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Abstract

We analyze whether pre-contest communications would occur in contest models with asymmetric

information. We �nd that in Tullock contests signals can be e¤ectively used in equilibrium. We then study

all-pay contests and show that such signals are not e¤ective, and therefore pre-contest communications

will not occur in equilibrium.

Keywords: Contests, signaling, asymmetric information, incomplete information.
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1 Introduction

In signaling games some players are uninformed about the types of their opponents in which case their

opponents may either send or not send signals to reveal their types. The power and the complexity of

signaling games has already been demonstrated in the seminal works of Nobel prize-winners Akerlof (1970)

and Spence (1973) as well as in many other research works. Our goal in this paper is to examine the power

of signaling in the two main contest models: the Tullock contest1 in which the contest success function is

stochastic such that the probability of a player to win is equal to the ratio of his e¤ort and the total e¤ort

�Department of Economics, Ben-Gurion University of the Negev, Beer�Sheva 84105, Israel.
yDepartment of Economics, Ben-Gurion University of the Negev, Beer�Sheva 84105, Israel. Email: anersela@bgu.ac.il
1Numerous researchers have analyzed the Tullock contests with either complete and incomplete information. See, among

others, Tullock (1980), Skaperdas (1996), Szidarovszky and Okuguchi (1997), Clark and Riis (1998), Fey (2008) and Wasser

(2013).
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exerted by all the players, and the all-pay contest2 in which the contest success function is deterministic such

that the player with the highest e¤ort wins.3 In this paper we ask whether or not pre-contest communication

between contestants with asymmetric information is possible. In other words, is there a place for signaling in

these two contest models under incomplete information. Alternatively, we ask whether the players who have

private information about their types have any incentive to send costly signals in order to reveal their types

and by doing so to change the contest with incomplete information into a contest with complete information.

The incentive to send a costly signal could be whether the player is strong (has a high value of winning)

or weak (has a low value of winning). In both cases, the role of the signal is to reduce the players�costs of

e¤ort.

We assume that one of the players (referred to as the informed player) has only two possible types (values

of winning) and his type is private information. The type of the other player (referred to as the uninformed

player) is common knowledge. In the �rst stage, the informed player decides whether or not to send a costly

signal in order to reveal his type. In the second stage, both players compete in an asymmetric contest

with either complete or incomplete information. We consider �rst the Tullock two-stage contest, analyze its

perfect Bayesian equilibrium, and show that, depending on the parameters of the model, there may exist a

separating perfect Bayesian equilibrium as well as a pooling perfect Bayesian equilibrium. We �rst �nd that

the informed player (when he is relatively strong) might have an incentive to send a costly signal in order to

reveal his type. In that case, the weak player who wishes to pretend to be strong may not �nd it pro�table

to send the same signal of the strong player. Speci�cally, we show that the informed player has an incentive

to send such a signal when he is strong but the probability of his type is relatively low. Otherwise, when

the probability of his type is relatively high, he does not have an incentive to send a costly signal since he

does not need to convince his opponent that he is indeed strong. We also �nd that the weak player might

have an incentive to send a costly signal, but the signal he needs to send in order to reveal his type is not

2Numerous researchers have analyzed the all-pay contest with either complete or incomplete information. See, among others,

Hlilman and Riley (1989), Baye, Kovenock and de Vries (1996), Amann and Leininger (1996), Krishna and Morgan (1997), Che

and Gale (1998), Moldovanu and Sela (2001, 2006) and Siegel (2009).
3The Tullock contest as well as the all-pay contest have several applications including rent-seeking and lobbying in orga-

nizations, R&D races, political contests, promotions in labor markets, trade wars, military purposes and biological wars of

attrition.
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pro�table. Therefore there is only a separating equilibrium in which the strong player is the only one who

might send a costly signal.

Then we consider the two-stage all-pay contest and analyze its perfect Bayesian equilibrium where the

uninformed player�s type is either higher or lower than the two possible types of the informed player. We

demonstrate that in the all-pay contest, a separating perfect Bayesian equilibrium does not exist, which

means that the informed player has no incentive to send a costly signal in order to reveal his type. The

reason is that for both types of the informed player a separating equilibrium is not pro�table compared to

the pooling equilibrium and therefore each of the types does not have any incentive to send a costly signal.

Furthermore, even when the uninformed player�s type is higher than the informed player�s high type and

lower than his low type (for which we do not have an explicit characterization of the equilibrium strategies)

it is clear that a separating equilibrium is not possible. These results emphasize the di¤erent e¤ects of the

deterministic and stochastic contest success functions on signalling in contests under incomplete information.

The issue of signaling in contests has already been studied (see, for example, Amegashie 2005 and Zhang

and Wang 2009). However, there is a key di¤erence between our model and the other ones. In the other

papers, the signaling occurs through early period e¤orts that a¤ect these players�probabilities of winning.

On the other hand, in our paper the signaling occurs through a costly signal that has no e¤ect on the players�

probabilities of winning, but only on their expected payo¤s.

The rest of the paper is organized as follows. In Section 2 we analyze the two-stage Tullock contest,

in Section 3 we analyze the two-stage all-pay contest, and Section 4 concludes. The proofs appear in an

Appendix.

2 The two-stage Tullock contest

We �rst consider a two-stage Tullock contest with two players. The value of winning (type) for player j is

vj while the value of winning for player i is viL with a probability of pL or viH with a probability of pH .

The type of player i is private information while the type of player j is commonly known. In the second

stage, if players i and j exert e¤orts of xi; xj ; then player i wins with a probability of xi
xi+xj

; player j wins

with a probability of xj
xi+xj

; and the players�costs in that stage are xi and xj respectively. In the �rst stage,
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however, player i can send a signal si given his type in order to reveal it, and then his cost in that stage is

equal to si: The players wish to maximize their utility functions which are given by

ui(xi; xj ; si) = vi
xi

xi + xj
� xi � si

uj(xi; xj) = vj
xj

xi + xj
� xj

We analyze the Perfect Bayesian Nash Equilibrium (PBNE) of the above two-stage Tullock contest that

consists of strategy pro�les of both players and the belief of player j (the uninformed player) after he observes

the signal si of player i (the informed player). The players� strategies are sequentially rational given the

beliefs and the strategies of their opponent, and the beliefs of the uninformed player that based on the signal

received from the informed player satisfy the Bayes�rule whenever possible.

2.1 The second stage

In order to analyze the perfect Bayesian Nash Equilibrium of the two-stage Tullock contest we begin with

the second stage and go backwards to the �rst one.

2.1.1 Pooling equilibrium

Consider �rst that both types of player i send the same signal in the �rst stage which can be either positive

or zero. Then, the maximization problems of player i with types H and L in the second stage are

max
xiH

viH
xiH

xiH + xj
� xiH (1)

max
xiL

viL
xiL

xiL + xj
� xiL

In that case, player j does not know the type of player i and therefore his maximization problem is

max
xj

vj(pH
xj

xj + xiH
+ PL

xj
xj + xiL

)� xj (2)

The F.O.C. of (1) and (2) are

viH
xj

(xiH + xj)2
= 1

viL
xj

(xiL + xj)2
= 1
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and

vj(
piH � xiH
(xiH + xj)2

+
piL � xiL
(xiL + xj)2

) = 1

The solution of the F.O.C. yields that the players�e¤orts in the second stage are

xiL =
viL(pH � vj

p
viL � viH + pL � vj � viH) � (viL � viH + PH � vj(viL �

p
viL � viH))

(viL � viH + pH � viL � vj + pL � viH � vj)2
(3)

xiH =
viL � viH(pH � vj

p
viL � viH + pL � vj � viH) � (

p
viL � viH � pL�vj

viL
(viL �

p
viL � viH))

(viL � viH + pH � viL � vj + pL � viH � vj)2

and

xj =
viL(pH � vj

p
viL � viH + pL � vj � viH)2

(viL � viH + pH � viL � vj + pL � viH � vj)2
(4)

We focus here on interior perfect Bayesian equilibrium and therefore we need the following su¢ cient condition

that player i with type L exerts a positive e¤ort (the e¤orts of player i with type H and player j are always

positive):

viL � viH + PH � vj(viL �
p
viL � viH) > 0

Then, player i�s expected payo¤s in the second stage are

upiH = viH

�
viL � viH + pL � vj(viH �

p
viL � viH)

viL � viH + pH � viL � vj + pL � viH � vj

�2
(5)

upiL = viL

�
viL � viH + pH � vj(viL �

p
viL � viH)

viL � viH + pH � viL � vj + pL � viH � vj

�2
where upiK is player i�s expected payo¤ if his value is viK ; k 2 fH;Lg:

2.1.2 Separating equilibrium

Consider now that both types of player i send di¤erent signals in the �rst stage. Then, the maximization

problems of player i with types H and L are

max
xiH

viH
xiH

xiH + xj
� xiH

max
xiL

viL
xiL

xiL + xj
� xiL

In that case, player j is able to distinguish between the types of player i and therefore his maximization

problem is

max
xj

vj
xj

xj + xi
� xj (6)
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where xi = xiH or xi = xiL according to the type of player i: Then, the equilibrium e¤orts are given by the

solution of the standard two-player Tullock contest as follows:

xi =
v2i vj

(vi + vj)2
(7)

xj =
v2j vi

(vi + vj)2

where xi = xiH and vi = viH or xi = xiL and vi = viL according to the type of player i: Then, player i�s

expected payo¤s in the second stage are

usiH =
v3iH

(viH + vj)2
(8)

usiL =
v3iL

(viL + vj)2

where usiK is player i�s expected payo¤ if his value is viK ; k 2 fH;Lg:

Denote now by eusiL the expected payo¤ of player i with type L when player j believes that he has type
H: By (7), the strategy of player j will be xj =

v2j viH
(viH+vj)2

: Then, the maximization problem of player i with

type L is

max
xiL

viL
xiL

xiL +
v2j viH

(viH+vj)2

� xiL (9)

Similarly, denote by eusiH the expected payo¤ of player i with type H when player j believes that he has

type L: By (7), the strategy of player j will be xj =
v2j viL

(vL+vj)2
: Then, the maximization problem of player i

with type H is

max
xiH

viH
xiH

xiH +
v2j viL

(viL+vj)2

� xiH (10)

The solution of the maximization problems (9) and (10) yields

Proposition 1 In the two-stage Tullock contest

1. If player j believes that player i with type L has type H, then player i has an expected payo¤ of

eusiL = �pviL(vj + viH)� vjpviHvj + viH

�2
(11)

2. If player j believes that player i with type H has type L, then player i has an expected payo¤ of

eusiH = �pviH(vj + viL)� vjpviLvj + viL

�2
(12)
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Proof. See Appendix.

The following result provides the conditions under which player i has an incentive to pretend that he has

a di¤erent type.

Proposition 2 In the two-stage Tullock contest

1. eusiL > usiL i¤ vj <
p
viH � viL; i.e., for such players� values of winning, player i with type L has a

higher expected payo¤ if player j believes that he has type H:

2. eusiH > usiH i¤ vj >
p
viH � viL; i.e., for such players� values of winning, player i with type H has a

higher expected payo¤ if player j believes that he has type L:

Proof. See Appendix.

2.1.3 Separating equilibrium vs. pooling equilibrium

In the following we compare player i�s expected payo¤s under the pooling and the separating equilibrium.

We �rst denote the di¤erences of both types of player i�s expected payo¤s when player j has the true beliefs

about the types of player i; namely, he believes that type k is indeed type k; k 2 fH;Lg. Formally,

�Hs�p = usiH � u
p
iH (13)

�Ls�p = usiL � u
p
iL

We then show that the types of player i necessarily have di¤erent preferences about these two types of

equilibrium (pooling or separating).

Proposition 3 In the two-stage Tullock contest it is not possible that both types of player i prefer the

separating equilibrium over the pooling equilibrium and vice versa. In particular,

1. If vj <
p
viH � viL then �Hs�p > 0 and �Ls�p < 0; i.e., player i with type H (L) has a higher (lower)

expected payo¤ under the separating equilibrium than under the pooling equilibrium.

2. If vj >
p
viH � viL then �Hs�p < 0 and �Ls�p > 0; i.e., player i with type L (H) has a higher (lower)

expected payo¤ under the separating equilibrium than under the pooling equilibrium.

3. If vj =
p
viH � viL then �Hs�p = �Ls�p = 0; i.e., both types of player i; H and L, have the same expected

payo¤ under the separating and the pooling equilibrium.
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Proof. See Appendix.

We now denote the di¤erences of both types of player i�s expected payo¤s when player j has wrong beliefs

about player i�s type (namely, he believes that type L is type H and vice versa) as follows:

e�Hs�p = eusiH � upiH
e�Ls�p = eusiL � upiL

In the following we show that both types of player i may prefer the separating equilibrium over the pooling

equilibrium if player j has the wrong beliefs about their types.

Proposition 4 In the two-stage Tullock contest

1. If vj <
p
viH � viL, then e�Ls�p > 0; i.e., player i with type L has a lower expected payo¤ under the

pooling equilibrium than under the separating equilibrium when player j believes that he has type H:

2. If vj >
p
viH � viL, then e�Hs�p > 0; i.e., player i with type H has a lower expected payo¤ under the

pooling equilibrium than under the separating equilibrium when player j believes that he has type L:

Proof. See Appendix.

We also denote the di¤erences of both types of player i�s expected payo¤s when player j has the wrong

and the right beliefs by

�
H

s�s = eusiH � usiH (14)

�
L

s�s = eusiL � usiL
Then, we can conclude from Propositions (3) and (4) that

Conclusion 1 In the two stage Tullock contest

1. If vj <
p
viH � viL, player i with type H prefers the separating equilibrium over the pooling equilibrium,

i.e., �Hs�p > 0: In that case, player i with type L prefers a separating equilibrium to the pooling equilibrium

i¤ player j believes that he has type H, i.e., �
L

s�s > 0:

2. If vj >
p
viH � viL, player i with type L prefers the separating equilibrium over the pooling equilibrium,

i.e., �Ls�p > 0: In that case, player i with type H prefers a separating equilibrium to the pooling equilibrium

i¤ player j believes that he has type L, i.e., �
H

s�s > 0:
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2.2 The �rst stage

In order to characterize the perfect Bayesian equilibrium of the two-stage Tullock contest we de�ne the

following beliefs of player j about the type of player i according to the signal sent by player i in the �rst

stage.

De�nition 2 In the two-stage Tullock contest, if vj <
p
viH � viL, player j�s beliefs are as follows: If �Hs�p >

��Ls�p, then player j believes that each signal si � �
L

s�s is sent by player i with type H, and each signal

si < �
L

s�s is sent by type L. And, if �
H
s�p � ��Ls�p, then player j believes that each signal si is sent by

both types of player i according to their priors:

The rationale behind De�nition 2 is that when vj <
p
viH � viL, by Proposition 3, type H of player

i prefers the separating equilibrium to the pooling equilibrium, while type L of player i has the opposite

preference. If �Hs�p > ��Ls�p, the di¤erence of type H�s payo¤ from the separating equilibrium compared

to the pooling equilibrium is higher than the di¤erence of type L�s payo¤ from the pooling equilibrium

compared to the separating equilibrium. Then, if type H sends a signal higher than �
L

s�s it is clear that

this signal was sent by him since type L will have a negative payo¤ if he would send the same signal. Any

signal lower than �
L

s�s can be sent by both types of player i and therefore player j does not distinguish

between player i�s types for such signals. If, on the other hand, �Hs�p � ��Ls�p, the di¤erence between type

H�s payo¤ from the separating equilibrium compared to the pooling equilibrium is lower than the di¤erence

of type L�s payo¤ from the pooling equilibrium compared to the separating equilibrium. Then, every signal

that type H will send can be sent by type L as well. Thus, player j believes that any signal could be sent

by each of the types of player i according to their priors.

De�nition 3 In the two-stage Tullock contest, if vj >
p
viH � viL, player j�s beliefs are as follows: If �Ls�p >

��Hs�p then player j believes that each signal si � �
H

s�s is sent by player i with type L, and that each signal

si < �
H

s�s is sent by type H. And, if �
L
s�p � ��Hs�p, then player j believes that each signal si is sent by

both types of player i according to their priors.

The rationale behind De�nition 3 is that when vj >
p
viH � viL; by Proposition 3, type L of player i

prefers the separating equilibrium to the pooling equilibrium while type H of player i has the opposite
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preference. If �Ls�p > ��Hs�p, the di¤erence of type L�s payo¤ from the separating equilibrium compared

to the pooling equilibrium is higher than the di¤erence of type L�s payo¤ from the pooling equilibrium and

the separating equilibrium. If type L sends a signal higher than �
H

s�s it is clear that this signal was sent

by him since type H will have a negative payo¤ if he would send the same signal. Any signal lower than

�
H

s�s can be sent by both types of player i and therefore player j does not distinguish between player i�s

types for such signals. If, on the other, �Ls�p � ��Hs�p, the di¤erence of type H�s payo¤ from the separating

equilibrium compared to the pooling equilibrium is lower than the di¤erence of type H�s payo¤ from the

pooling equilibrium compared to the separating equilibrium and then every signal that type L will send can

be sent by type H as well. Thus, player j believes that any signal could be sent by each of the types of

player i according to their priors.

De�nition 4 In the two-stage Tullock contest, if vj =
p
viH � viL, player j believes that each signal si is

sent by both types of player i according to their priors.

The rationale behind De�nition 4 is that when vj =
p
viH � viL, by Proposition 3, types H and L of

player i are indi¤erent between the separating equilibrium and the pooling equilibrium. Thus they both do

not have an incentive to send a costly signal, and therefore player j believes that each signal si is sent by

both types of player i according to their priors.

Given player j�s beliefs, we can characterize the perfect Bayesian equilibrium in the two-stage Tullock

model. The equilibrium characterization is divided into three parts (Theorems 5, 6 and 7) according to the

relation between the players�values of winning.

1. If vj <
p
viH � viL we have a separating equilibrium as well as a pooling equilibrium.

Theorem 5 In the two-stage Tullock contest, if vj <
p
viH � viL and if the players� beliefs are given by

De�nition 2, then

(i). If �Hs�p � ��Ls�p, there is a pooling perfect Bayesian equilibrium in which both types of player i, L

and H, do not send any signal in the �rst stage. Then, in the second stage, the players�strategies are given

by (3) and (4).

(ii). If �Hs�p > ��Ls�p; there is a separating perfect Bayesian equilibrium in which player i with type H

sends a signal in the �rst stage siH = �
L

s�s and player i with type L does not send any signal. Then, in

10



the second stage, the players strategies are given by (7). In that case, a su¢ cient condition for a separating

perfect Bayesian equilibrium is a su¢ ciently small value of pH :

Proof. See Appendix.

According to Theorem 5, we can see that there is a separating perfect Bayesian equilibrium in the two-

stage Tullock contest if the probability of type H of player i is relatively small and his value is signi�cantly

larger than the value of his opponent. Note that only if the probability of type H is small, player i with

type H has an incentive to send a signal. Otherwise, if the probability of type H is high, there is no need to

send a signal since player j already believes that his opponent probably has type H:

2. If vj >
p
viH � viL we have only the pooling equilibrium.

Theorem 6 In the two-stage Tullock contest, if vj >
p
viH � viL and if the players� beliefs are given by

De�nition 3, there is only a pooling perfect Bayesian equilibrium in which both types of player i, L and H,

do not send any signal in the �rst stage. Then, in the second stage, the players�strategies are given by (3)

and (4).

Proof. See Appendix.

3. If vj =
p
viH � viL, as in the previous case, we have only the pooling equilibrium.

Theorem 7 In the two-stage Tullock contest, if vj =
p
viH � viL and if the players� beliefs are given by

De�nition 4, there is a pooling perfect Bayesian equilibrium in which both types of player i, L and H, do not

send any signal in the �rst stage. Then, in the second stage, the players�strategies are given by (3) and (4).

Proof. See Appendix.

3 The two-stage all-pay contest

We now consider a two-stage all-pay contest with two players. The value of winning (type) for player j is

vj while the value of winning for player i is vL with probability pL, or vH with probability pH . The type of

player i is private information and the type of player j is commonly known. In the second stage, each player

i submits a bid (e¤ort) x 2 [0;1) and the player with the highest bid wins the �rst prize and all the players

11



pay their bids. In the �rst stage, however, player i can send a signal si in order to reveal his type and then

his cost in that stage is equal to si: The players wish to maximize their utility functions which are given by

ui(xi; xj ; si) =

8>>>>>><>>>>>>:
vi � xi � si if xi > xj

1
2vi � xi � si if xi = xj

�xi � si if xi < xj

uj(xi; xj) =

8>>>>>><>>>>>>:
vj � xi if xj > xi

1
2vj � xi if xj = xi

�xi if xj < xi

We analyze the Perfect Bayesian Nash Equilibrium (PBNE) of the above two-stage all-pay contest that

consists of strategy pro�les of both players and the belief of player j (the uninformed player) after he observes

the signal si of player i (the informed player). The players� strategies are sequentially rational given the

beliefs and the strategies of their opponent, and the beliefs of the uninformed player that based on the signal

received from the informed player satisfy the Bayes�rule whenever possible.

3.1 The second stage

3.1.1 Separating equilibrium

Consider �rst that both types of player i send di¤erent signals in the �rst stage. Then, assume that player

i�s value in the second stage is vi where vi = viL or vi = viH , and, without loss of generality, assume also

that the players�values satisfy vi > vj : According to Baye, Kovenock and de Vries (1996), there is always

a unique mixed-strategy equilibrium in which players i and j randomize on the interval [0; vj ] according to

their e¤ort cumulative distribution functions Fi; Fj , which are given by

viFj(x)� x = vi � vj

vjFi(x)� x = 0

Thus, player i�s equilibrium e¤ort in the second stage is uniformly distributed as follows:

Fi(x) =
x

vj
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while player j�s equilibrium e¤ort in the second stage is distributed according to the following cumulative

distribution function

Fj(x) =
vi � vj + x

vi

The respective expected payo¤s in the second stage are

ui = vi � vj (15)

uj = 0

3.1.2 Pooling equilibrium

Consider now that both types of player i send the same signal in the �rst stage where this signal could be

either positive or zero. Then, we consider two possible scenarios as follows:

1. Assume �rst that vj > viH > viL: In that case, there is a mixed-strategy equilibrium in which player i

with types H and player j randomize on the interval [0; viH ] according to their e¤ort cumulative distribution

functions FiH ; Fj , which are given by

vj(pL + pH � FiH(x))� x = vj � viH

viH � Fj(x)� x = 0

However, player i with type L chooses to stay out of the contest. Thus,

Proposition 5 In the two-stage all-pay contest, if vj > viH > viL, player i with type L chooses xiL = 0

with probability one in the second stage, while the equilibrium e¤ort of player i with type H in the second

stage is distributed according to the cumulative distribution function

FiH(x) =

8>>>>>><>>>>>>:
0 if x � maxf0; viH � pH � vjg

pH �vj�viH+x
pH �vj if maxf0; viH � pH � vjg < x � viH

1 if x > viH

(16)

Player j�s equilibrium e¤ort in the second stage is uniformly distributed as follows:
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Fj(x) =

8>>>>>><>>>>>>:
0 if x � maxf0; viH � pH � vjg

x
viH

if maxf0; viH � pH � vjg < x � viH

1 if x > viH

(17)

The respective expected payo¤s in the second stage are then

uiL = uiH = 0 (18)

uj = vj � viH

Proof. See Appendix.

2. Assume now that vj < viL < viH : Then, there is a mixed-strategy equilibrium in which player i

with type L and player j randomize on the interval [0; pLvj ] according to their e¤ort cumulative distribution

functions FiL; Fj , which are given by

vj � pL � FiL(x)� x = 0

viL � Fj(x)� x = viL � vj(
pH � viL
viH

+ pL)

And player i with types H and player j randomize on the interval [pLvj ; vj ] according to their e¤ort cumu-

lative distribution functions FiH ; Fj , which are given by

vj(pL + pHFiH(x))� x = 0

viH � Fj(x)� x = viH � vj

Thus, we obtain

Proposition 6 In the two-stage all-pay contest, if vj < viL < viH , the equilibrium e¤ort of player i with

type L in the second stage is distributed according to the cumulative distribution function

FiL(x) =

8>><>>:
x

pL�vj if 0 � x � pL � vj

1 if x > pL � vj
(19)

and the equilibrium e¤ort of player i with type H in the second stage is distributed according to the cumulative

14



distribution function

FiH(x) =

8>>>>>><>>>>>>:
0 if 0 � x � pL � vj

x�pL�vj
pH �vj if pL � vj < x � vj

1 if x > vj

(20)

Player j�s equilibrium e¤ort in the second stage is distributed according to the cumulative distribution function

Fj(x) =

8>>>>>><>>>>>>:

viL�vj(
pH �viL
viH

+pL)+x

viL
if 0 � x � pL � vj

viH�vj+x
viH

if pL � vj < x � vj

1 if x > vj

(21)

The respective expected payo¤s in the second stage are then

uiL = viL � vj(
pH � viL
viH

+ pL) (22)

uiH = viH � vj

uj = 0

Proof. See Appendix.

3.2 The �rst stage

Based on the analysis of the second stage we show that in contrast to the two-stage Tullock contest we

obtain:

Proposition 7 In the two-stage all-pay contest there is no separating perfect Bayesian equilibrium.

Proof. See Appendix.

The result of Proposition 7, according to which there is no separating equilibrium in the two-stage all-

pay contest, is proved only for the case when vj > viH > viL and vj < viL < viH since there we explicitly

calculate the equilibrium strategies. For the other case when viL < vj < viH it is quite complex to explicitly

calculate the equilibrium strategies. However, by similar arguments used in the proof of Proposition 7, even

without such a calculation, it can be shown that a separating perfect Bayesian equilibrium does not exist.

15



4 Concluding remarks

We analyzed the Tullock and the all-pay contest when the uninformed player has a commonly known type

while the informed player has two possible types which are private information. We demonstrated that while

in the Tullock contest the informed player may have an incentive to send a costly signal to reveal his type,

in the all-pay contest he never has such an incentive. One of the reasons that there is a separating perfect

Bayesian equilibrium in the Tullock contest and not in the all-pay contest is that the distributions of the

players�revenues are completely di¤erent. While in the all-pay contest only one of the players has a positive

expected payo¤, in the Tullock contest both players have positive expected payo¤s and as such pre-contest

communication might be useful only in the latter form of contest. Because of the complexity in analyzing

multi-stage contests with signaling, we assumed the simplest case of two possible types of players. It would

be of interest to examine whether our results hold when the set of types is larger or even continuous.

5 Appendix

5.1 Proof of Proposition 1

If player j believes that he plays against player i with type H, by (7) his e¤ort will be

xj =
viHv

2
j

(viH + vj)2
(23)

We want to �nd the optimal e¤ort for player i with type L who has the maximization problem

max
xiL

eusiL = viL xj
(xj + xiL)

� xiL (24)

The F.O.C. is

viL
xj

(xiL + xj)2
� 1 = 0

) x2iL + 2xiLxj + x
2
j � xjviL = 0

The solution of this quadratic equation is

xiL =
�2xj +

q
(2xj)2 � 4(x2j � xjviL)

2
(25)
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By substituting (23) in (25), we obtain that

xiL =
vjviH

p
viHviL + v

2
j

p
viHviL � viHv2j

(viH + vj)2
(26)

Substituting (26) in (24) yields that the expected payo¤ of player i with type L when player j believes

that he has type H is

eusiL = �pviL(vj + viH)� vjpviHvj + viH

�2
Similarly, we obtain that the expected payo¤ of player i with type H when player j believes that he has

type L is

eusiH = �pviH(vj + viL)� vjpviLvj + viL

�2
Q:E:D:

5.2 Proof of Proposition 2

By (7), when player j believes that he plays against player i with type H, he will exert an e¤ort of

xj�H =
viHv

2
j

(viH+vj)2
; and when he believes that he plays against player i with type L he will exert an e¤ort of

xj�L =
viLv

2
j

(viL+vj)2
: It can be easily veri�ed that

xj�H =
viHv

2
j

(viH + vj)2
�

viLv
2
j

(viL + vj)2
= xj�L (27)

i¤ vj � p
viHviL

Now, by the Envelope Theorem we obtain that if

V = max
xi
vi

xi
xi + xj

� xi

Then,

dV

dxj
= � vixi

(xi + xj)2
< 0

In other words, player i�s expected payo¤ decreases in player j�s e¤ort. Thus, by (27), if vj <
p
viHviL,

player i with type L prefers that player j will believe that he has type H since then player j will exert a

lower e¤ort. Similarly, if vj >
p
viHviL, player i with type H prefers that player j will believe that he has

type L since then player j will exert a lower e¤ort. Q:E:D:
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5.3 Proof of Proposition 3

By (5) and (8), we have

�Hs�p = viH

 
v2iH

(viH + vj)2
�
�
viL � viH + pL � vj(viH �

p
viL � viH)

viL � viH + pH � viL � vj + pL � viH � vj

�2!

Since viH > viL, we obtain that �Hs�p � 0 i¤

viH(viL � viH + pH � viL � vj + pL � viH � vj) � (viH + vj)(viL � viH + pL � vj(viH �
p
viL � viH))

The last inequality holds i¤

vj

�
1�

r
viH
viL

�
� pviH(

p
viL �

p
viH

Since
�
1�

q
viH
viL

�
< 0, if we divide both sides by this term we obtain that

vj �
p
viH � viL

Thus, we obtain that player i with type H prefers a separating equilibrium over a pooling equilibrium i¤

vj �
p
viH � viL.

Similarly, by (5) and (8), we have

�Ls�p = viL

 
v2iL

(viL + vj)2
�
�
viL � viH + pH � vj(viL �

p
viL � viH)

viL � viH + pH � viL � vj + pL � viH � vj

�2!

Since viH > viL, we obtain that �Ls�p � 0 i¤

viL(viL � viH + pH � viL � vj + pL � viH � vj) � (viL + vj)(viL � viH + pH � vj(viL �
p
viL � viH))

The last inequality holds i¤

vj �
viL(

p
viH � viL � viH)

�pviH � viL + viL
=
p
viH � viL

Thus, we obtain that player i with type L prefers the separating equilibrium over the pooling equilibrium i¤

vj �
p
viH � viL. Q:E:D:

6 Proof of Proposition 4

1. We �rst need to show that if vj <
p
viH � viL then

e�Ls�p = eusiL � upiL > 0
18



By (5) and (11)

e�Ls�p = �pviL(vj + viH)� vjpviHvj + viH

�2
� viL

�
viL � viH + pH � vj(viL �

p
viL � viH)

viL � viH + pH � viL � vj + pL � viH � vj

�2
Thus, we need to show that

(
p
viL(vj + viH)� vj

p
viH)(viL � viH + pH � viL � vj + pL � viH � vj)

�pviL(viL � viH + pH � vj(viL �
p
viL � viH))(vj + viH)

� 0

The last inequality holds i¤

p
viL � viH(

p
viH �

p
viL))� vj(

p
viH �

p
viL)) � 0

Thus, e�Ls�p � 0 i¤ vj � pviH � viL:

2. Now we need to show that if vj >
p
viH � viL then

e�Hs�p = eusiH � upiH > 0
By (5) and (12)

e�Hs�p = �pviH(vj + viL)� vjpviLvj + viL

�2
� viH

�
viL � viH + pL � vj(viH �

p
viL � viH)

viL � viH + pH � viL � vj + pL � viH � vj

�2
Thus, we need to show that

(
p
viH(vj + viL)� vj

p
viL)(viL � viH + pH � viL � vj + pL � viH � vj)

�(viL � viH + pL � vj(viH �
p
viL � viH))(vj + viL)

p
viH

� 0

The last inequality holds i¤

vj(
p
viH �

p
viL))�

p
viL � viH(

p
viH �

p
viL)) � 0

Thus, e�Hs�p � 0 i¤ vj � pviH � viL: Q:E:D:
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6.1 Proof of Theorem 5

By Proposition 3, if vj <
p
viH � viL, player i with type H has a higher expected payo¤ under the separating

equilibrium than under the pooling equilibrium, and player i with type L has a lower expected payo¤ under

the separating equilibrium than under the pooling equilibrium.

1. If �Hs�p < ��Ls�p, type H is willing to pay less for the separating equilibrium than what type L

is willing to pay for the pooling equilibrium. In that case, by De�nition 2, for any signal siH there will be

the same pooling equilibrium as without this signal. Thus, player i with type H has no incentive to send a

costly signal and therefore the pooling equilibrium occurs.

2. If �Hs�p > ��Ls�p, type H is willing to pay more for the separating equilibrium than what type L is

willing to pay for the pooling equilibrium. In that case, if there is a separating equilibrium, by Proposition

4 player i with type L prefers that player j will believe that he has type H. However, since player i with

type H sends a signal of siH = �
L

s�s > 0, type L will not have an incentive to send this signal as well. Thus,

since only type H sends a signal, by De�nition 2 player j can distinguish between player i�s types according

to the signal. If player i with type L will send a signal siL < �
L

s�s, by De�nition 2 there will be the same

pooling equilibrium as without this signal. Thus, player i with type L has no incentive to send a costly

signal. In order to complete the proof we need to show that a signal of �
L

s�s is not too expensive for type

H; namely, he prefers the separating equilibrium with the signal payment �
L

s�s over the pooling equilibrium

without any signal payment. Below, we show that

lim
pH!0

(�Hs�p ��
L

s�s) > 0

By (5) and (8),

lim
pH!0

�Hs�p = viH

 
v2iH

(viH + vj)2
�
�
viL � viH + vj(viH �

p
viL � viH)

viH(viL + vj)

�2!

and by (5), (8) and (11),

�
L

s�s =

�p
viL(viH + vj)� vj

p
viH)

viH + vj

�2
� v3iL
(viL + vj)2
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Note that �
L

s�s does not depend on the value of pH . Thus, we need to show that

lim
pH!0

(�Hs�p ��
L

s�s) = viH

 
v2iH

(viH + vj)2
�
�
viL � viH + vj(viH �

p
viL � viH)

viH(viL + vj)

�2!
�
�p

viL(viH + vj)� vj
p
viH)

viH + vj

�2
� v3iL
(viL + vj)2

(28)

= =
v3iH � (viH

p
viL � vj(

p
viH �

p
viL))

2

(viH + vj)2
+
v3iL � (viL

p
viH + vj(

p
viH �

p
viL))

2

(viL + vj)2
� 0

It can be veri�ed that the last inequality is satis�ed i¤ vj �
p
viH � viL which is exactly our assumption

here about the players� values. Therefore, in order to show that there is a separating perfect Bayesian

equilibrium, it remains to show that

lim
pH!0

(�Hs�p � (��Ls�p)) = lim
pH!0

(�Hs�p +�
L
s�p) > 0

By (5) and (8),

lim
pH!0

�Ls�p = viL

�
v2iL

(viL + vj)2
� v2iL
(viL + vj)2

�
= 0

and since limpH!0
�Hs�p > 0, we obtain that limpH!0

(�Hs�p +�
L
s�p) > 0: Q:E:D:

6.2 Proof of Theorem 6

By Proposition 3, if vj >
p
viH � viL, player i with type L has a higher expected payo¤ under the separating

equilibrium than under the pooling equilibrium and player i with type H has a lower expected payo¤ under

the separating equilibrium than under the pooling equilibrium. Then we have two cases:

1. If ��Hs�p > �Ls�p, type L is willing to pay less for the separating equilibrium than what type H is

willing to pay for the pooling equilibrium. In that case, by De�nition 3, for any signal siL there will be the

same pooling equilibrium as without this signal. Thus, player i with type L has no incentive to send a costly

signal and the pooling equilibrium occurs.

2. If ��Hs�p < �Ls�p, type L is willing to pay more for the separating equilibrium than what type H is

willing to pay for the pooling equilibrium. In that case, if there is a separating equilibrium, by Proposition

4 player i with type H prefers that player j will believe that he has type L. However, if player i with

type H will send a signal of siH � �Hs�s > 0, type L will not have an incentive to send this signal as well.

Then, since only type L sends a signal, by De�nition 3 player j could distinguish between player i�s types

according to the signal sent in the �rst stage. Any lower signal than �
H

s�s will give type H the incentive to
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send the same signal in order to pretend that he has type L. However, below we show that a signal of �
H

s�s

is too expensive for type L; namely, he prefers the pooling equilibrium without any signal payment over the

separating equilibrium with the signal payment �
H

s�s. Thus, below we show that

�Ls�p ��
H

s�s < 0

By (5) and (8),

�Ls�p = viL

 
v2iL

(viL + vj)2
�
�
viL � viH + pH � vj(viL �

p
viL � viH)

viL � viH + pH � viL � vj + pL � viH � vj

�2!

and by (5), (8) and (11),

�
H

s�s =

�p
viH(viL + vj)� vj

p
viL)

viL + vj

�2
� v3iH
(viH + vj)2

Note that

d�Ls�p
dpL

= �2viL
�
viLviH + (1� pL)vj(viL�

p
viHviL)

viLviH + (1� pL)vjviL + pLvjviH

�
�
��vj(viL �pviHviL)(viLviH + (1� pL)vjviL + pLvjviH)� vj(viH � viL)(viLviH + (1� pL)vj(viL�pviHviL)

(viLviH + (1� pL)vjviL + pLvjviH)2

�

Thus,
d�L

s�p
dpL

� 0 i¤

(viL �
p
viHviL)(viLviH + (1� pL)vjviL + pLvjviH) + (viH � viL)(viLviH + (1� pL)vj(viL�

p
viHviL) � 0

It can veri�ed that the last inequality holds i¤
p
viHviL < vj which is exactly our assumption on the

players�values.4 Thus, �Ls�p decreases in pL and therefore it is su¢ cient to show that

lim
pL!0

(�Ls�p��
H

s�s) = viL

 
v2iL

(viL + vj)2
�
�
viL � viH + pH � vj(viL �

p
viL � viH)

viL � viH + pH � viL � vj + pL � viH � vj

�2!
�
�p

viH(viL + vj)� vj
p
viL)

viL + vj

�2
� v3iH
(viH + vj)2

(29)

A comparison of equations (28) and (29) yields that

lim
pL!0

(�Ls�p ��
H

s�s) = lim
pH!0

(�Hs�p ��
L

s�s)

Thus, the inequality in (29) is satis�ed i¤ vj �
p
viH � viL which is exactly our assumption here about the

players�values. Therefore a separating equilibrium is not possible and we have only the pooling equilibrium

in which no type of player i sends a signal. Q:E:D:
4The complete mathematical calculations are available upon request.
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6.3 Proof of Theorem 7

By Proposition 3, if vj =
p
viH � viL, player i with either type L or type H has the same expected payo¤

under the separating equilibrium and under the pooling equilibrium. By De�nition 4, any signal of player i

will not change the prior beliefs of player j and therefore player i, independent of his type, has no incentive

to send any signal. Q:E:D:

6.4 Proof of Proposition 5

We can see that the functions FiH(x); Fj(x), given by (16) and (17), respectively, are well-de�ned, strictly

increasing on [0; viH ], continuous, and that Fj(0) = 0, FiH(0) = maxf0; pH �vj�viHpH �vj g, FiH(viH) = Fj(viH) = 1.

Thus, FiH(x); Fj(x) are cumulative distribution functions of continuous probability distributions supported

on [0; viH ]. In order to see that the above strategies are an equilibrium, note that when contestant j uses

the mixed strategy Fj(x), the expected payo¤ of contestant i with types L and H is zero for any e¤ort

x 2 [0; viH ]. Since it can be easily shown that e¤orts above viH would lead to a negative expected payo¤ for

contestant i, any e¤ort in [0; viH ] is a best response of contestant i with type H to Fj(x): Likewise, x = 0 is

the best response of contestant i with type L to Fj(x): Similarly, when contestant i uses the mixed strategy

FiH(x) and FiL(x); contestant j�s expected payo¤ is vj�viH for any e¤ort x 2 [0; viH ]. Since it can be easily

shown that e¤orts above viH would result in a lower expected payo¤ for contestant j, any e¤ort in [0; viH ]

is a best response of contestant j to FiH(x) and FiL(x): Hence, (FiH(x); FiL(x); Fj(x)) are the equilibrium

strategies in the second stage. Q:E:D:

6.5 Proof of Proposition 6

We can see that the functions FiL; FiH(x); Fj(x), given by (19), (20) and (21), respectively, are well-

de�ned, FiL is strictly increasing on [0; pL � vj ], FiH(x) strictly increasing on [pL � vj ; vj ], and Fj(x) is strictly

increasing on [0; vj ]. They are all continuous, satisfy FiL(0) = Fj(0) = 0, FiL(pL � vj) = 1; FiH(pL � vj) = 0;

and that Fj(vj) = FiH(vj) = 1. Thus, FiL; FiH(x); Fj(x) are cumulative distribution functions of continuous

probability distributions supported on [0; pL � vj ] ; [pL � vj ; vj ] ; [0; vj ], respectively. In order to see that the
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above strategies are an equilibrium, notice that when contestant i uses the mixed strategy FiL(x) or FiH(x),

the expected payo¤ of contestant j is zero for any e¤ort x 2 [0; vj ]. Since it can be easily shown that e¤orts

above vj would lead to a negative expected payo¤ for contestant j, any e¤ort in [0; vj ] is a best response of

contestant j: Likewise, when contestant j uses the mixed strategy Fj(x); the expected payo¤ of contestant i

with type H is viH � vj for any e¤ort x 2 [pL � vj ; vj ], and the expected payo¤ of contestant i with type L

is viL � vj(pH �viLviH
+ pL) for any e¤ort x 2 [0; pL � vj ]. Since it can be easily shown that e¤orts above pL � vj

would result in a lower expected payo¤ for contestant i with type L, and e¤orts below pL � vj or above vj

would result in a lower expected payo¤ for contestant i with type H, any e¤ort in [0; pL �vj ] is a best response

of contestant i with type L, and any e¤ort in [pL � vj ; vj ] is a best response of contestant i with type H to

Fj(x): Hence, (FiH(x); FiL(x); Fj(x)) are the equilibrium strategies in the second stage. Q:E:D:

6.6 Proof of Proposition 7

1. Assume �rst that vj > viH > viL: Then, by (15), if there is a separating perfect Bayesian equilibrium,

the players�expected payo¤s in the second stage are

uj = vj � vi

ui = 0

where vi = viH if player i has type H and vi = viL if player i has type L. Since, independent of his type,

player i has an expected payo¤ of zero in the second stage he has no incentive to send a costly signal in the

�rst stage.

2. Assume that vj < viL < viH : Then, by (15), if there is a separating perfect Bayesian equilibrium, the

players�expected payo¤s in the second stage are

uj = 0

ui = vi � vj

where vi = viH if player i has type H and vi = viL if player i has type L. If, on the other hand, there is a
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pooling perfect Bayesian equilibrium, by (22) the players�expected payo¤s in the second stage are

uiL = viL � vj(
pH � viL
viH

+ pL)

uiH = viH � vj

uj = 0

Since player i with type H has the same expected payo¤ in the second stage in both types of equilibrium he

has no incentive to send a costly signal in the �rst stage. However, Player i with type L has an incentive to

send a signal i¤

viL � vj > viL � vj(
pH � viL
viH

+ pL)

or alternatively, i¤

pH � viL
viH

+ pL > 1

But since viH > viL, the last inequality does not hold. Thus, player i with either type H or L has no

incentive to send a costly signal in the �rst stage. Q:E:D:
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