of Claim 2 is based on the top two values of V

(i.e., v2 � maxtV u), so one can weaken the condition on the distinguishable noise to these two values

specifically.

It is not a mere coincidence that the top valuations are essential for the proof of Claim 2. The

result of the following lemma builds on this notion, showing that biases are likely to emerge at a

top-level screening rather than at a lower one. Specifically, biases do not occur when thresholds are

bounded from above by ErV s�N , which implies biases are more prevalent in screening at high levels.

In addition, Lemma 1 shows that the magnitudes of biases are bounded by the size of the noise,

meaning that the decrease in expected impact is limited to the support of the noise.

Lemma 1. If b   ErV s �N , then the expected impact πpbq is an increasing function. Moreover, for

every two feasible caps b2 ¡ b1, we have that πpb2q ¥ πpb1q � |N �N |.

Proof. Fix V , N , and b1   b2   ErV s � N . A necessary and sufficient condition for a bias is

ErV |V � N P rb1, b2qs ¡ ErV |V � N ¥ b2s. Since the LHS equals ErV |b1 � N ¤ V   b2 � N s and
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b2�N   ErV s w.p. 1, we conclude that the LHS is bounded by ErV s while ErV |V �N ¥ b2s ¥ ErV s
(as needed for Lemma 1).

For the second part of the lemma, fix feasible caps b2 ¡ b1, and define Y � V �N . Then

πpb2q � πpb1q �N �N � ErY �N |Y ¥ b2s � ErY �N |Y ¥ b1s �N �N

¥ ErN |Y ¥ b1s � ErN |Y ¥ b2s �N �N

¥ N �N �N �N ¡ 0,

which concludes the proof.

Both statements follow the same motivation as Claim 2 — the ordinal changes are bounded by

the magnitude of the noisy deviation, and filtering at bottom levels cannot generate a significant

impact. The leading conclusion, therefore, is that designers should not concern themselves with biases

whenever screening is restricted to low-level elements and when the potential loss from a limited noise

is negligible.

2.1.1 Screening biases and the monotone likelihood ratio property

Two probability distributions are said to have the monotone likelihood ratio property (MLRP) if their

ratio is non-decreasing. In our context, one can take two realized signals s1 ¡ s2 and consider the ratio

between the distributions of V |tV �N � s1u and V |tV �N � s2u. Under the MLRP, this ratio is a

non-decreasing function. Moreover, if the MLRP holds, then the distribution of V |tV �N � s1u first-

order stochastically dominates the distribution of V |tV �N � s2u, which leads to a higher expected

value (i.e., ErV |V � N � s1s ¡ ErV |V � N � s2s). Therefore, the law of total expectation implies

that a screening bias can exist only if the MLRP fails. This observation becomes useful in Section 3,

where we provide a weaker property than MLRP to eliminate screening biases, which also characterizes

optimal threshold strategies.

2.2 Implications of screening biases

2.2.1 Credit ratings

Potential errors in credit ratings occur more frequently than thought. In many cases, either high- or

low-risk debtors are wrongfully flagged as low- and high-risk ones, thus posing a substantial problem

in credit markets.2 To address this problem using our formulation, assume that V defines the actual

solvency of a group of debtors and N denotes the evaluation error of the rating agency. Thus, screening

biases correspond to stricter loan conditions that generate lower expected returns. Typically, this is

2For example, see the CNBC article, “The real problem with credit reports is the astounding number of errors”,

Aaron Klein, September 27, 2017.
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not surprising in credit markets. Stricter screening regularly limits the potential profit by reducing

the risk. Yet, our screening biases are fundamentally different since the relation between returns and

risk via the interest-rate mechanism is irrelevant. In our context, the lower expected returns are due

to bad loans, rather than safer ones. In other words, a stricter screening eliminates high-value debtors

who could increase expected profits, while reducing the creditor’s risk.

Building on the result of Theorem 1, extreme screening biases suggest that not only expected

returns decrease, but the investment becomes riskier. Specifically, once πpbq is ε-close to optimality,

the variance over accepted valuations is close to zero. This result follows directly from the Bhatia-

Davis inequality (see Bhatia and Davis (2000)), stating that VarpXq ¤
�
X � ErXs

�
pErXs �Xq for

every bounded random variable X. Therefore, for every extreme screening bias with a sufficiently

small ε, the transition from a low cap to a higher one increases the variance over the investment and

decreases the expected return: a lose-lose situation.

2.2.2 Auctions and the winner’s curse

Aside from the general screening problem, our model also applies to auctions. For example, consider an

English auction where b is the starting price. Under uncertainty regarding the value of the auctioned

item, whether it is a given commodity in regular auctions or a certain project in procurement auctions,

the opening price is of key importance. Assuming that the valuation among bidders is given by V ,

and bidders’ uncertainty is projected through N , then the opening bid determines the distribution of

valuations among the auction participants. Only bidders with noisy valuations above the cap (i.e.,

V �N ¥ b) would participate, and screening biases suggest that a higher opening bid is not necessarily

productive and does not guarantee efficiency.

The implication of screening biases to auctions is related to the well-known phenomenon of the

winner’s curse. The fact that bids depend on a mean-preserving spread of the true valuation suggests

that the winning bidder may not be the one with the highest valuation, but only the most optimistic

one. Such inefficiency becomes crucial in credit auctions,3 as a higher cap possibly increases the

probability of a default.

2.2.3 General trade

The last implication we provide relates to general trade. Let V represent the intrinsic quality of

products in a given market, whereas V �N reflects the subjective assessments among sellers. If b is

the current price, then only sellers with a valuation of V �N ¤ b will agree to sell. With a few algebraic

adjustments, it follows that a screening bias is equivalent to non-monotonicity of ErV |V � N ¤ bs

3Credit auctions are auctions where payments are not immediate, as in long-term infrastructure and real-estate

projects. See Parlane (2003), Board (2007), and Lagziel (2018), among many others.
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with respect to the price b. Namely, a higher price may reduce the expected quality of products in the

market by introducing relatively more low-value products with overzealous sellers.

3 The optimality of threshold strategies

The model and results of Section 2 are based on two key assumptions: (i) the DM’s goal is to maximize

the expected value of V ; and (ii) the DM uses a threshold strategy. Though both assumptions seem

straightforward, one should bear in mind that the DM can exercise more sophisticated policies to

maximize a utility function that depends on V . In the current section, we extend the basic model by

considering an expected-utility maximizer DM who faces a screening problem subject to the informa-

tion encapsulated in V �N . Our goal is to establish conditions under which threshold strategies are

indeed optimal, and study the practical implications in cases where they are suboptimal. Doing so,

we also establish a relation between the optimality of threshold strategies and the preceding analysis

of screening biases.

3.1 The extended model and main result

Fix an impact variable V and a noise variable N , and consider a DM with a utility function u : RÑ R.

As an expected-utility maximizer, the DM sets a screening strategy σ : R Ñ t0, 1u, where 1 denotes

the acceptance of a specific valuation and 0 denotes a rejection. Given σ, the DM’s expected utility is

upσq � E
�
upV q1ltσpV�Nq�1u

�
.

That is, the DM tries to maximize the expected utility from the accepted elements, subject to the noisy

evaluation V �N . Evidently, the decision to accept an element hinges on the sign of the utility function,

thus the DM would accept any positive-probability set A of valuations if E
�
upV q1tV�NPA0u

�
¥ 0 for

every subset A0 � A. Note that all definitions and statements hold almost surely, i.e., hold up to a

zero-measure deviation.

A strategy σ is a threshold (cut-off) strategy if the acceptance of some values with positive prob-

ability implies that higher valuations are not rejected with a positive probability. Formally, a strat-

egy σ is a threshold strategy if for every t, the condition Prps ¤ t : σpsq � 1q ¡ 0 implies that

Prps ¡ t : σpsq � 0q � 0. Define σu to be the optimal strategy given u, where the notion of optimality

is taken in the usual sense that upσuq ¥ upσq for every strategy σ.

We can now address the question of optimal threshold strategies and, specifically, to characterize

the conditions ensuring that such strategies are optimal. For that purpose, the following notations are

needed. For every A � R, let V |A be the conditional distribution of V given V �N P A. Denote first-

order (second-order) stochastic-dominance by ©I (respectively, ©II). The following theorem provides a
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characterization for optimal threshold strategies, based on the stochastic dominance of V conditional

on different feasible valuations.

Theorem 2. The optimal strategy σu is a threshold strategy for every increasing (increasing and

concave) utility function u if and only if for every two positive-probability sets A,B � R such that

a ¡ b for every a P A and b P B , it holds that V |A ©I V |B (respectively, V |A ©II V |B).

Proof. We prove the first part of the theorem, and the second part follows similarly by taking an

increasing and concave utility function. For every two sets A,B � R, denote A ¡ B if a ¡ b for every

a P A and for every b P B.

For the first part we use a proof by contradiction. Assume that for every two sets A ¡ B of

positive probability we have that V |A ©I V |B, and that there exists an increasing utility function u

such that σu is not a threshold strategy. Namely, there exists t0 such that Prps ¤ t0 : σpsq � 1q ¡ 0

and Prps ¡ t0 : σpsq � 0q ¡ 0. Let A � ts ¡ t0 : σpsq � 0u and B � ts ¤ t0 : σpsq � 1u. The sets

A and B are of positive probability and, by definition, A ¡ B. FOSD implies that ErupV q|V � N P

As ¥ ErupV q|V � N P Bs. However, σpAq � 0 and σpBq � 1 suggest that ErupV q1tV�NPBus ¥ 0 ¡

ErupV q1tV�NPAus, which contradicts the previous inequality.

For the converse, assume there exist sets A ¡ B of positive probability such that V |A «I V |B.

Thus, there exists an increasing utility function u such that ErupV q|V �N P Bs ¡ ErupV q|V �N P As.

Consider an auxiliary utility function ũ � u� c where ErũpV q|V �N P Bs ¡ 0 ¡ ErũpV q|V �N P As,

which implies that ErũpV q1tV�NPBus ¡ 0 ¡ ErũpV q1tV�NPAus. Hence, σũpAq � 0 and σũpBq � 1, up

to a zero-measure deviation. Therefore, σũ is not a threshold strategy.

Let us explain Theorem 2 in simple terms. Consider any two sets of evaluations A and B both of

positive probability such that A is (point-wise) above B. Assuming that V |A stochastically dominates

V |B, then threshold strategies are optimal since a non-negative expected payoff at the lower values

leads to a non-negative expected payoff at higher ones. As it turns out, the other direction holds just

as well: once stochastic dominance fails, one can easily construct a relevant utility function which does

not obey the threshold-strategy optimality criteria.

Before we elaborate on the applicable aspects of Theorem 2, we relate it to the results given in

Section 2. In particular, note that the necessary condition for optimal threshold strategies given in

Theorem 2 disallows screening biases to emerge. That is, if a screening bias exists, then there exist

sets A ¡ B of positive probability such that ErV |Bs ¡ ErV |As. The last condition is weaker than

MLRP (as discussed in Section 2.1.1), since monotonicity is required only in terms of expected values

rather than in terms of the ratio of distributions.

The combination of Theorems 1 and 2 raises the question of optimal threshold strategies that

still allow screening biases to emerge. The answer to this question is based on the chosen utility

11



function. Since a screening bias contradicts the condition given in Theorem 2, one can construct a

utility function such that threshold strategies are suboptimal. This, however, does not imply that

threshold strategies should never be used since, for some utility functions, threshold strategies are

indeed optimal (for example, for any positive function).

3.2 Applications

3.2.1 The Peter Principle

The Peter Principle was initially coined by Peter and Hull (1969) and later studied in a theoretical

framework by Lazear (2004) in the context of consecutive screening. Lazear showed that regression

to the mean prompts an upwards bias once a threshold strategy is used. This bias explains numerous

phenomena, ranging from failed managerial promotions to unsuccessful movie sequels. The threshold

strategies in Lazear’s model ensure that accepted elements have a temporal advantage over rejected

ones due to the realized noise. However, such strategies are potentially suboptimal, whereas the

implementation of optimal non-threshold policies can completely eliminate the mentioned bias. Let

us consider a concrete example to explain this phenomenon.

Take a uniformly distributed impact variable V � Up�0.5, 0.5q, and a symmetric binary noise

variable N � �0.5. For simplicity, assume that upxq � x. Fix a threshold strategy σ � 1r0,1s which

screens out every negative valuation. This strategy would produce the same uniform distribution as

the original one, i.e., V |r0,1s � Up�0.5, 0.5q. As Lazear points out, the expected noise of every accepted

(rejected) element is positive (negative, respectively), so the upward bias is evident. Formally, the

computation shows that

ErN |σpv �Nq � 1s � 0.5   �0.5 � ErN |σpv �Nq � 0s.

However, this analysis follows a threshold strategy that is clearly suboptimal.

Consider the strategy σ � 1r�0.5,0sYr0.5,1s which accepts elements of noisy valuation between

r�0.5, 0s and r0.5, 1s. This strategy yields an expected noise ErN |σpV � Nq � 1s � 0 and a posi-

tive expected value ErV 1tσpV�Nq�1us �
1
8 . In other words, a non-threshold strategy produces positive

expected value with no expected bias. It is important to note that the latter strategy is indeed opti-

mal, and strictly dominates any threshold strategy. The same non-monotonicity holds for other limited

noises such as N � �n where n ¡ 0.25. This simple example illustrates how suboptimal threshold

strategies generate a bias that optimal non-threshold policies can overcome.

3.2.2 Affirmative action

Affirmative action advocates the promotion of education and employment for discriminated individuals

of certain groups. These policies are aimed at levelling the playing field, i.e., maintaining equal
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opportunities. To illustrate this notion in our model, consider a continuous impact variable V which

denotes the true valuation of individuals in a certain position, and a finitely supported N which

depends on various irrelevant characteristics. In our formulation, affirmative action is manifested

through different screening criteria among heterogeneous individuals, namely the screening is based

on a non-threshold strategy, while the absence of affirmative action suggests a threshold strategy.

To exemplify this idea, consider the previous example where V � Up�0.5, 0.5q and N � �1{3

with equal probabilities. A straightforward computation shows that the optimal screening strategy

is σ � 1r0,1{6sYr1{3,5{6s and not a threshold strategy. The
�
0, 16

�
-acceptance condition targets negative

noise realizations, while the
�
1
3 ,

5
6

�
-condition targets positive ones. This optimal strategy specifically

targets individuals with different noise realizations, illustrating the positive economics of affirmative

action which go beyond the normative ones. Claim 3 generalizes this example.

Claim 3. If V is continuous and N has finite support, there exists positive-probability sets A ¡ B

such that V |A «I V |B.

Proof. Fix V and N as stated such that SupppNq � tn1   n2   � � �   nku. If nk�V ¥ V �nk�1,

then V |rnk�V ,nk�V s
� V which does not dominate V |rV�nk�1�ε,V�nk�1s

, for a sufficiently small ε ¡ 0.

Therefore, consider δ � nk � nk�1   V � V , and fix ε � δ
2 . Denote V k�1 � V � nk�1, and define the

intervals A � pV k�1, V k�1 � εq and B � pV k�1 � ε, V k�1q. By definition A ¡ B, but SupppV |Aq �

pV � δ, V � εq while SupppV |Bq � pV � δ � ε, V � δq Y pV � ε, V q. Hence, PrpV ¡ V � ε|Bq ¡ 0 �

PrpV ¡ V � ε|Aq and the claim follows.

Note that the proof carries some resemblance to Lemma 1 in the sense that the strategies’ discon-

tinuity is imminent at top valuations.

4 In conclusion

This paper deals with two screening-related problems: the first concerns the adverse effect of stricter

screening and the second focuses on the actual screening method. In the first part of the paper we

establish the existence and robustness of screening biases, and in the second part we characterize

optimal threshold strategies. We combine the two problems and results by showing that screening

biases exist as long as the necessary and sufficient condition for optimal threshold strategies fails.

Thus, although the two parts deal with slightly different goals, they lead to similar conditions overall.
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