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1 Introduction

Imagine that you are on the verge of an important decision. To address this decision properly, you

gather all relevant (potentially noisy) information and, based on that information, you dictate some

decision rule, namely a strategy. Now assume you are approached by a person who advises you to

strictly improve your decision, and that advice somewhat depends on a lucky coin. Hearing this,

you will quite possibility consider the suggestion to be a joke, and for good reason. It just does not

seem reasonable that one can improve a decision by introducing additional independent noise to the

process. Nonetheless, in this paper we substantiate the potential superiority of the mentioned proposal

by studying the impact of different noises on various screening problems.

This research begins with a screening problem in which one decision maker (DM) performs a

screening based on noisy unbiased evaluations. The decision maker could be a manager reviewing job

applicants, an editor of a peer-reviewed academic journal screening for insightful papers, or even a

rating agency trying to asset the default risk of various borrowers. In all these scenarios (and various

others), the decision problem is based on some noisy evaluation upon which the DM decides whether

to accept or reject an element from a general set.

Following the model of Lagziel and Lehrer (2019), we assume that the accurate values of the

elements in question are distributed according to an impact variable V and there exists a noise variable

N , such that the DM observes V � N while trying to maximize the expected impact of accepted

elements through a proper decision rule (i.e., a screening strategy) which depends on V � N . To

ensure non-trivial results, we assume that the DM has a capacity constraint such that a certain

volume of elements must eventually be accepted.

The search for optimal screening strategies typically begins by examining threshold strategies for

an obvious reason - in the absence of noise, threshold strategies are indeed optimal. In this paper,

we adhere to this line of thinking as well. Indeed, our first main result roughly states that, under

threshold strategies, one can strictly improve a screening by adding independent binary noise to the

evaluations. In other words, we establish the possibility to generate “lucky coins” that improve a

screening process. To provide some intuition for this statement, we highlight two key conditions that

are essential for the mentioned result. The first is that threshold strategies be applied although they

are not necessarily optimal. The second is that the original noise N can generate non-trivial ordinal

changes among values of V , conditional on V �N . Once some ordinal changes occur, the additional

noise can partially correct the applied screening strategy. A concrete (and rather simple) example of

this result is given in Section 3.1.

This preliminary result is merely the overture to a much broader question concerning the way

different noises impact screening processes; a question that stands at the core of the current work. We
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address this research question by examining the superiority of one noise variable over another. That

is, we ask whether, ceteris paribus, a screening under one noise variable produces a better result than

under a different one. More formally, we refer to this situation as screening dominance, and say that

one noise variable S-dominates another if the expected value of accepted elements given the former

noise is at least as high as the expected value given the latter.

Our second main result provides a partial characterization of screening dominance under threshold

strategies. Specifically, we fix two non-atomic noises and define a percentile-transformation (PT)

function between the two noises. Our equivalence result shows that one noise S-dominates another if

and only if the PT function is a contracting mapping. This result establishes a new method to compare

noise variables, namely a contraction mapping, which defers from commonly known ones such as the

mean-preserving spread (see literature review below for more details).

The next stage of our analysis focuses on optimal screening strategies. We begin this stage by prov-

ing that the lucky-coin outcome completely changes once optimal strategies are introduced. Assuming

that optimal screening strategies are applied, we prove that a lucky coin cannot exist since additional

noise can only damage the screening process. This result leads to a characterization of screening

dominance between normally distributed noises. That is, we consider two normally distributed noises

N1 and N2, and prove that N1 S-dominates N2 if and only if N1 could be generated by the sum of N2

and another normally distributed, independent noise.

The last part of our analysis combines the previously mentioned results by proving that threshold

strategies are optimal once uniform non-atomic noises are considered. Given such noises, we show

that screening dominance is not fully characterized by additive noise, but may follow from the same

contraction property that provided a key characterization under threshold strategies.

1.1 Related literature and main contribution

The economic research of screening and noisy signals ranges from job-market signalling and education

to insurance and credit markets (see, e.g., Spence (1973), Stiglitz (1975), Rothschild and Stiglitz

(1976), and Stiglitz and Weiss (1981)). Note that these papers (among many others) typically focus

on costly screening and strategic signalling, while we consider a non-strategic and costless signalling

model. So, in the relevant literature, the papers that are closest to ours are Rothschild and Stiglitz

(1970, 1971), and Lagziel and Lehrer (2019).

The first aspect that associates our work with that of Rothschild and Stiglitz (1970, 1971) is the

underline goal: relating probabilistic properties of random variables to the preferences of a rational

decision maker. Rothschild and Stiglitz (1970, 1971) achieve this goal by defining the notion of a

mean-preserving spread (MPS) which induces a partial order over lotteries, and then relating this

order to the preferences of a risk-averse expected-utility maximizer. In contrast, in our paper, we
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consider an additive independent noise and provide several equivalence results between the induced

partial order (over noises) with screening dominance.

This first similarity naturally leads to the second important connection between the studies - the

origin of the partial orders in question. We, similarly to Rothschild and Stiglitz (1970, 1971), use

additive independent noise as the basis for our partial order and analysis. However, Rothschild and

Stiglitz use this noise to define the notion of a MPS, whereas we use it to define a contraction between

noises which entails superior screening capabilities, either through threshold strategies or through

optimal ones. In addition, we provide a combination of positive and negative results, specifically

because we do not confine ourselves to optimal screening, but allow for commonly-used threshold

strategies.

Another main resemblance between the studies is the ability to provide a wide range of applications

for the given theoretical results. Rothschild and Stiglitz (1971) apply their earlier results (from the

1970 paper) to various investment and production problems. We, however, follow the model of Lagziel

and Lehrer (2019) with its broad set of applications that range from peer-reviewed academic publishing

to credit ratings.

Lastly, we wish to emphasize the strong connection between the current study and Lagziel and

Lehrer (2019). Not only do we use a similar screening model, but the basic notion of a screening bias,

which lies at the core of Lagziel and Lehrer (2019), is the starting point of the current work. We

establish our lucky-coin result by first constructing a screening bias, and then partially correcting it

using additive noise (e.g., see the figures and example given in Section 3.1). Note that the current

work provides a much broader set of positive results and characterizations, specifically because we

account for optimal strategies as well as threshold ones, while Lagziel and Lehrer (2019) only account

for the latter.

1.2 Structure of the paper

The paper is organized as follows. In Section 2 we present the basic screening model. In Section 3 we

study screening problems under threshold strategies and, in Section 4, we focus on screening problems

under optimal strategies. In Section 4.2, we combine the results of Sections 3 and 4 by analysing

screening problems with uniform noises. Concluding remarks are given in Section 5.

2 Preliminaries

We follow a basic screening model with one decision maker (DM) who performs a screening. Consider

a set of elements whose values are distributed according to a non-constant random variable V , referred

to as an impact variable. The elements’ individual values are private, so every element with private
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value v goes through a noisy evaluation process and is evaluated by v � N , where N is an unbiased

noise variable, i.e., it is symmetrically distributed around zero and independent of V .1

The DM uses the noisy evaluation to perform a screening subject to a capacity constraint. For this

purpose, the DM sets a screening strategy σ : RÑ t0, 1u where 1 denotes the acceptance of a specific

valuation and 0 denotes a rejection.2 To avoid trivial solutions, we fix a minimal rate of acceptance,

a capacity level p P p0, 1q, such that the share of accepted elements does not fall below p, and every

screening strategy σ must ensure that PrpσpV �Nq � 1q ¥ p.

To motivate this model, Lagziel and Lehrer (2019) provide an example in which the DM is an

editor of a peer-reviewed academic journal who approaches referees to evaluate a set of academic

papers: V denotes the papers’ potential impact, V � N is the referees’ evaluations, and σ is the

editor’s decision rule to either accept or reject a paper. Other possible scenarios scenarios include a

trader facing different investment opportunities, a manager screening potential employees, or even a

sports scout searching for potential Hall-of-Fame players. In all these scenarios, the DM establishes a

noisy screening process in order to maximize the expected value of accepted elements, subject to some

capacity constraint.

We generally refer to the tuple SP � pV,N, pq as a screening problem. Given a screening problem

SP and a screening strategy σ, the expected value of accepted elements is

ΠSPpσq � E rV |σpV �Nq � 1s .

The DM’s goal is to maximize ΠSP. We denote the DM’s optimal screening strategy and optimal

expected payoff by σ�SP and Π�
SP, respectively. To be clear, all definitions and statements hold almost

surely (i.e., hold up to a measure-zero deviation).

The search for optimal screening typically begins by analysing the class of threshold strategies for

two main reasons. The first is that, in the absence of noise, threshold strategies are optimal. The

second is that, given a capacity p, threshold strategies are rather simple to implement since they are

characterized by a unique threshold value which captures the top 100p percentile of the distribution.

Thus, we will devote a portion of our analysis to study threshold strategies, and the non-trivial cases

in which they are optimal.

Formally, a screening strategy σ is a threshold strategy if there exists a value s such that, with

probability one, every noisy valuation (i.e., signal) above s is accepted and every noisy valuation below

s is rejected. Given a screening problem SP, we denote a threshold strategy and the expected payoff

under a threshold strategy by σ̂SP and pΠSP, respectively.

Since we incorporate general distributions in this model, one final clarification is needed for the

case of atomic ones. Should V �N have an atomic distribution and to meet the capacity constraint p,

1Throughout this paper and unless stated otherwise, the notations N and Ni refer to unbiased noise variables.
2We henceforth assume that all measurablity requirements hold.
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the DM may need to impose a partially random screening such that valuations which are subject to an

atom, are randomly split. In such cases, one should consider a more general screening strategy where

σ : R Ñ ∆pt0, 1uq. We typically abstract from these cases by assuming that (through an appropriate

randomization) the DM can “split the atom” (in a mathematical sense) and capture the expected

value given that atom, with the needed proportion.

2.1 Screening dominance and noisy amplifications

There are two noise-related notions that govern our analysis: screening dominance and noisy amplifi-

cations. Let us define and explain each of these notions, starting with the former.

Definition 1. [Screening dominance]. Noise variable N1 S-dominates noise variable N2 if, for

every impact variable V and capacity p, an optimal screening in SP1 � pV,N1, pq produces a higher

expected value than an optimal screening given SP2 � pV,N2, pq. That is, N1 S-dominates N2 if

Π�
SP1

¥ Π�
SP2

and the inequality is strict for some impact variable and capacity.

In simple terms, a noise variable N1 S-dominates N2 if, ceteris paribus, an optimal screening under

the former noise is at least as good as an optimal screening under the latter (and, in some cases,

strictly better), independently of either the impact or the capacity.

The notion of screening dominance is rather demanding in the sense that it requires superiority

for every impact variable and every capacity under optimal strategies. In some cases we shall require

a weaker notion such that optimal screening strategies are replaced with threshold ones. For such

purposes, we say that N1 S-dominates N2 under threshold strategies if pΠpV,N1,pq ¥
pΠpV,N2,pq for every

pV, pq, and the inequality is strict for some impact variable and capacity.

The second notion we shall use is termed noisy amplification, and it suggests that one noise could

be reproduced by another, through an independent lottery.

Definition 2. [Noisy amplification]. A noise variable N2 is a noisy amplification of noise N1 if

N2 � N1 �N3, and noise variable N3 is independent of N1.

In other words, N2 is a noisy amplification of N1 if one can produce the distribution of N2 using the

sum of N1 and an independent lottery N3. This notion will prove useful when debating the existence

of lucky coins and the dominance of one noise over another.

3 Screening under threshold strategies

This section is divided into two parts, each part presenting one key result of the paper. The first part,

given in Section 3.1, discusses the possibility to generate lucky coins - a simple lottery that strictly
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improves a screening. The second part, given in Section 3.2, presents the first partial characterization

of screening dominance. In both parts we restrict our attention to threshold strategies that will be

later combined, in Section 4.2, with the optimal ones.

3.1 A lucky coin toss for screening

The concept of a lucky coin toss is ambivalent. On the one hand, the procedure itself is simple, not to

say trivial: Once a DM approaches some screening problem, she can simply toss a coin and incorporate

its result into her decision. On the other hand, how can a simple coin toss improve a screening if we

are merely introducing random noise to the screening process? In this section, we shall attempt to

resolve this enigma.

We begin with a straightforward result stating that lucky coins exist. Theorem 1 below shows that

for every bounded impact variable V and every capacity p, one can devise a noise variable N1 such

that a lucky coin exists for the screening problem SP � pV,N1, pq. The introduction of a lucky coin

toss is manifested through a different noise variable, N2, which is a noisy amplification of N1.

Theorem 1. For every bounded impact variable V and capacity p, there exist noise variables N1 and

N2 where N2 is a noisy amplification of N1, and pΠpV,N2,pq ¡
pΠpV,N1,pq

The implications of Theorem 1 are clear: In some cases one can strictly improve a screening by

inserting additional noise to the process. To clarify the last statement and explain our use of the

lucky-coin terminology, we remark that the proof of Theorem 1 uses an amplification of N1, namely

N2 � N1 �N3, where N3 is a binary symmetric noise.

We now turn to focus on the driving force behind this result. First, recall the key insight of Lagziel

and Lehrer (2019) stating that pΠpV,N,pq is not necessarily a monotonic function of p. In other words,

the DM can enforce a more restrictive screening and the expected average level can actually decrease.

The non-monotonicity of pΠpV,N,pq w.r.t. p follows from the fact that unbiased noise has a different

nominal effect over different-size sets to the point that it significantly distorts the impact variable’s

conditional distribution. That is, an unbiased noise imposed over a large set of mediocre elements, will

produce a non-negligible amount of upwards shifting, whereas the same noise imposed over a small

set of superior elements produces a relatively small amount of upwards shifting. In such cases, the

probability masses matter, and unbiased noise can distort the distribution (generating, what is called,

“a screening bias”), such that the noisy valuations do not reflect the “true” ordering of the elements’

impact.

The lucky coin toss can partially deal with this problem, as shown in the simplified example given

in Figures 1 and 2, motivated by the main result of Lagziel and Lehrer (2019). In Figure 1, the

DM receives a distribution of noisy valuations where the values in parenthesis denote the true (i.e.,
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accurate) assessment subject to the given signal. If the capacity is fixed at p � 0.5 and the DM

is using a threshold strategy, then 18% of A elements and 32% of B� elements would be accepted

(note that a noisy signal of A�, actually reflects a true value of B�). However, once a simple coin

toss is introduced such that every valuation shifts either upward or downward by one level with equal

probabilities, then the DM observes the distribution that is given in Figure 2. Holding the capacity

fixed, the DM would now accept 18% of A elements, 16% of A� elements, and only 16% of B elements.

The lucky coin shifted the signals in such a way that a portion of B� elements are replaced by the

same mass of A� elements, thus increasing the expected value of accepted elements.

B- B B+ A- A A+

(B 18%) (A- 32%) (B+ 32%) (A 18%)

0%

18%

32% 32%

18%

0%

Noisy valuations

P
ro
p
or
ti
on

Figure 1: The noisy evaluation prior to the lucky coin. Values in parenthesis reflect the accurate valuations.

B- B B+ A- A A+

(B 9%) (A- 16%)

(B 9%)

(B+ 16%) (A- 16%)

(A 9%)

(B+ 16%) (A 9%)

9%

16%

25% 25%

16%

9%

Noisy valuations

P
ro
p
or
ti
on

Figure 2: The noisy evaluation after the lucky coin is introduced. Values in parenthesis reflect the accurate

valuations.

An important component of this result is that we are applying threshold strategies. Should the DM

have the ability to apply optimal strategies, then the same example would show how the additional

noise only damages the screening process. We will return to this issue in Section 4 when discussing

screening under optimal strategies.
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3.1.1 The robustness of the lucky coin toss

We wish to discuss two robustness concerns regarding the result of Theorem 1 and, specifically, the

relevant noises for that result.

First, the noises used in the proof of Theorem 1 depend only on whether p ¥ 0.5 or p   0.5, and

on the support of V rather than on its entire distribution. In addition, the dependency on p hinges

on the need to sustain symmetric noises. Therefore, if one should allow for asymmetric noises, then

the result of Theorem 1 becomes rather general, in that one can generate a strictly better screening

for every impact variable V (with the same support) and for every capacity p, while holding N1 and

N3 fixed.

Second, the support of the additive noise used in the proof is quite narrow relative to the support

of V ; this is also evident from the previous example, given in Figures 1 and 2. Therefore, the lucky

coin can improve the screening although its magnitude, in general, is rather small. The fact that the

ordinal changes are locally generated and the use of threshold strategies suggest that even if additional

valuations are introduced (enlarging the support of V ), the result of Theorem 1 would still hold.

3.2 A partial characterization of screening dominance

To characterize screening dominance under threshold strategies, we begin by defining a function which

transforms any non-atomic noise to another non-atomic noise using percentiles translation. This

function will be used to transform a threshold strategy under one noise variable to a different threshold

strategy under another noise variable. As it turns out, the key property to determine whether one noise

variable S-dominates another is whether this function is a contraction mapping or not. If the function

is a contraction, meaning that one noise transforms to another using some form of contraction, then

the condensed noise is superior for screening purposes.

Formally, consider two noise variables N1 and N2 with CDFs F1 and F2, respectively. For the

sake of simplicity, assume both noises are non-atomic with convex supports such that percentiles are

uniquely defined. Given such noises, define the Percentile-Translation (PT) function Tij by

Tijpnq � F�1
i pFjpnqq , @n P SupppNjq.

In other words, the PT function receives as input any 100p-percentile of noise Nj and generates the

100p-percentile of Ni.

Let us now review the key properties of the PT function. Since both noises are non-atomic with

convex supports, the CDFs are strictly increasing on these sets and the function Tijpnq is well-defined

and strictly increasing, as well. Second, it is straightforward to verify that T12 is the inverse of T21

and both are bijective functions (one-to-one correspondences) between the relevant supports. In that
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case, T21 � T�1
12 as well as T 121pnq �

1
T 1

12pT21pnqq
. To simplify the exposition, we apply two additional

definitions: (i) Ni and Nj are called continuous if both noises are non-atomic with convex supports,

while Tij and Tji are continuously differentiable; and (ii) Ni is called a contraction of Nj if T 1ijpnq ¤ 1

for every n P SupppNjq while Tij is continuously differentiable.

As follows from Theorem 2 below, the contraction property of the TP function is a necessary and

sufficient condition for screening dominance under threshold strategies. Our equivalence result states

that N1 S-dominates N2 under threshold strategies if and only if the TP mapping T12 is a contraction.

Theorem 2. Fix two distinct continuous noise variables N1 and N2. Then, N1 is a contraction of

N2 if and only if N1 S-dominates N2 under threshold strategies.

Figure 3 provides intuition for the proof of Theorem 2. The graph on the left represents threshold-

screening under N2 where l2 denotes the threshold line for that screening. Using the PT function, one

can translate l2 to terms of N1, thus getting the line l12 on the RHS graph. Note that the transformation

along with the contraction property of T12 ensure that l12 is decreasing with a slope greater than �1.

When comparing the screening according to l12 with the threshold-screening w.r.t. N1 (given by the

grey areas on the RHS and l1 line), we see that lower values of V are discarded in favor of higher ones

(light-grey area B instead of area A). Hence, the threshold-screening under N1 is superior as stated.

V

N2

l2

V �N2 ¥ n2

pn2, 0q

p0, n2q

V

N1

l12

l1

A

B

V �N1 ¥ n1

Figure 3: Each graph li : V �Ni � ni represents threshold-screening in screening problem SPi, and each shaded area

V �Ni ¥ ni represents the accpeted valuations. Line l12 : N1 � T12pn2�V q is the representation of l2 in terms of N1 using

the PT function T12. This translation maintains capacity, and its slope is greater than �1. Given threshold-screening

under N1, set A (white area) is replaced by set B (light grey area), ensuring the screening dominance of N1.

What happens if the PT function is not a contraction? Assuming that noises are distinct and

unbiased, then T12 is not a linear function. Thus, there exists a point n such that T 112pnq ¡ 1,

which suggests that T12 is locally expanding in the neighbourhood of n (recall that the PT function

is continuously differentiable) and T21 is locally contracting on some interval. Hence, one can choose
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an arbitrary small-support impact variable such that the local contraction of T21 generates the same

effect as shown in Figure 3, but when translating N1 to N2. This guarantees that the existence of an

impact variable and capacity such that threshold-screening under N2 is superior (for a detailed proof,

see Lemma 4 in the Appendix).

A simple example of a contracting PT function follows from multiplying a noise variable by any

positive constant c P p0, 1q. Once this is done, the resulting noise is a contraction of the former.

We shall return to this simple observation when discussing optimal screening under uniform noises in

Section 4.2.

We conclude this section with an explanation concerning the requirement for continuous noises.

Consider, for example, two binary and symmetric noise variables N1 and N2 where Ni � �i with equal

probabilities. Now take an impact variable V which equals either 0 or 2, again, with equal probabilities.

Under the N1 noise, the DM would get a signal s � 1, but she would not know whether it originated

from the combination pV,N1q � p2,�1q or from pV,N1q � p0, 1q. In contrast, such ambiguity does

not occur under noise N2 which would generate four distinct signals s P t�2, 0, 2, 4u. This type of

information ambiguity implies that N1 does not S-dominate N2, and exemplifies the necessity of our

continuity requirement.

4 Screening under optimal strategies

In this section we focus on screening dominance under optimal strategies, and for that purpose we

divide our analysis into two parts. First, in Section 4.1, we show that a noisy amplification is a

sufficient condition for screening dominance. Moreover, if one should restrict attention to normally

distributed noises, we prove that the noisy amplification condition is, in fact, a characterization of

screening dominance. Second, in Section 4.2, we examine the noisy amplification condition under

uniform noises. Specifically, we prove that a noisy amplification is not a necessary condition for

screening dominance under uniform noises, whereas the contraction result of Theorem 2 does provide

a necessary condition under such noises.

4.1 A sufficient condition for screening dominance

The first result connects the two basic notions of noisy amplifications and S-dominance. Specifically,

Theorem 3 below states that a noisy amplification of one noise variable is dominated, in terms of

screening, by that variable.

Theorem 3. If N2 is a noisy amplification of N1, then N1 S-dominates N2.

In order to prove Theorem 3, one needs to devise an optimal screening strategy for general screening

problems. Thus, an important insight that one can extract from the proof of Theorem 3 is the structure
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of that optimal strategy. Namely, the optimal strategy used in this proof is based on the function

fipsq � ErV |V �Ni � ss,

for every signal s. In words, the function provides the expected value of the impact variable conditional

on the received signal. For every capacity p, the optimal strategy dictates to accept a noisy valuation

of s if fipsq ¥ tSPi for some fixed value tSPi , which depends on the screening problem SPi. This carries

some resemblance to the Neyman–Pearson lemma, and one can also find some similarities between the

two proofs.

An immediate conclusion from Theorem 3 is an equivalence between screening dominance and noisy

amplifications within the set of normally distributed noises. The driving force behind this conclusion

is the fact that the set of normally distributed unbiased noises is closed with respect to additivity, and

that for any two such distinct noises N1 and N2, either N1 is a noisy amplification of N2 or vice versa.

Corollary 1. Fix two normally distributed noise variables N1 and N2. Then, N2 is a noisy amplifi-

cation of N1 if and only if N1 S-dominates N2.

The proof is straightforward (and thus omitted). One direction follows directly from Theorem 3,

so we should only consider the other direction starting with the screening dominance of N1 over N2.

If N1 S-dominates N2, there exists an impact variable and capacity such that screening under N1 is

strictly better. Thus, the two noises are not distributed similarly and one has a higher variance than

the other. The noise with the higher variance is a noisy amplification of the other, and it is evident

(from Theorem 3) that N2 is a noisy amplification of N1.

4.2 Screening dominance under uniform noises

Corollary 1 naturally gives rise to a follow-up question: Is there an equivalence between screening

dominance and noisy amplifications under general distributions? It appears that the answer to this

question is negative, since one cannot identify screening dominance by solely restricting attention to

noisy amplifications. We show this by focusing on the class of uniformly distributed convex-support

noises.

We begin our analysis by establishing, in Lemma 1 below, that the optimal screening strategies

under uniformly distributed convex-support noises are threshold strategies.

Lemma 1. If N is uniformly distributed on an interval, then threshold strategies are optimal for every

V and p.

Given this result, we can consider a simple transformation of noises, other than additive noise, that

damages the screening process. Specifically, we can multiply a noise variable by a constant greater than
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one, and analyse how the expansion affects the screening. In other words, we can fix two continuous

noise variables N1 and N2 (as considered in Section 3.2) where N2 � cN1 and c ¡ 1. It is easy to verify

that N1 is a contraction of N2, thus the former S-dominates the latter under (the optimal) threshold

strategies. In the following lemma, we prove this result for the general distributions without confining

ourselves to continuous noises.

Lemma 2. Fix two screening problems SPi � pV,Ni, pq where i � 1, 2 and N2 � cN1 for some c ¡ 1.

Then, pΠpV,N1,pq ¥
pΠpV,N2,pq.

Note that the statement of Lemma 2 is general, and independent on the distribution of N1. In

other words, this result is not limited to either uniform, or continuous noises.

Using Lemma 1, Lemma 2 and Lemma 3 below, we can prove that noisy amplifications do not

provide a general characterization for dominance. Specifically, fix two uniformly distributed3 noises

N1 � U r0, 1s and N2 � U r0, 1.5s. Lemma 1 states that the optimal screening strategy in any screening

problem (under these noises) is a threshold one. Lemma 2 establishes that N1 dominates N2 since

N2 � 1.5N1. Lemma 3, which follows, proves that N2 is not a noisy amplification of N1. Thus, we

substantiate the existence of two noise variables such that one noise S-dominates another, while the

noisy-amplification condition is violated.

Lemma 3. If N1 � U r0, 1s and N2 � U r0, 1.5s, then N2 is not a noisy amplification of N1.

In other words, one cannot devise an independent noise N such that N2 � N1 � N , nonetheless,

N1 S-dominates N2.

5 Conclusion

In this paper we provided several novel insights to the world of screening. Using our definition of

screening dominance, we showed that additional noise is not necessarily adversary for a DM, assuming

that threshold strategies are exercised. Next, we compared various noises in the context of screening

while accounting for threshold strategies as well as optimal ones. We were able to provide several

characterizations for screening dominance among different type noises, and most importantly, our

main characterization result shows that some form of contraction among the noises’ distributions is

essential for screening dominance.
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A Appendices

A.1 Proof of Theorem 1

Proof. Fix an impact variable V and a capacity p P p0, 1q. Assume, w.l.o.g., that V is supported

on r0, 1s. We separately relate to three cases: p   0.5, p � 0.5, and p ¡ 0.5. In general, denote the

screening problem SPi � pV,Ni, pq for every i and every noise Ni.

Starting with p   0.5, define the noise variable N1 by

N1 �

#
�1.1, w.p. p,

0, w.p. 1� 2p.

Evidently, ErV |σ̂SP1pV � N1q � 1s � ErV s. Now consider N3 � �0.1 with equal probabilities and

N2 � N1 �N3. The distribution of N2 is therefore

PrpN2 � kq �

#
p{2, for k P t�1.2,�1u,

1{2� p, for k P t�0.1u.

Given V �N2, the threshold strategy σ̂SP2 accepts every assessment once N2 � 1.2 and only partially

accepts assessments once N2 � 1. The latter is due to the fact that, given N2 � 0.1, some high values

of V are accepted instead of low values of V , given N2 � 1. We conclude that the threshold level is
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some t P r1, 1.1s. Thus,

ErV |σ̂SP2pV �N2q � 1s �
E
�
V 1tV�N2¥tu

�
p

�
p
2E

�
V 1tV�1.2¥tu

�
� p

2E
�
V 1tV�1¥tu

�
�
�
1
2 � p

�
E
�
V 1tV�0.1¥tu

�
p

�
ErV s

2
�

1

2
E
�
V 1tV¥t�1u

�
�

�
1

2p
� 1



E
�
V 1tV¥t�0.1u

�
�

ErV s
2

�
PrpV ¥ t� 1q

2
ErV |V ¥ t� 1s

� PrpV ¥ t� 0.1q

�
1

2p
� 1



ErV |V ¥ t� 0.1s

¡ ErV s
�

1

2
�

PrpV ¥ t� 1q

2
� PrpV ¥ t� 0.1q

�
1

2p
� 1


�
� ErV s

PrpV �N2 ¥ tq

p
� ErV s.

Therefore, ErV |σ̂SP2pV �N2q � 1s ¡ ErV s � ErV |σ̂SP1pV �N1q � 1s.

For the case of p ¡ 0.5, follow a similar computation while substituting p with 1 � p. This will

produce the same inequality ErV |σ̂SP2pV �N2q � 1s ¡ ErV s � ErV |σ̂SP1pV �N1q � 1s.

For the case of p � 0.5, define N1 � �0.6 with equal probabilities, and define N3 � �0.2 with equal

probabilities, as well. Hence, N2 P t�0.8,�0.4u all with equal probabilities. Clearly, ErV |σ̂SP1pV �

N1q � 1s � ErV s, while the screening threshold under N2 is some value t2 P r0.4, 0.6s, and

ErV |σ̂SP2pV �N2q � 1s � ErV |V �N2 ¥ t2s

�
1

4
E
�
V 1tV¥t2�0.8u

�
�

1

4
E
�
V 1tV¥t2�0.4u

�
�

1

4
E
�
V 1tV¥t2�0.4u

�
�

1

4
ErV s �

PrpV ¥ t2 � 0.4q

4
ErV |V ¥ t2 � 0.4s

�
PrpV ¥ t2 � 0.4q

4
ErV |V ¡ t2 � 0.4s

¡ ErV s
�

1

4
�

PrpV ¥ t2 � 0.4q

4
�

PrpV ¥ t2 � 0.4q

4

�
� ErV s � ErV |σ̂SP1pV �N1q � 1s,

which concludes the proof.

A.2 Proof of Theorem 2

For the proof of Theorem 2 we require the following auxiliary lemma.

Lemma 4. Consider two continuous noise variables N1 and N2. For every n P SupppN2q such that

T 112pnq   1, there exists pV, pq such that pΠpV,N1,pq ¡
pΠpV,N2,pq. Moreover, if T12 is a contraction, thenpΠpV,N1,pq ¥

pΠpV,N2,pq for every pV, pq.
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Proof. Fix two distinct continuous noise variables tN1, N2u, and take an interior point n2 P

SupppN2q such that T 112pn2q   1. Since T12 is continuously differentiable, one can take an open

interval I � pn2� ε, n2� εq and get T 112pnq   1 for every n P I. Define V � U r�ε, εs, and consider the

screening problem SP2 � pV,N2, pq where p is fixed such that σ̂SP2psq � 1 if and only if s ¥ n2. That

is, the threshold-screening for pV,N2, pq accepts every valuation given by the event tV �N2 ¥ n2u.

Note that N1 � T12pN2q since, for every n P R, we get

PrpT12pN2q ¤ nq � PrpF�1
1 pF2pN2qq ¤ nq � PrpN2 ¤ F�1

2 pF1pnqqq � F2pF
�1
2 pF1pnqqq � F1pnq.

So, T12 transforms N2 to N1. Hence,

ErV |V �N2 ¥ n2s � ErV |N2 ¥ n2 � V s

� ErV |T12pN2q ¥ T12pn2 � V qs

� ErV |N1 ¥ T12pn2 � V qs,

where the second equality holds by the fact that T12 is strictly increasing.

Let us consider the function fpvq � T12pn2 � vq for v P p�ε, εq. Clearly, this function is strictly

decreasing and differentiable such that f 1pvq � �T 112pn2 � vq ¡ �1 for every v P p�ε, εq. For every

c P p�ε, εq, define the linear function gcpvq � �v � c � T12pn2 � cq. Note that g1cpvq � �1, so the

functions fpvq and gcpvq intersect exactly once at pc, T12pn2 � cqq. Specifically, gεpvq ¥ fpvq whereas

g�εpvq ¤ fpvq.

We can now use gc to construct a threshold (screening) strategy for screening problem pV,N1, pq.

Observe that

PrpN1 ¥ gεpV qq   PrpN1 ¥ fpV qq � PrpN1 ¥ T12pn2 � V qq � p,

while

PrpN1 ¥ g�εpV qq ¡ PrpN1 ¥ fpV qq � PrpN1 ¥ T12pn2 � V qq � p.

So, by continuity, one can fix some c P p�ε, εq such that p � PrpN1 ¥ gcpV qq. Note that

tN1 ¥ gcpV qu � tV �N1 ¥ c� T12pn2 � cqu and tN1 ¥ fpV qu � tN1 ¥ T12pn2 � V qu,

and the former equality depicts a threshold strategy which strictly differs from the latter screening

condition N1 ¥ T12pn2�V q. Though both maintain the same capacity of p, the single-crossing property

of f and gc along with the fact that f 1 ¡ �1 � g1c, suggest that the screening condition N1 ¥ gcpV q

omits lower values of V in-exchange to higher ones, relative to the screening condition N1 ¥ fpV q.

Thus, we get

ErV |V �N1 ¥ c� T12pn2 � cqs ¡ ErV |N1 ¥ T12pn2 � V qs � ErV |V �N2 ¥ n2s,
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and the first statement of the lemma holds.

To prove the second statement, fix any pV, pq. Consider the screening problems SPi � pV,Ni, pq

and threshold strategies σ̂SPi for every i. Denote the threshold value of σ̂SPi by ni for every i. Thus,

ErV |σ̂SP2pV �N2q � 1s � ErV |V �N2 ¥ n2s

� ErV |N2 ¥ n2 � V s

� ErV |T12pN2q ¥ T12pn2 � V qs

� ErV |N1 ¥ T12pn2 � V qs.

As before, we consider the functions fpvq � T12pn2 � vq and gcpvq � �v � c� T12pn2 � cq defined for

every pv, cq P SupppV q. Following the same continuity argument (replacing �ε and ε with sufficiently

low and high values, respectively), one can fix c such that tN1 ¥ gcpV qu � tV �N1 ¥ c�T12pn2� cqu

and both events are of probability p. In other words, c is fixed such that n1 � c � T12pn2 � cq and

tσ̂SP1pV � N1q � 1u � tN1 ¥ gcpV qu. The fact that the single-crossing property still holds and

f 1 ¥ g1c, ensure again that the threshold strategy σ̂SP1 preforms at least as good as the screening

condition tN1 ¥ fpV qu � tσ̂SP2pV � N2q � 1u. Hence, we conclude that pΠpV,N1,pq ¥
pΠpV,N2,pq as

needed.

Proof of Theorem 2. We start by showing that S-dominance implies that T12 is a contraction.

Assume, by contradiction, that T12 is not a contraction, so there exists a point n such that T 112pnq ¡ 1.

Recall that T12 is the inverse function of T�1
21 , so the last inequality suggests that there exists a point m

such that T 121pmq   1. By Lemma 4, we deduce that there exists pV, pq such that pΠpV,N2,pq ¡
pΠpV,N1,pq

which contradicts the S-dominance of N1 over N2. Thus, we can conclude that T12 is indeed a

contraction.

Let us now prove the second direction, by assuming that T12 is a contraction and establishing the S-

dominance of N1 over N2. Since N1 and N2 are two distinct noise variables (namely, symmetric around

zero and independent) and by the fact that T12 is a contraction (i.e., a continuously differentiable

function), we deduce that there exists a point n such that T 112pnq   1. Thus, by Lemma 4,it follows

that pΠpV,N2,pq ¡
pΠpV,N1,pq for some pV, pq. In addition, the weak inequality pΠpV,N2,pq ¥

pΠpV,N1,pq holds

for every pV, pq by Lemma 4, thus concluding the proof of Theorem 2.

A.3 Proof of Theorem 3

Proof. Fix an impact variable V , a capacity p P p0, 1q, and two noises N1 and N2 such that N2 is a

noisy amplification of N1. Denote SPi � pV,Ni, pq for every i � 1, 2. We shall prove that Π�
SP1

¥ Π�
SP2

.

For every noise variable Ni, define the function fipsq � ErV |V �Ni � ss. In words, the function

fi produces the expected value of V conditional on a signal s (i.e., on an event tV �Ni � su). Since
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p is fixed, the optimal strategy σ�SPi
dictates that σ�SPi

psq � 1 if fipsq ¥ ti for some ti which depends

on p and on the distribution of V � Ni. Otherwise, if there exist two (positive-probability) sets of

signals A and B such that, for every a P A and b P B, it follows that σ�SPi
paq � 1 ¡ 0 � σ�SPi

pbq and

fipaq   fipbq, then σ�SPi
would not be optimal. Namely, the DM can alternate σ�SPi

by rejecting signals

from A and accepting signals from B (maybe partially, to balance the acceptance ratio) and strictly

improve the screening. To exactly sustain the capacity p, the decision maker may need to randomize

in case of atoms where PrpV �Ni � sq and ErV |V �Ni � ss � ti. In such cases, the strategy would

accept the threshold value with the needed proportion, and otherwise reject the valuations to sustain

p.

Define the event Si � tσ�SPi
pV �Niq � 1u where PrpSiq � p, and denote q � PrpS1XS2q. Observe

that Π�
SP1

� ErV |S1s � q
pE rV |S1 X S2s �

1
pE

�
V 1S1zS2

�
. Let us consider the second term, and use the

law of iterated expectation (conditional on V �N1) to get

E
�
V 1S1XSc

2

�
� ErErV 1S11Sc

2
|V �N1ss

� ErErV 1S1 |V �N1sEr1Sc
2
|V �N1ss

¥ Ert11S1Er1Sc
2
|V �N1ss

� t1ErEr1S11Sc
2
|V �N1ss

� t1Er1S1XSc
2
s � t1pp� qq,

where we used the fact that, conditional on V �N1, the random variables V 1S1 and 1Sc
2

are independent

(note that S2 depends solely on V � N1 � N3 as N2 � N1 � N3, and all variables are mutually

independent). Thus, Π�
SP1

¥ q
pE rV |S1 X S2s � t1

p�q
p . Moving on to Π�

SP2
, one can follow a similar

computation, using the law of iterated expectation, to get the following upper bound

Π�
SP2

� ErV |S2s

� q
pE rV |S2 X S1s �

1
pE

�
V 1S2XSc

1

�
¤ q

pE rV |S2 X S1s � t1
p�q
p .

We conclude that Π�
SP1

¥ Π�
SP2

, as previously stated.

Let us now show that there exists V and p such that the last inequality is strict. Take a normally

distributed impact variable V � Np0, 1q, a capacity p P p0, 1q, and consider the previously used sets

tSiui�1,2 and thresholds levels ttiui�1,2, all adjusted for the chosen V and p. Note that for every value

s P R, the conditional distribution of V |tV �Ni � su is non-atomic, and recall that N2 � N1 �N3.

Henceforth, the proof consists of two stages: first we will show that PrpSc1 X S2q ¡ 0, and then

we will prove that ErV |S1 X Sc2s ¡ ErV |Sc1 X S2s. Let ai � supts : PrpSi|V � Ni   sq � 0u be the

maximal value such that every signal below ai is rejected. Thus, there exists an ε0 ¡ 0 such that for
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every i and ε P p0, ε0q it follows that PrpSi|V �Ni P rai, ai � εqq � 1. There are two possible cases to

consider: either PrpN3   a2 � a1q ¡ 0 or PrpN3   a2 � a1q � 0.

If PrpN3   a2 � a1q ¡ 0, then for a small ε P p0, ε0q

PrpSc2 X S1q ¥ Pr
�
V �N2   a2, V �N1 P

�
a1, a1 �

ε
2

��
� Pr

�
N3   a2 � V �N1, V �N1 P

�
a1, a1 �

ε
2

��
¥ Pr

�
N3   a2 � a1 �

ε
2 , V �N1 P

�
a1, a1 �

ε
2

��
� Pr

�
N3   a2 � a1 �

ε
2

�
Pr

�
V �N1 P

�
a1, a1 �

ε
2

��
¡ 0,

where the last strict inequality follows from the assumption over the distribution of N3 and ε. There-

fore, we conclude that PrpSc2 X S1q ¡ 0, which implies PrpS2 X Sc1q ¡ 0 since PrpS1q � PrpS2q � p.

Otherwise, PrpN3   a2 � a1q � 0 � 1 � PrpN3 ¥ a2 � a1q and, by the symmetry of N3, it follows

that a2 � a1   0. Thus, for a sufficiently small ε ¡ 0 we get

PrpS2 X Sc1q ¥ Pr
�
V �N2 P

�
a2, a2 �

ε
2

�
, V �N1   a1

�
� Pr

�
V �N1 �N3 P

�
a2, a2 �

ε
2

�
, V �N1   a1

�
� Pr

�
a2 �N3 ¤ V �N1   a2 �N3 �

ε
2 , V �N1   a1

�
¥ Pr

�
a2 �N3 ¤ V �N1   a2 �N3 �

ε
2 , N3 ¥ 0

�
¡ 0,

where the last inequality holds since V � N1 has full support over R and PrpN3 ¥ 0q ¡ 0.5. Hence,

we have shown that PrpS2 X Sc1q ¡ 0.

We move on to the second part. Assume that f1psq � ErV |V �N1 � ss is a non-constant function

of the signal s P R. Then, there exists p1 P p0, 1q such that for every capacity p0 ¡ p1,

ErV |σ�pV,N1,p1q
pV �N1q � 1s ¡ ErV |σ�pV,N1,p0q

pV �N1q � 1s.

This holds by a straightforward convergence-to-the-mean argument, since a more selective and limited

choice of values increases the expected value of V relative to an increased capacity, which necessarily

introduces sub-optimal valuations. In other words, additional valuations of V are accepted (under

capacity p0 relative to p1), and the conditional expected value of V subject to these valuations is

strictly lower. So, if indeed f1psq � ErV |V � N1 � ss is a non-constant function, one can fix the

capacity p such that ErV |S1XSc2s ¡ ErV |Sc1XS2s, as signals outside S1 yield a strictly lower expected

value than the ones in S1 (and, as was already shown, PrpS1 X S
c
2q � PrpSc1 X S2q ¡ 0). Therefore, by
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Lemma 5 which follows, we conclude that

Π�
SP1

� ErV |S1s

� q
pE rV |S1 X S2s �

p�q
p E rV |S1 X Sc2s

¡ q
pE rV |S1 X S2s �

p�q
p E rV |Sc1 X S2s

� ErV |S2s � Π�
SP2

,

as needed.

Lemma 5. For every impact variable V and noise variable N , the function fpsq � ErV |V �N � ss

is non-constant.

Proof. Fix an impact variable V and a noise variable N . Assume, with no loss of generality,

that ErV s � 0. Note that V is non-degenerate (by definition), so one can fix a small ε ¡ 0 such

that PrpV ¡ εqPrpV   �εq ¡ 0. Take s ¥ 0 such that Pr pN P ps� ε, s� εqq ¡ 0, and denote

I � ps� ε, s� εq. Clearly, PrpV �N ¥ sq P p0, 1q, and for every n P I, we get �ε   s� n   ε. Thus,

E rV |V � n ¥ ss � E rV |V ¥ s� ns ¡ 0 � ErV s.

The strict inequality follows from the fact that only low values of V (below �ε) are omitted with

strictly positive probability. By conditioning on N ,

ErV |V �N ¥ ss � E rErV |V �N ¥ s,N ss ¡ 0 � ErV s,

and the strict inequality follows from a convex combination of strictly positive and non-negative values.

Since limsÑ�8 ErV |V �N ¥ ss � ErV s � 0, we conclude that fpsq � ErV |V �N � ss is a non-constant

function.

A.4 Proof of Lemma 1

Proof. Without loss of generality, assume that N � U r0, 1s and denote SupppV q � rV , V s. Fix two

signals s1 ¡ s2 where si P SupppV �Nq for every i. We will show that ErV |V �N � s1s ¥ ErV |V �N �

s2s. If that is the case, then for any two sets A and B such that PrpV �N P AqPrpV �N P Bq ¡ 0

and A is point-wise strictly above B, we maintain the same monotonic relation of ErV |V �N P As ¡

ErV |V �N P Bs and the statement follows.

Note that N is uniformly distributed on r0, 1s, so the random variable V � N has a non-atomic

distribution and

SupppV |tV �N � siuq �
�
maxtsi � 1, V u,mintsi, V u

�
.
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Since N supports all points in r0, 1s with equal weight, one can verify that the projection of V �N � si

onto V maintains the distribution of V , conditional on the same support, such that

V |tV �N � siu � V |tV P
�
maxtsi � 1, V u,mintsi, V u

�
u.

Therefore, the deviation from s2 to s1 increases (potentially weakly) the bounds maxtsi � 1, V u and

mintsi, V u, which ensures that the inequality ErV |V �N � s1s ¥ ErV |V �N � s2s holds.

A.5 Proof of Lemma 2

Proof. Consider the screening problems SPi � pV,Ni, pq for every i. Denote the optimal threshold

strategy σ̂SPi , and let si be the threshold value such that σ̂SPipsq � 1ts¥siu. Denote the events

Ai � tV �Ni ¥ siu, and probabilities p � PrpA1q � PrpA2q, p
1 � PrpA1 XA2q.

We begin by showing that ErV |A1XA
c
2s ¥ ErV |Ac1XA2s. The lines V �N1 � s1 and V �λN1 � s2

intersect at pV,N1q �
�
t1 �

s1�s2
1�λ ,

s1�s2
1�λ

	
, and

A1XA
c
2 �

"
V ¡ s1�

s1�s2
1�λ , N1 P

�
s1 � V, s2�Vλ

�*
, Ac1XA2 �

"
V   s1�

s1�s2
1�λ , N1 P

�
s2�V
λ , s1 � V

�*
.

So, in terms of V , we get a point-wise dominance given A1XA
c
2 relative to Ac1XA2, and ErV |A1XA

c
2s ¥

ErV |Ac1 XA2s. Therefore,

ErV |σ�s2pV �N2q � 1s � ErV |A2s

� p1

p E rV |A1 XA2s �
p�p1

p E rV |Ac1 XA2s

¤ p1

p E rV |A1 XA2s �
p�p1

p E rV |A1 XAc2s

� ErV |A1s � ErV |σ�s1pV �N1q � 1s.

Note that the inequality becomes strict whenever the two threshold strategies do not trivially coincide

(p ¡ p1), and the statement holds.

A.6 Proof of Lemma 3

Proof. Assume, by contradiction, that there exists a random variable N , independent of N1, such

that N1 �N � N2 � U r0, 1.5s. Evidently, SupppNq � r0, 0.5s, otherwise SupppN1 �Nq � r0, 1.5s as

needed. By conditioning on N1, we get

1

3
� FN1�N

�
1
2

�
�

» 1

0
Pr

�
N ¤ 1

2 � n
�
dn �

» 1
2

�
1
2

Pr pN ¤ kq dk �

» 1
2

0
Pr pN ¤ kq dk,
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and

FN1�N p1q �

» 1

0
Pr pN ¤ 1� nq dn �

» 1

0
Pr pN ¤ kq dk �

» 1
2

0
Pr pN ¤ kq dk �

» 1

1
2

1dk

� FN1�N

�
1
2

�
�

1

2
�

1

3
�

1

2
�

5

6
,

contradicting the preliminary assumption which suggests that FN1�N p1q � FN2p1q �
2
3 .
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