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Abstract

We study all-pay auctions with discrete strategy sets and analyze the equilibrium

strategies when players have asymmetric values of winning as well as asymmetric e¤ort

constraints. We show that for any number of players if one of them has the highest e¤ort

constraint then, independent of the players�values of winning, he is the only player

with a positive expected payo¤. In a case that two players have the same highest e¤ort

constraint then they do not necessarily have the highest expected payo¤s. Our results

show a signi�cant distinction of the equilibrium strategies between two players and a

larger number of players, particularly when the player with the highest e¤ort constraint

is not unique.
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1 Introduction

The all-pay auction is one of the main contest forms in the literature on contest theory.

Numerous applications have been made to rent-seeking and lobbying in organizations, R&D

races, political contests, promotions in labor markets, trade wars and military and biological

wars of attrition. In all-pay auctions, all players, including those who do not win the prize,

incur costs as a result of their e¤orts, but only the player with the highest e¤ort receives the

prize. Hillman and Samet (1987), Hillman and Riley (1989) and Bay et al. (1996) character-

ized the equilibrium strategies of the all-pay auction under complete information. Che and

Gale (1996) showed that the all-pay auction dominates the �rst-price auction with respect

to the players�total e¤ort when the players are e¤ort constrained and these constraints are

private information to the players. When the players have the same e¤ort constraint which

is commonly known, Che and Gale (1998) calculated the bidding equilibrium of the all-pay

auction with two players having di¤erent values for a prize and linear cost functions, and

demonstrated that if the e¤ort constraint is smaller than or equal to half of the players�

smaller winning value, the expected total e¤ort might be higher than in the same contest

where the players do not have any e¤ort constraint.1 On the other hand, if the players have

the same e¤ort constraint and that it is larger than half of the players� smaller winning

value, the players�expected payo¤s as well as their expected total e¤ort are the same as in

the standard all-pay auction without any e¤ort constraint.2 Later, Hart (2016) showed that

1Maskin (2000) showed that the all-pay auction is constrained e¢ cient, namely, it maximizes expected

welfare subject to incentive-compatibility and budget constraints.
2All-pay auctions under incomplete information have been studied by Gavious, Moldovanu and Sela (2003)

who showed that, regardless of the number of bidders, if agents have linear or concave cost functions then

setting a bid cap (e¤ort constraint) is not pro�table for a designer who wishes to maximize the average bid.

On the other hand, if agents have convex cost functions, then e¤ectively capping the bids is pro�table for a

designer facing a su¢ ciently large number of bidders.
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the all-pay auction is an application of the Captain Lotto game which is a Lotto game with

caps. Using this equivalence he characterized the equilibrium strategies in the two-player

all-pay auction with di¤erent e¤ort constraints. The analysis of the all-pay auction with

more than two e¤ort-constrained players has not as yet been done, and therefore the aim of

this paper is to shed light on this contest when there are more than two players with asym-

metric e¤ort constraints, and particularly to show that the behavior of these players might

be completely di¤erent than in the all-pay auction with only two players. Furthermore, our

results will show that the behavior of the players in all-pay auctions with multiple players

and asymmetric e¤ort constraints breaks some well-known conventions about the model of

the all-pay auction with and without e¤ort constraints.

We consider all-pay auctions with discrete strategy sets, namely, the players have e¤ort

constraints and �nite strategy sets. The main di¤erence between our model with discrete

strategies and the standard all-pay auction with continuous strategies is that in the standard

model the probability of a tie (the players exert the same e¤ort) is zero, while in our model

there is a positive probability for a tie. Baye, Kovenock and de Vries (1994) and Cohen and

Sela (2007) studied the symmetric and asymmetric two-player all-pay auction with discrete

strategies but without e¤ort constraints, and showed that the equilibrium strategies are sim-

ilar to those of the standard all-pay auction with continuous strategies. However, Dechenaux

et al. (2012) showed that when there is a symmetric budget constraint, the all-pay auction

with discrete strategies and the standard all-pay auction with continuous strategies are not

necessarily similar. Given that we do not know much about the standard multiple-player

all-pay auction with asymmetric e¤ort constraints, we can only conjecture that the distinc-

tion between the standard all-pay auction and the all-pay auction with discrete strategies is

even stronger when there are more than two players with asymmetric e¤ort constraints.

We �rst analyze the equilibrium strategies in the two-player all-pay auction. Since the

equilibrium in this model with asymmetric e¤ort constraints is not unique even when the
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smallest money unit converges to zero, the equilibrium in our model and the standard all-

pay auction is not necessarily similar. However, independent of the size of the smallest

money unit, we characterize common properties that provide a uniform framework to all

the equilibrium points. We show that the probability of every pure strategy to be chosen in

equilibrium, except the lowest (zero) and the highest (minimal level of the players�budget

constraints) possible e¤orts, converges to zero when the smallest money unit also converges

to zero. Furthermore, the maximal distance between two adjacent strategies that are chosen

by a player with a positive probability is twice than the smallest money unit. Although the

equilibrium is generally not unique, we show that when the smallest money unit converges

to zero in any equilibrium point, independent of the players�values of winning, the expected

payo¤ of the player with the lower e¤ort constraint converges to zero, while the expected

payo¤ of the player with the higher e¤ort constraint converges to the di¤erence of this

player�s value of winning and his opponent�s e¤ort constraint. Last, we demonstrate that by

imposing an e¤ort cap on the player with the higher value of winning, a contest designer can

attaint an expected total e¤ort that is larger than in the all-pay auction with either discrete

or continuous strategies when both players do not face any constraint.

In contrast to the two-player all-pay auction, when there are more than two players

with asymmetric e¤ort constraints, all the players may be active when each of them has

a completely di¤erent strategy as well as a di¤erent expected payo¤ and a di¤erent prob-

ability to win the contest. However, for each all-pay auction with multiple asymmetric

e¤ort-constrained players, by mathematical methods, we are able to numerically calculate

systems of non-linear equations and derive the equilibrium strategies . Using these equilib-

rium calculations we �nd that several well-known facts about the two-player all-pay auction

with and without e¤ort constraints no longer hold. For instance, when there are more than

two players the probability of every pure strategy to be chosen in equilibrium does not nec-

essarily converge to zero when the smallest money unit converges to zero, and the maximal
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distance between two adjacent strategies that are chosen by a player with a positive prob-

ability might be signi�cantly higher than twice the size of the money unit. We also show

that in all-pay auctions with more than two e¤ort-constrained players, a player may have

a completely di¤erent expected payo¤ for di¤erent equilibrium strategies. Moreover, given

an all-pay auction, in one equilibrium player i is the only player with a positive expected

payo¤, and in another player j is the only player with a positive expected payo¤.

In the all-pay auction with multiple asymmetric e¤ort-constrained players it is not clear

which parameters either the players� values of winning or their e¤ort constraints have a

higher e¤ect on the players�expected payo¤s. Although their equilibrium strategies are quite

complex we provide a clear answer to this last question by showing that when the smallest

money unit converges to zero, independent of the players� values of winning, the player

with the highest e¤ort constraint is the only one with a positive expected payo¤. However,

when players are weakly asymmetric such that more than one player has the highest e¤ort

constraint, there is a major di¤erence between the all-pay auction with more than two players

and the one with either two symmetric or asymmetric players: In the two-player contest the

values of the players do not have any e¤ect on who the player with a positive expected payo¤

is but only on the level of this player�s expected payo¤. The parameters that a¤ect which

player has the higher expected payo¤ in the two-player contest are the e¤ort constraints,

in that the player with the higher e¤ort constraint is the only one with a positive expected

payo¤. On the other hand, in the all-pay auction with more than two players the value of a

player as well as his e¤ort constraint a¤ect whether this player has a positive expected payo¤

or not. In other words, if players are weakly asymmetric and a player has a su¢ ciently high

value of winning, even if he does not have the highest e¤ort constraint, namely, there are at

least two players with higher e¤ort constraints, he might have a positive expected payo¤.

The rest of this paper is organized as follows: In Section 2 we introduce the all-pay auction

with discrete strategies. In Section 3 we analyze the all-pay auction with two asymmetric
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e¤ort-constrained players. In Sections 3 and 4 we analyze the all-pay auction with a larger

number of e¤ort-constrained players who are asymmetric and weakly asymmetric. Section 5

concludes. The proofs appear in the Appendix.

2 The model

Consider n players competing for a single prize in an all-pay auction. The value of winning

in the contest for player i is vi; i = 1; 2; :::; n: Valuations are common knowledge. Each player

exerts an e¤ort xi 2 fn� : n = 0; 1; 2; 3:::g where � denotes the smallest money unit and

satis�es � = 1
k
for some integer k = 1; 2; 3; :::, and then bears the cost of his e¤ort. The player

with the highest e¤ort wins. For simplicity, we postulate a deterministic relation between

e¤ort and output, and assume them to be equal. In the case of a tie in which some players

exert the same e¤ort, we assume that each of the players with the highest e¤ort wins with

the same probability. Player i has a commonly-known e¤ort constraint di = mi� < vi where

mi; i = 1; 2; :::; n are some integers. Player i�s e¤ort is smaller than or equal to his e¤ort

constraint, namely, xi � di: If the players exert e¤orts xi � di; i = 1; 2; :::; n then the payo¤

for player i is given by

ui(x1; :::; xn) =

8>>>><>>>>:
�xi if xi < maxj xj

1
m(x)

vi � xi if xi = maxj 6=i xj

vi � xi if xi > maxj xj

where m(x) denotes the number of players who exert the highest e¤ort, namely,

m(x) =
��s 2 f1; 2; :::; ng : xs = maxfxjgnj=1��
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3 Asymmetric two-player contests

We begin with the analysis of the two-player all-pay auction with discrete strategies. It

should be noted that such an analysis is not necessarily similar to that of the all-pay auction

with continuous strategies (Hart 2016). The following example illustrates a mixed strategy

equilibrium in an all-pay auction with asymmetric e¤ort constrained players.

Example 1 Consider a two-player all-pay auction where players have the same value of

winning v = 8; player 1�s e¤ort constraint is d1 = 5, and player 2�s e¤ort constraint is

d2 = 4: Let the smallest money unit be � = 1: Then, it can be veri�ed that there is an

equilibrium where player 1�s strategy is:

x1 : 0 1 2 3 4 5

px1 : 0 1
4
0 1

4
0 1

2

That is, player 1 chooses every x1 2 f1; 3g with probability px1 = 1
4
, and x1 = 5 with

probability px1 =
1
2
: Player 2�s equilibrium strategy is:

x2 : 0 1 2 3 4

px2 :
1
2
0 1

4
0 1

4

That is, player 2 chooses x2 = 0 with probability px2 =
1
2
; and every x2 2 f2; 4g with

probability px2 =
1
4
. Then, player 2 has an expected payo¤ of zero and player 1 has an

expected payo¤ of 3.

Similarly to the above example, it can be veri�ed that in an all-pay auction with two

players and asymmetric e¤ort constraints d1 > d2 � �; there is no pure strategy equilibrium.

Moreover, in this model the equilibrium strategies are generally not unique. Nevertheless,

below we characterize common properties that provide a uniform framework for all the

equilibria. The �rst result demonstrates that, when � approaches zero, there are no mass

points on the internal points of the support of the players�mixed strategies.
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Proposition 1 Consider a two-player all-pay auction where players have the values of win-

ning v1 and v2 and e¤ort constraints d1 � d2 > � . Then, in any equilibrium, the probability

that player 2 chooses the e¤ort 0 < x2 < d2 satis�es

px2 �
2�

v1

and the probability that player1 chooses the e¤ort 0 � x1 < d2 satis�es

px1 �
2�

v2

Thus, for all 0 < x2 < d2 and 0 < x1 < d1 we have

lim
�!0

px2(�) = lim
�!0

px1(�) = 0

Proof. See Appendix.

In Proposition 1 we showed that the probability of every e¤ort (except the lowest and

the highest possible e¤orts) to be chosen in equilibrium converges to zero when the smallest

money unit � approaches zero. Note that this result does not indicate that each of the

player�s e¤orts is uniformly distributed over the support of the players�mixed strategies.

However, the following result shows that the distance between two adjacent strategies xi; yi

that are chosen with positive probability by player i is not larger than twice the smallest

money unit �.

Proposition 2 Consider a two-player all-pay auction where players have the values of win-

ning v1 and v2 and the e¤ort constraints d1 � d2 > � . Then, in any equilibrium, if player i

assigns a positive probability to the e¤orts xi and yi = minfzi : zi = n�; n 2 N; di > zi > xig;

the di¤erence yi� xi is equal to either � or 2�:

Proof. See Appendix.

In the following, we demonstrate that in any equilibrium point when the smallest money

unit � converges to zero, independent of the players�values of winning, the expected payo¤
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of the player with the lower e¤ort constraint approaches zero, and the expected payo¤ of the

player with the higher e¤ort constraint approaches the di¤erence of his value of winning and

the level of his opponent�s e¤ort constraint.

Proposition 3 Consider a two-player all-pay auction where the players have the values of

winning v1 and v2 and the e¤ort constraints d1 > d2 > �: Then in any equilibrium, the

expected payo¤ of player 2 satis�es

lim
�!0

R2(�) = 0

and the expected payo¤ of player 1 satis�es

lim
�!0

R1(�) = v1 � d2

Proof. See Appendix.

Below we show that imposing asymmetric e¤ort caps (constraints) may improve the play-

ers�expected total e¤ort with respect to the same contest with and without any symmetric

e¤ort cap.

Proposition 4 In a two-player all-pay auction where the players have values of winning

v1 > v2 = 2s�, for some integer s, if an e¤ort cap of d1 = v2 � 2� is imposed on player 1

only, the players�expected total e¤ort satis�es

lim
�!0

TB(�) =
3v2
2
� (v2)

2

2v1
� v2

Proof. See Appendix.

By Proposition 4, we can see that the upper limit of the players�expected total e¤ort is

3v2
2
which occurs when v2

v1
converges to zero. Moreover, independent of the players�values

of winning, when an e¤ort cap of d = v2 � 2� is imposed on the player with the higher

value of winning (player 1), the players�expected total e¤ort is larger than or equal to v2
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which is the players�highest expected total e¤ort when a symmetric e¤ort cap is imposed

on both players. Interestingly, Szech (2012) showed that the designer can achieve such

a high expected total e¤ort also in the standard all-pay auction with a symmetric e¤ort

cap by imposing an asymmetric tie-breaking rule that favors the weaker player. Similarly

to Proposition 4, Hart (2016) showed that the designer can achieve such a high expected

total e¤ort also in the standard all-pay auction with continuous strategies and without an

asymmetric tie-breaking rule.

4 Asymmetric multi-player contests

We now consider the case of the all-pay auction with more than two e¤ort-constrained players.

While the generalization of the standard two-player all-pay auction without e¤ort constraints

to the case with more than two players is quite simple (see Baye Kovenock and de Vries 1996)

the generalization of our all-pay auction model with asymmetric budget constraints is rather

complex. In order to shed some light on this issue, we consider three players with the values of

winning v1 � v2 � v3 who have di¤erent budget constraints d1; d2; d3 respectively. As such,

we have six possible cases, for three of which the equilibrium strategies are immediately

derived from the two-player model as follows:

1. d1 � d2 � d3 : In this case, we have the equilibrium where players 1 and 2 participate

in the contest and player 3 stays out. The expected payo¤ of player 1 is positive while the

expected payo¤ of player 2 is zero.

2. d2 � d1 � d3 : In this case, we have the equilibrium where players 1 and 2 participate

in the contest and player 3 stays out. The expected payo¤ of player 2 is positive while the

expected payo¤ of player 1 is zero.

3. d3 � d1 � d2 : In this case, we have the equilibrium where players 1 and 3 participate

in the contest and player 2 stays out. The expected payo¤ of player 3 is positive while the
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expected payo¤ of player 1 is zero.

For the other three cases: d1 � d3 � d2, d2 � d3 � d1 and d3 � d2 � d1, the analysis of

the equilibrium is more complex since all the three players might take part in the contest.

Indeed, in the following example where d3 � d2 � d1 we show that when there are three

players who have di¤erent values of winning as well as di¤erent e¤ort constraints all the

players may be active.

Example 2 Consider an all-pay auction with three players where the players� values of

winning are v1 = 10 ,v2 = 8; v3 = 7 and they face e¤ort constraints of d1 = 3; d2 = 4; d3 = 5:

Let the smallest money unit be � = 1: Then, it can be veri�ed that there is an equilibrium

where player 1 has the strategy:

x1 : 0 1 2 3 4 5

px1
3
5
0 2

5
0 0 0

That is, player 1 chooses x1 = 0 with probability px1 =
3
5
and x1 = 2 with probability px1 =

2
5
. Player 2 has the strategy:

x2 : 0 1 2 3 4 5

px2
5
7
0 0 0 2

7
0

That is, player 2 chooses x2 = 0 with probability px2 =
5
7
; and x2 = 4 with probability px2 =

2
7
.

Player 3 has the strategy:

x3 : 0 1 2 3 4 5

px3 0 7
25

0 0 11
25

7
25

That is, player 3 chooses x3 = 1 with probability px3 =
7
25
; x3 = 4 with probability px3 =

11
25

and x3 = 5 with probability px3 =
7
25
. In that case, player 3�s expected payo¤ is 2 and the

other players have an expected payo¤ of zero.

An all-pay auction with multiple players might have several equilibria points where in

each of them the set of active players may be di¤erent. Nevertheless, similarly to the all-pay
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auction with only two players, we can demonstrate that if there is a single player who has the

highest e¤ort constraint, in any equilibrium point when the smallest money unit � converges

to zero, the expected payo¤s of all the other players with lower e¤ort constraints approach

zero.

Theorem 1 Consider an all-pay auction where players have the values of winning v1; v2; :::; vn

and the e¤ort constraints d1; :::; dn that satisfy d1 > dj for all j = 2; 3; :::; n: Then, in any

equilibrium, the expected payo¤ of player j; j 6= 1 satis�es

lim
�!0

Rj(�) = 0

Proof. See Appendix.

5 Weakly asymmetric multi-player contests

Interestingly, the most complex case in multi-player all-pay auctions with asymmetric e¤ort

constraints is when the players are weakly asymmetric such that there are more than one

player with the highest e¤ort constraint. In such a case it is hard to provide general prop-

erties of the equilibrium strategies in the all-pay auction with asymmetric e¤ort-constrained

players. One of the reasons is that the properties of the equilibrium strategies of the two-

player all-pay auction do not hold for the equilibrium strategies of the all-pay auction with

more than two players. In the next example, we show that Proposition 2 does not hold when

there are more than two players, and in particular, there are adjacent strategies which are

not chosen in equilibrium by any of the players.

Example 3 Consider an all-pay auction with three players where the players� values of

winning are v1 = 15 ,v2 = v3 = 8 and they face e¤ort constraints of d1 = 3; d2 = d3 = 5: Let

the smallest money unit be � = 1: In that case, it can be veri�ed that there is an equilibrium
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where player 1 has the following strategy:

x1 : 0 1 2 3 4 5

px1 1 0 0 0 0 0

That is, player 1 chooses x1 = 0 with probability 1: Players 2 and 3 have the following

strategy:

xj : 0 1 2 3 4 5

pxj 0 1
4
0 0 0 3

4

That is, player j; j = 2; 3 chooses xj = 1 with probability pxj =
1
4
and xj = 5 with probability

pxj =
3
4
. In that case, all the players have an expected payo¤ of zero and none of them

chooses the e¤orts x 2 f2; 3; 4g:

The following example shows that di¤erent players have positive expected payo¤s at

di¤erent equilibrium points, namely, given an all-pay auction, player i may be the only

player with a positive expected payo¤ in an equilibrium, and player j may be the only player

with a positive expected payo¤ in a di¤erent one. Moreover, it also demonstrates that in

contrast to Proposition 3 and Theorem 1 a player without the highest e¤ort constraint may

have a positive expected payo¤.3

Example 4 Consider an all-pay auction with three players where the players� values of

winning are v1 = 100 ,v2 = v3 = 6 and they face e¤ort constraints of d1 = 3; d2 = d3 = 4: Let

the smallest money unit be � = 1: In that case, it can be veri�ed that there is an equilibrium

where player 1 has the following strategy:

x1 : 0 1 2 3 4

px1 : 0 1 0 0 0

3Numerical calculations point out that the player without the highest e¤ort constraint in the following

example has a positive expected payo¤ even when � approaches zero.
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That is, player 1 chooses x1 = 1 with probability 1: Player j; j = 2; 3 has the following

strategy:

xj : 0 1 2 3 4

pxj :
1
3
0 0 0 2

3

That is, player j; j = 2; 3 chooses xj = 0 with probability pxj =
1
3
and xj = 4 with probability

pxj =
2
3
. Then, player 1�s expected payo¤ is 10: 1, and each of the other players� expected

payo¤ is zero. On the other hand, we have another equilibrium where player 1 has the

following strategy:

x1 : 0 1 2 3 4

px1 :
1
3

1
3
0 1

3
0

That is, player 1 chooses each x1 2 f0; 1; 3g with probability px1 = 1
3
. Player 2 has the

strategy:

x2 : 0 1 2 3 4

px2 : 0 2
100

0 2
100

96
100

That is, player 2 chooses each x2 2 f1; 3g with probability px2 = 2
100
; and x2 = 4 with

probability px2 =
96
100
: Player 3 has the strategy:

x3 : 0 1 2 3 4

px3 : 1 0 0 0 0

That is, player 3 chooses x3 = 0 with probability 1: Then, player 2�s expected payo¤ is 2

while the other players�expected payo¤s are zero.

6 Concluding remarks

The main goal of this paper was to show that the analysis of the two-player all-pay auction

with asymmetric e¤ort-constrained players is di¤erent than the analysis of the all-pay auction

with more than two asymmetric e¤ort-constrained players. We showed that in an all-pay
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auction with three asymmetric e¤ort-constrained players all the players may be active when

each of them has an asymmetric strategy. In that case, the results might be unexpected

especially with respect to the same model with only two players. The main distinction

between the models with two players and with a larger number of players is that while in

the two-player all-pay auction, independent of the players�values of winning, the player with

the highest e¤ort constraint is necessarily the player with the only positive expected payo¤,

in the all-pay auction with more than two players this is not the case. In other words,

in the all-pay auction with more than two e¤ort-constrained players, a player�s expected

payo¤ depends on the players�values of winning and their e¤ort constraints. Thus, in all-

pay auctions with multiple asymmetric e¤ort-constrained players, the players�strategies and

their expected payo¤s might be unpredictable.

7 Appendix

7.1 Proof of Proposition 1

We want to show that the probability that player 2 assigns for every possible positive e¤ort

0 < x2 < d2 is smaller than or equal to 2�
v1
: Suppose that this is not true and that a strategy

0 < y < d2 is chosen with the probability of qy > 2�
v1
. Denote by R1y player 1�s expected payo¤

if he chooses the pure strategy y. Since qy > 2�
v1
; we obtain that player 1 strictly prefers the

e¤ort y + � over the e¤ort y since

R1y+� �R1y = [v1(q0 + q1 + :::+ qy +
qy+�
2
)� (y + �)]� [v1(q0 + q1 + :::+

qy
2
)� y]

= v1(
qy
2
+
qy+�
2
)� � > v1

qy+�
2
� 0
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Moreover, when qy > 2�
v1
; we also obtain that player 1 strictly prefers the e¤ort y over the

e¤ort y � � since

R1y �R1y�� = [v1(q0 + q1 + :::+ qy�� +
qy
2
)� y]� [v1(q0 + q1 + :::+

qy��
2
)� (y � �)]

= v1(
qy��
2
+
qy
2
)� � > v1

qy��
2
� 0

We obtained that player 1 prefers the e¤ort y + � over the e¤ort y; and the e¤ort y over

the e¤ort y � �: Thus, player 1 strictly prefers the e¤ort y + � over the e¤orts y and y � �;

and therefore he does not choose the strategies y and y � �. However, this contradicts our

assumption that qy > 0. The reason is that if player 1 does not choose y and y � �; player

2 has no incentive to choose the e¤ort y since if he chooses the e¤ort y � � he has the same

probability to win and his cost is lower. Hence, we obtain that the probability that player 2

assigns to every e¤ort 0 < x2 < d2 is necessarily smaller than or equal to 2�
v1
. A similar proof

holds for player 1. Q.E.D.

7.2 Proof of Proposition 2

Suppose that player 2 assigns a positive probability to the e¤ort y, i.e., qy > 0; and that he

does not choose the e¤ort y + �, i.e., qy+� = 0: We will now show that in that case player

2 necessarily assigns a positive probability to the e¤ort y + 2�, i.e., qy+2� > 0. Assume that

qy+2� = 0, and also that the smallest e¤ort that is larger than y which is chosen with a

positive probability by player 2 is x < d2: By our assumption, x� y � 3�: But then we have

a contradiction, since player 1 strictly prefers the e¤ort y + � over the e¤ort x. To see that,

remember that by Proposition 1 we have qx � 2�
v1
; which implies that

R1y+� �R1x = [v1(q0 + q1 + :::+ qy)� (y + �)]� [v1(q0 + q1 + :::qy +
qx
2
)� x]

= x� y � �� v1
qx
2
� �
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Hence, we obtain that our assumption qy+2� = 0 is unfeasible. A similar proof holds for

player 1. Q:E:D:

7.3 Proof of Proposition 3

We �rst show that the expected payo¤ of player 2 satis�es lim2!0R2(�) = 0: De�ne x1min =

minfx1 : px1 > 0g and similarly x2min = minfx2 : px2 > 0g, namely, ximin is the smallest

e¤ort for which player i assigns a positive probability. If x1min < x2min player 1 has no

positive expected payo¤. But this is a contradiction, since if player 1 exerts a e¤ort of

x1 = d2 + � he has an expected payo¤ of v1 � d2 � � � v1 � d1 > 0. Thus, let us instead

assume that x1min = x2min. Then, if player 1 chooses x1min his expected payo¤ is

v1
px2min
2

� x1min

where px2min is the probability that player 2 assigns to the e¤ort x2min: Given that player 1

chooses x1min with a positive probability, he weakly prefers x1min over x1min + � such that

v1
px2min
2

� x1min � v1px2min � (x1min + �)

) v1
px2min
2

� �

Therefore, if player 1 chooses x1min his expected payo¤ is positive only if x1min = 0; and

then it is equal to or smaller than �: By the same argument, if player 2 chooses x2min = 0 his

expected payo¤ is equal to or smaller than �: Furthermore, if v1 � d2 > 2� then by exerting

an e¤ort of x1 = d2 + � player 1 has an expected payo¤ that is higher than �; and we obtain

that the equality x1min = x2min is not possible. In such a case, we have that x1min > x2min

which implies that the expected payo¤ of player 2 is necessarily zero. In sum, we showed

that player 2�s expected payo¤ is smaller than or equal to �.

We now show that the expected payo¤ of player 1 satis�es lim�!0R1(�) = v1� d2: Player

1 can always exert a e¤ort of x = d2 + � . Thus, his expected payo¤ is higher than or equal

17



to v1 � (d2 + �): On the other hand, the highest e¤ort of player 1 is larger than or equal to

x1 = d2 � 2�; since otherwise the expected payo¤ of player 2 is larger than �. However, this

contradicts the fact that R2 � �: Thus, player 1�s expected payo¤ is lower than or equal to

v1 � (d2 � 2�): We obtain therefore that the expected payo¤ of player 1 converges to v1 � d2

when � converges to zero. Q:E:D:

7.4 Proof of Proposition 4

The players�equilibrium strategies are as follows: Player 1�s strategy is

x1 : 0 � 2� 3� 4� ::: v2 � 2�

px1 :
2�
v2

0 2�
v2

0 2�
v2

::: 2�
v2

That is, player 1 chooses every e¤ort x1 2 f0; 2�; 4�; :::; d1g with the same probability

px1 =
2�
v2
: Player 2�s strategy is

x2 : 0 � 2� 3� 4� ::: v2 � �

px2 : 0
2�
v1

0 2�
v1

0 ::: v1�v2+2�
v1

That is, player 2 chooses every e¤ort x2 2 f�; 3�; :::; v2 � 2�g with the same probability

px2 =
2�
v1
; and he chooses x2 = v2 with the probability px2 =

v1�v2+2�
v1

: The expected payo¤

of player 2 is then � and the expected payo¤ of player 1 is zero. The expected e¤ort of player

1 is

TB1 =
2�

v2
(2�+ 4�+ :::v2 � 2�) =

v2(v2 � 2�)
2v2

=) lim
�!0

TB1(�) =
v2
2

and the expected e¤ort of player 2 is

TB2 =
2�

v1
(�+ 3�+ :::v2 � 3�) + (v2 � �)

v1 � v2 + 2�
v1

=
(v2 � 2�)2 + 2(v2 � �)(v1 � v2 + 2�)

2v1

=) lim
�!0

TB2(�) = v2 �
(v2)

2

2v1

18



Hence, we obtain that the players�expected total e¤ort is

TB(�) =
v2(v2 � 2�)

2v2
+
(v2 � 2�)2 + 2(v2 � �)(v1 � v2 + 2�)

2v1
(1)

=) lim
�!0

TB(�) =
3v2
2
� (v2)

2

2v1
� v2

The equality lim�!0 TB(�) = v2 is obtained when v1 = v2 ; otherwise, if v1 > v2; the expected

total e¤ort is strictly larger than v2: Q.E.D.

Q:E:D:

7.5 Proof of Theorem 1

We will show that the minimal e¤ort of player 1 is larger than the minimal e¤orts of all

the other players and therefore the other players�expected payo¤s have to be equal to zero.

Denote x1min = minfx1 : px1 > 0g and similarly xjmin = minfxj : pxj > 0g namely, xjmin

is the smallest e¤ort for which player j assigns a positive probability. If there is j 6= 1 such

that xjmin > x1min; the expected payo¤ of player 1 is zero which contradicts the fact that by

exerting an e¤ort of x1 = maxj 6=1 dj + �, player 1, who has the highest e¤ort constraint, can

be guaranteed a positive expected payo¤, v1�maxj 6=1 dj � �, that is higher than or equal to

�:

Thus, we assume now that there is j 6= 1 such that xjmin = x1min: In that case denote by

epx1min the probability of player 1 to win when he chooses the e¤ort x1min: Then, if player 1
chooses x1min his expected payo¤ is

v1epx1min � x1min
Given that player 1 chooses x1min with a positive probability, he weakly prefers x1min over

x1min + � such that we have

v1epx1min � x1min � v1epx1min+� � (x1min + �)
19



where epx1min+� is the probability of player 1 to win when he chooses the e¤ort x1min+�: Since
xjmin = x1min and there is at least another player k for which xkmin � x1min, we obtain that

epx1min+� � 2epx1min. Thus, we have
v1epx1min � �

The last inequality contradicts the fact that player 1 can be guaranteed an expected payo¤

of at least � by choosing the e¤ort x1 = maxj 6=1 dj + �: Thus, we obtain that ximin < x1min

for every i 6= 1: Q:E:D:

References

[1] Baye, M., Kovenock, D., de Vries, C.: The solution to the Tullock rent-seeking game

when R>2: mixed-strategy equilibria and mean dissipation rates. Public Choice 81,

363-380 (1994)

[2] Baye, M., Kovenock, D., de Vries, C.: The all-pay auction with complete information.

Economic Theory 8, 291-305 (1996)

[3] Che, Y-K., Gale, I.: Expected revenue of all-pay auctions and �rst-price sealed-bid

auctions with budget constraints. Economics Letters 50(3), 373-379 (1996)

[4] Che, Y-K., Gale, I.: Caps on political lobbying. American Economic Review 88, 643-651

(1998)

[5] Cohen, C., Sela, A.: Contests with ties. The B.E. Journal of Theoretical Economics 7,

Iss. 1. Article 43 (2007)

[6] Dechenaux, E., Kovenock, D., Lugovskyy, V.: Caps on bidding in all-pay auctions:

Comments on the experiments of A. Rapoport and W. Amaldoss, Journal of Economic

Behavior & Organization 61, 276�283 (2006)

20



[7] Gavious, A., Moldovanu, B., Sela, A.: Bid costs and endogenous bid caps. Rand Journal

of Economics 33(4), 709-722 (2003)

[8] Hart, S.: Allocation games with caps: from captain Lotto to all-pay auctions. Games

and Economic Behavior 45, 37-61 (2016)

[9] Hilman, A., Riley, J.: Politically contestable rents and transfers. Economics and Politics

1, 17-39 (1989)

[10] Hillman, A., Samet, D.: Dissipation of contestable rents by small numbers of contenders.

Public Choice 54(1), 63-82 (1987)

[11] Maskin, E.: Auctions, development, and privatization: e¢ cient auctions with liquidity-

constrained buyers. European Economic Review 44, 667-681 (2000)

[12] Szech, N.: Tie-breaking and bid-caps in all-pay auctions.Games and Economic Behavior

92, 138-149 (2015)

21


