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1 Introduction

This paper studies the incentives behind manipulation. Whether it is “Fake News” in the media world,

P-hacking in academic research, or various political races, the possibilities to come across some form of

either high- or low-level manipulations are staggering. In the backdrop of this blooming phenomenon,

one must wonder whether a manipulative strategy is, indeed, rational.

To this end we devise a general competition framework where private values are attributed to

players, along with the ability to manipulate these values using costly noise. Only players with the

highest realized valuations are considered winners and receive a positive payoff. Given this set-up, we

ask whether players should manipulate in equilibrium

A priori, the answer is negative. Under the assumption that the cost is imminent and high, while the

expected effect over players’ values is actually negative, then manipulation carries no clear advantages.

Nevertheless, our analysis indicates that a stiff competition leads all players to manipulate. This result

is based on a fundamental attribute of competitions, which is the discontinuity of prizes. The basic

idea of competitions is to distinct between types such that a winner, in its individual meaning, cannot

exist without a loser. The distinction is only meaningful by the discontinuity which, in turn, is

tunnelled towards an all-manipulative equilibrium. However, discontinuity alone cannot account for

the mentioned outcome, since manipulation is not a dominating strategy. Thus enters the role of stiff

competition and limited liability.

Given that the competition is fierce such that prior chances of winning are slim, then low-value

players get only the upside of manipulating. In particular, it increases their probability of winning,

while the value loss and costs become irrelevant due to limited-liability constraints. This effect cas-

cades upwards as the competition intensifies, gradually extending to capture all players and valuations.

Interestingly, our result is not conditioned on the payoff function as long as the limited-liability con-

dition is met. In other words, the rise of manipulation occurs although winning in this manner is

extremely costly, essentially implying that players revert to a victory-at-all-costs strategy.

1.1 Motivating examples

Competitions, in their broadest form, exist in many fields, ranging from academic research to political

races. Consider, for example, the problem of P-hacking and research tampering. In the academic world,

one is often inclined to publish in prestige journals and present extravagant insights. In Economics,

the strive to publish in Top-5 journals led Prof. Serrano from Brown University to write a rather

entertaining article describing a disease called “Top5itis”.1 Such goals are amplified by tenure-track

criteria, inflicting additional pressure on researchers, which could lead to results tampering through

1See ProMarket - the blog of the Stigler Center at the University of Chicago, “Top5itis”, March 2, 2018.
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P-hacking or other forms of manipulation. A recent well-known example is the theory of power posing

by Amy Cuddy, Dana Carney, and Andy Yap. This theory was first highly acclaimed, only to be later

considered problematic in follow-up research. Currently, some view it as an example of the replication

crisis in psychology.2 This incident shows how (an alleged) research manipulation is costly whether it

is exposed during the refereeing process or afterwards.

Another recent example is accommodated by the popular notion of “Fake News”. Media as a

whole, and the news world specifically, are becoming more competitive as many find it hard to generate

revenue through commercial ads and consumers.3 Since news are time-dependant and there can only

be a small number of news articles that open the evening news or appear at the front page, the intense

competition could quite easily lead to manipulation such as plagiarism, “Fake News”, and more. Note

that this concern is not novel and was already depicted in a 2009 BBC article entitled “Economy

‘threatens’ news accuracy”.

The last example immediately leads to the political world, where one is sometimes puzzled with

the untruthfulness of politicians. The solution, in our context, is simple. A winner-take-all race to

public office is, perhaps, the simplest example for a stiff competition leading to manipulation. As

there can be only one president (or only one prime minister), politician must do everything in their

power to gain and maintain their position. Thus, it is only reasonable that candidates do not always

intend to follow through their statements and, in some cases, divert to extreme populism.4

1.2 Related literature

The theoretical study of manipulation and optimal enforcement dates back to the seminal work of

Stigler (1970). In the spirit of our limited-liability constraint, Stigler argues that fines are rarely

proportional to individuals’ wealth. He states that uniform fines increase the expected severity of

offences, and that extreme fines are suboptimal by the importance of marginal deterrence. Polinsky

and Shavell (1979) follow this argument and prove that individuals’ risk-aversion should lead to lower

fines. Moreover, Malik (1990) claims that extreme penalties expedites offenders’ will to engage in

socially costly activities that lower the probability of being fined (e.g., radar detectors to avoid speeding

tickets and manipulating politicians to change regulation). As we later point out (in Section 3), the

last argument fits well with our modelling choices since it enables the players to regulate their actions

according to the enforcement criteria, resulting in some form of plausible manipulation.

Our work contributes to this line of research by depicting the intrinsic properties that lead to

2The academic debate could be tracked through Carney et al. (2010), Ranehill et al. (2015), Carney et al. (2015),

Simmons and Simonsohn (2017), Cesario et al. (2017), and Gronau et al. (2017).
3See, e.g., The Economist, “Who killed the newspaper?”, August 24, 2006.
4See, e.g., The Washington Post, “Why politicians lie”, October 25, 2016; and The Huffington Post, “Why politicians

lie”, June 27, 2016.
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manipulation, though such actions are not dominating ones. In addition, we propose a robust model

for the analysis of manipulations, which carries clear resemblance to other forms of competitions such

as auctions, but with a different set of actions. Evidently, the latter modification challenges well-known

results, such as the impact of free entry (of competition) over outcomes.

Our wide interpretation of manipulation is well precedented in the economic literature. In the

field of education, for example, Jacob and Levitt (2003) partially detect cheating and manipulation on

the side of teachers concerning their students’ test scores. Their results are supported by theoretical

studies (as, e.g., Holmstrom and Milgrom (1991) and Baker (1992)) and empirical ones (see Cameron

et al. (2009); Barr and Serra (2010); Gächter and Schulz (2016), among others). In sports, Duggan

and Levitt (2002) studied corruption in Sumo wrestling and affiliate it to “sharp non-linearity in the

payoff function for competitors”. Similar non-linear effects are the focus of Elaad et al. (2017), who

investigate potential corruption in soccer games, and find evidence of wide spread manipulations. This

conjecture proves to be crucial in our conclusions, underlining the key rule of prizes’ discontinuity.

1.3 Structure of the paper

The paper is organized as follows. In Section 2 we present the basic model, followed by the main result

in Section 3. Extensions, further clarifications of our model, and a few concluding remarks are given

in Section 4.

2 A manipulable competition

Before presenting our set-up, we review several famous sports scandals that motivate our modelling

choices. The first occurrence is commonly known as the “Deflategate” incident, where the New England

Patriots were accused of deliberately under-inflating footballs in their 2014–2015 championship-game

victory over the Indiana Colts. This issue was resolved in a US Court on July 13, 2016, with a four-

game no-pay suspension of Patriots quarterback, Tom Brady, a Patriots loss of two draft picks, and

a one million dollar fine. Four years earlier, cyclist Lance Armstrong was stripped of his seven Tour-

de-France titles and banned for life from all sports that follow the World Anti-Doping Code. This

penalty was a response to his use of performance-enhancing drugs and his part in a widespread doping

program. Similar fate awaited Olympic sprinters Ben Johnson and Marion Jones, both stripped of

their Olympic titles for steroid use.

The first feature that follow from all mentioned examples is the use of a manipulative strategy

to improve one’s position. Though the offences concern different athletes, in different fields, status,

and time, all tried to gain a foul advantage over their opponents. Next, all athletes were (and, in

some cases, are still) considered among the best in their profession. So with a non-trivial probability,
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they need not use manipulation to win. In addition, all mentioned manipulations were caught ex

post, sometimes a long time afterwards, while the penalties vary by the severity of the manipulative

strategy.

Remark 1. The formal presentation of the model is aimed to balance between simplicity and generality.

Therefore, several straightforward extensions are given in Section 4, only after the basic model and

main result are well established.

2.1 The model

We capture the attributes of previously-mentioned examples through a strategic framework, referred

to as a manipulable competition. It commences as an ordinary contest where individuals have personal

independent capabilities. To win the competition, every player can either use his original value or

apply a costly distortion of it, i.e., a manipulation. Winners get, in expectation, a positive payoff that

generally depends on their ordinal ranking, cardinal result, and actions.

Formally, a manipulable competition is an N -player game which evolves as follows. First, all com-

petitors (i.e., players) receive their private valuations, drawn independently according to a continuous

random variable V , supported on
�
V , V

�
. Then, every player can either use his original value v, or

use a costly manipulation of it, stochastically evaluated through v �M . That is, a strategy σ is a

function that dictates an action, either v or v�M , for every possible value v. The strategic valuations

are independently realized and the top k players are granted a payoff according to a payoff function

V, while others receive nothing. In what follows, we elaborate on the two key elements of our model -

the manipulation M and the payoff function V .

The manipulation M is a binary random variable that equals �m or �m with positive probabilities

p and 1 � p, respectively. Note that the positive distortion m   V � V and its probability p are

potentially small. Hence, a manipulation could be mild, and actually lead to a value loss during the

evaluation process.

The payoff function V :
�
V , V

�k
�t0,Muk Ñ Rk� transforms a profile of the top k-players’ valuations

and actions into a positive reward for every winning player. The essential properties of V follow from a

limited-liability assumption such that V is positive, bounded away from zero, and bounded. Note that

we make no assumptions regarding continuity or monotonicity, but (motivation-wise) one can consider

functions where the exercise of a manipulation significantly lowers a winner’s expected payoff. In other

words, the cost of manipulation could be extremely high, conditional on winning. Moreover, the payoff

function depends on the actual actions rather than the realizations, thus capturing the idea that the

potential loss (due to manipulation) is imminent. Doing so, we relate to cases where manipulations

are not caught in time, but eventually revealed later on.
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3 Main result

As customary, we consider the symmetric case where all players use the same strategy,5 and ask

whether players manipulate in equilibrium. A priori, it would appear suboptimal to do so. First, it

is costly, potentially reducing the expected prize close to zero, independently of the realized value.

Second, it grants no assurances and could even be harmful during the contest. Yet, by fixing the

number of winners and employing free entry (i.e., increasing the number of competitors), the stiff

competition leads to a unique outcome where all players to manipulate. (The proof is deferred to the

Appendix.)

Theorem 1. For a sufficiently high number of players, all players manipulate in equilibrium.

Since we made a great deal of effort to make manipulation suboptimal, we wish to clarify the

intuition behind Theorem 1. The immediate motivation is the players’ desire to win, or in the words

of Sir Winston Churchill: “Victory at all costs”.6 Though manipulations are costly, the players’

primary concern is to win the competition since winning outweighs losing.

But the desire to win is merely the short explanation, whereas the extensive one is more complex

and involves two vital elements: (i) limited liability; and (ii) manipulation cascade. Manipulation is

not a dominating strategy for high-value players (since their probability of winning is already high). To

differ, low-value players get only the upside of manipulating. It increases their probability of winning,

while the expected value loss and costs are irrelevant from their perspective, by the limited-liability

assumption. Now, this effect cascades upwards as the competition intensifies, gradually extending to

capture all valuations.

In turn, one can rightfully argue that weakening the limited-liability constraint to inflict severe

penalties, on either winning or losing manipulations, could prove useful in this context. Though we

broadly relate to this issue in the extensions provided in Section 4, there is one crucial point we wish to

emphasize. In practice, manipulations are devised only after the rules of the competition are formed,

and the former are more flexible in terms of applicability and severity. Therefore, even under a stricter

set of rules and penalties, competitors would still find a way to manipulate the competition to the

extent that the expected costs are mild.7 The fact that there is a basic time-discrepancy between

the formulation of a competition and the application of a manipulation, along with the immense

manipulation possibilities, ensure that the given model accommodates for a wide set of scenarios. To

put in terms of the previous examples: politicians can limit themselves to small lies; researchers can

cut corners to a limited extent; and athletes can mildly challenge the rules to gain a foul advantage.

5Henceforth, we assume that all measurability requirements, considering pV,V,M, σq, are met.
6Taken from Churchill’s speech, from May 13, 1940, which is best-known for the phrase ”blood, toil, tears and sweat”.
7Note that we did not account for false positives and marginal deterrence, as suggested by Stigler (1970).
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Remark 2. In the proof of Theorem 1 we provide a lower bound on N to reach the all-manipulative

equilibrium. In particular, we state that one should choose N ¡ k such that for every n ¡ N it follows

that �
1 � p0

2

�n�1
¡ max

"
kΘ�
pΘ�

�
p1�p1qen

p1�p1qpk�1q

�k�1
1tk¥2u,

Θ�
pΘ�

�
2�p0

p1�p1qp2

�k�1
*
,

where the pis are positive probabilities that depend on the distributions of V and M , and Θ� are upper

and lower bounds on the payoff function. Note that N depends logarithmically on the payoff function,

and increases linearly with the number of winners. In addition, the intensified competitiveness, at-

tributed to the number of players, has an exponential effect over the chances of winning. Thus, even

a low number of competitors could prove sufficient for Theorem 1 to hold.

4 Extensions & discussion

There are several payoff-related generalizations of our model that impose no technical problems on

the statement Theorem 1. First, the proof of Theorem 1 is based on the upper and lower bounds of

the reward function. Thus, the proof holds uniformly for all functions that meet the same bounds.

Second, we can apply a stochastic reward function that also induces negative rewards. As long as the

positive bounds are met in expectation, the result remains valid. Moreover, one can assume that a

manipulative player is taken out of the competition with probability of 1 � p, instead of competing

with a value of v �m. The last extension requires mild adjustments for the result to hold (e.g., an

assumption that the manipulation has no effect with a small positive probability is sufficient).

Another subtle change concerns the payoff of non-winning players. The current model incorporates

no costs for a manipulative lose. Nevertheless, if one assumes that manipulation is costly with small

probability (decreasing in the number of players) given that a player loses, then the previous result

remains valid. Such an extension holds, e.g., in case a losing manipulation is observed with a probability

proportional to the probability of a fair win. The latter assumption is consistent with the fact that

inspections are generally considered to be costly observations and, therefore, limited.

The next level of (non-payoff-related) extensions deals with the distribution values and noise. In

practice, valuations need not be continuous and manipulations are possibly smooth. Such modifications

impose technical and mathematical difficulties that require additional research. We conjecture that a

discrete version of V is plausible, as long as the manipulation is not redundant relative to V .

Another interesting line of research is the inclusion of various manipulation opportunities, or an

evolutionary process where manipulations constantly change along the dynamics. In light of cur-

rent results, it appears reasonable that players would revert to a manipulation that maximizes their

probability of winning. Yet, this cannot be determined without further analysis.
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To conclude, we emphasize that the current work should not be viewed as criticism against compe-

tition and free entry. The main goal of this paper, which we hope to have accomplished, is to present

the underline incentives that yield manipulations, and possibly instigate future solutions.
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5 Appendix

Theorem 1. For a sufficiently high number of players, all players manipulate in equilibrium.

Proof. Let Θ� and Θ� be maximal and minimal positive bounds on the reward function. Consider

a strategy σ and let Gσ be its induced CDF. The probability of being a winning player (i.e., among

the top k realized valuations), subject to σ and private value v, is

φN pvq �
k�1̧

l�0

�
N

l



p1 �Gσpvqq

lGN�1�l
σ pvq,

without manipulation, and pφN pv �mq � p1 � pqφN pv �mq with manipulation. We will prove there

exists an N ¡ k ¡ 0, such that for every σ, every v, and every n ¥ N , it follows that φnpv�mq
φnpvq

¡ Θ�
pΘ�

,

which is sufficient for this proof.

For every v P
�
V , V

�
, denote Iv � rv, v �ms, I�v � rv �m, vs, and I�v � rv �m, v � 2ms. Define

p0 � min
v

�
pPr

�
V P I�v

�
� p1 � pqPr

�
V P I�v

��
,

p1 � max
v

�
pPr

�
V P I�v

�
� p1 � pqPr

�
V P I�v

�
� Pr pV P Ivq

�
,

p2 � p1 � pqPrpV ¤ V �mq,
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and choose N ¡ k such that for every n ¥ N ,

�
1 � p0

2

�n�1
¡ max

"
kΘ�
pΘ�

�
p1�p1qen

p1�p1qpk�1q

�k�1
1tk¥2u,

Θ�
pΘ�

�
2�p0

p1�p1qp2

�k�1
*
.

Assume, by contradiction, there exists a set of valuations (potentially of 0-measure w.r.t. V ) that

do not manipulate according to an equilibrium strategy σ. Choose an interval Iv0 with a maximal

measure of non-manipulating authors, and assume w.l.o.g. that σpv0q � v0. Otherwise, the optimality

requirement for Iv0 could be weakened to ε-optimality, for some small ε P
�
0, p02

�
. Denote the measure

of non-manipulating authors in Iv0 and I�v0 by µ0 and µ�1 , respectively. The optimality of Iv0 suggests

that µ0 ¡ pµ�1 � p1 � pqµ�1 � p0
2 . Hence,

Gσpv0 �mq

Gσpv0q
�

Gσpv0q �Gσpv0 �mq �Gσpv0q

Gσpv0q

¥ 1 �Gσpv0 �mq �Gσpv0q

� 1 � µ0 � p
�
PrpV P I�v0q � µ�1

�
� p1 � pq

�
PrpV P I�v0q � µ�1

�
¡ 1 �

p0

2
� pPrpV P I�v0q � p1 � pqPrpV P I�v0q

¥ 1 �
p0

2
,

where the second and third inequalities follow from the optimality of µ0 and p0, respectively. Note

that

φN pv0 �mq

φN pv0q
�

°k�1
l�0

�
N
l

�
p1 �Gσpv0 �mqqlGN�1�l

σ pv0 �mq°k�1
l�0

�
N
l

�
p1 �Gσpv0qq

lGN�1�l
σ pv0q

�

°k�1
l�0

�
N
l

� �1�Gσpv0�mq
Gσpv0�mq

�l
°k�1
l�0

�
N
l

� �1�Gσpv0q
Gσpv0q

�l �

�
Gσpv0 �mq

Gσpv0q

�N�1

¡

°k�1
l�0

�
N
l

� �1�Gσpv0�mq
Gσpv0�mq

�l
°k�1
l�0

�
N
l

� �1�Gσpv0q
Gσpv0q

�l �
�
1 �

p0

2

�N�1
.

If k � 1, then the choice of N guarantees that the statement φnpv�mq
φnpvq

¡ Θ�
pΘ�

holds, and the result

follows.

Otherwise, fix k ¥ 2. Consider the two cases of either Gσpv0 �mq ¡ p1 �
1�p1

2 , or Gσpv0 �mq ¤

p1 �
1�p1

2 . The value p1 is the maximal possible measure (w.r.t. V ) that could be induced by any σ

in an interval of length m. Thus, if Gσpv0 �mq ¡ p1 �
1�p1

2 , it follows that Gσpv0q ¡
1�p1

2 . Indeed,
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the last two inequalities suggest

φN pv0 �mq

φN pv0q
¡

1°k�1
l�0

�
N
l

� �1�Gσpv0q
Gσpv0q

�l �1 � p0
2

�N�1

¡

�
�1 �

k�1̧

l�1

�
eN
l

�l �1 � 1�p1
2

1�p1
2

�l��
�1 �

1 � p0
2

�N�1

¡

�
1 �

�
1�p1
1�p1

�k�1 k�1̧

l�1

�
eN
l

�l��1 �
1 � p0

2

�N�1

¡

�
1 � pk � 1q

�
1�p1
1�p1

� eN
k�1

�k�1
��1

� kΘ�
pΘ�

�
�

p1�p1qeN
p1�p1qpk�1q

�k�1

¡ k�1
�

p1�p1qeN
p1�p1qpk�1q

�1�k
� kΘ�
pΘ�

�
�

p1�p1qeN
p1�p1qpk�1q

�k�1
�

Θ�

pΘ�
,

where the first inequality follows from the positivity of all terms; the second follows from the bound

on Gσpv0q and Sterling’s bounds for the Binomial coefficient; the third is due to simple monotonicity

requirements; the forth follows from the monotonicity of
�
eN
l

�l
and the choice of N .

Otherwise, Gσpv0 �mq ¤ 1�p1
2 , or equivalently 1 �Gσpv0 �mq ¥ 1�p1

2 and we get

φN pv0 �mq

φN pv0q
�

°k�1
l�0

�
N
l

� �1�Gσpv0�mq
Gσpv0�mq

�l
°k�1
l�0

�
N
l

� �1�Gσpv0q
Gσpv0q

�l
�
Gσpv0 �mq

Gσpv0q

�N�1

¡
r1 �Gσpv0 �mqsk�1°k�1

l�0

�
N
l

�
�

1
Gσpv0q

�k�1°k�1
l�0

�
N
l

�
�
Gσpv0 �mq

Gσpv0q

�N�1

� rp1 �Gσpv0 �mqqGσpv0qs
k�1

�
Gσpv0 �mq

Gσpv0q

�N�1

� rp1 �Gσpv0 �mqqGσpv0 �mqsk�1

�
Gσpv0 �mq

Gσpv0q

�N�k

¥
�
p1�p1qp2

2

�k�1 �
1 � p0

2

�N�k
�

�
p1�p1qp2

2

�k�1 �
1 � p0

2

�N�1 �
1 � p0

2

�1�k
¥

�
p1�p1qp2

2

�k�1
� Θ�
pΘ�

�
�

2�p0
p1�p1qp2

�k�1 �
2�p0

2

�1�k
�

Θ�

pΘ�
,

where the first inequality follows from monotonicity of the numerator and the denominator; the second

inequality follows from bounds on the probability (i.e., Gσpv0 �mq ¥ p2 for every strategy and every

value v0); and the third inequality follows from the choice of N .

The proof, up to this point, accommodated for a unique SGP equilibrium, as Nash equilibria are

set up to a zero-measure deviation. However, Iv0 is fixed as ε-optimal where ε P
�
0, p02

�
. Thus, we
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can take a (small) positive-measure set of non-manipulating valuations close to v0, that sustain the

same ε-optimality condition. The analysis according to v0 holds for every valuation in that set, and

the result follows.

11


