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Abstract

We argue that a precedent is important not only because it changes
the relative frequency of a certain event, making it positive rather than
zero, but also because it changes the way that relative frequencies are
weighed. Specifically, agents assess probabilities of future events based
on past occurrences, where not all of these occurrences are deemed
equally relevant. More similar cases are weighed more heavily than
less similar ones. Importantly, the similarity function is also learnt
from experience by “second-order induction”. The model can explain
why a single precedent affects beliefs above and beyond its effect on
relative frequencies, as well as why it is easier to establish reputation
at the outset than to re-establish it after having lost it. We also apply
the model to equilibrium selection in a class of games dubbed “Statis-
tical Games”, suggesting the notion of Similarity-Nash equilibria, and
illustrate the impact of precedents on the play of coordination games.
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1 Introduction

1.1 Motivating Examples

1.1.1 President Obama

The election of Obama as President of the US in 2008 was a defining event

in US history. For the first time, a person who defines himself and is per-

ceived by others as an African-American was elected for the highly coveted

offi ce. This was clearly an important precedent: whereas in the past African-

Americans would have thought that they had no chance of being elected, as

there had been no cases of presidents of their race, now there was such a

case.

The importance of this single case does not seem to be fully captured by

the change in the relative frequency of African-American presidents, and this

remains true even if we weigh cases by their recency. For example, considering

only the post-WWII period, the US had 11 presidents before Obama. The

effect of his election on the perceived likelihood of future presidents being

African-American does not seem to be captured by the difference between

0:11 and 1:12. We suggest that the importance of the precedent set by Obama

is partly explained by a process of “second-order induction”. According to

this view of learning, past data are used in two ways: through first-order

induction, to estimate the probabilities of future events according to the

relative frequency of similar events in the past, and through second-order

induction, to learn what counts as “similar”, hence relevant for prediction.

Up to Obama’s election, “race”was an important attribute in assessing the

probability that a given candidate might be elected. But once the precedent

of Obama was set, people who look at history may conclude that the race

variable is not necessarily helpful in explaining past data and predicting

future outcomes. By suggesting that the notion of similarity between cases

is updated as new data are observed, second-order induction helps explain

the dramatic importance of precedents.
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1.1.2 The Fall of the Soviet Bloc

The Soviet bloc started collapsing with Poland, which was the first country

in the Warsaw Pact to break free from the rule of the USSR. Once this was

allowed by the USSR, other countries soon followed. One by one, practically

all the USSR satellites in Eastern Europe underwent democratic revolutions,

culminating in the fall of the Berlin Wall in 1989.

It has been argued that similarity-weighted frequencies of past cases can

be used to predict of the outcome of revolution attempts1. The case of Poland

was an important precedent, which generated a “domino effect”. We sug-

gest that its importance didn’t lie only in changing the relative frequency of

successful revolutions, but also in changing the notion of which past revo-

lution attempts were similar to current ones, hence relevant to predict their

outcomes, via second-order induction. Specifically, the case of Poland was

the first revolution attempt after the “Glasnost” policy was declared and

implemented by the USSR. Pre-Glasnost attempts in Hungary in 1956 and

in Czechoslovakia in 1968 had failed. In 1989, one might well wonder, has

Glasnost made a difference? Is it a new era, where older cases of revolution

attempts are no longer relevant to predict the outcome of a new one, or is

it “Business as usual”, and Glasnost doesn’t change much more than, say, a

leader’s proper name, leaving pre-Glasnost cases relevant for prediction?

If the revolution attempt in Poland were to fail like the previous ones,

it would seem that the variable “post-Glasnost”does not matter for predic-

tion: with or without it, revolution attempts fail. As a result, second-order

induction would suggest that the variable “post-Glasnost”be ignored, and

the statistics would suggest zero successes out of 3 revolution attempts. By

1Revolution attempts can be modelled as coordination games, because the expected
value from taking part in an uprising increases in the probability of it success, hence in
the number of participants. (See, for example, Edmond, 2013). Steiner and Stewart,
2008, Argenziano and Gilboa, 2012, and Halaburda, Jullien, and Yehezkel, 2017 provide
models in which similarity-weighted frequencies of past cases are used to form beliefs in
coordination games.
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contrast, because the revolution attempt in Poland succeeded, it had a dou-

ble effect on the statistics. By first-order induction alone, it increased the

frequency of successful revolutions from 0:2 to 1:3, which is still less than a

half, and still leads to pessimistic predictions about future attempts. How-

ever, by second order induction, the post-Glasnost variable is learned to

be important, because the frequency of success post-Glasnost, 1:1, differs

dramatically from the pre-Glasnost frequency, 0:2 . Once this is taken into

account, pre-Glasnost events are not as relevant for prediction as they used to

be. If we consider the somewhat extreme view that post-Glasnost attempts

are in a class apart, the relevant empirical frequency of success becomes 1:1

rather than 1:3. Correspondingly, other countries in the Soviet Bloc could

be encouraged by this single precedent, and soon it wasn’t single any more.

In our first motivating example (Obama’s election), we find that a prece-

dent makes a variable lose relevance: race used to be considered a variable

with predictive power, restricting attention to sub databases defined by race.

The single precedent was enough to suggest that race is unimportant, and

a candidate’s probability of success should be assessed based on other vari-

ables. In the second example (Poland’s revolution) the opposite happened:

a precedent introduced a new variable into similarity judgments. The single

case of Poland convinced people that this is “a new ballgame”, and that the

relevant database to look at is the restricted one of post-Glasnost attempts.

We seek to develop a theory that can capture both these examples, and exam-

ine its implications for some applications, most notably equilibrium selection

in coordination games.

1.2 Belief Formation

How do agents form beliefs about the likelihood of future events? In many

cases, the answer is within the realm of statistics. When evaluating the

probability of a car theft, for example, one may rely on empirical frequen-

cies, which provide natural estimators of probabilities when observations can
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be viewed as realizations of i.i.d. random variables. In other problems, such

as assessing the probability of developing a disease, more sophisticated tech-

niques are used in statistics and machine learning, allowing for learning from

cases that are not identical and for identifying patterns in the data. Thus,

logistic regression, decision trees, non-parametric methods and many other

techniques can be used to provide probabilistic assessments. However, there

are many problems in which there are relatively few observations, and those

that exist are rather different from each other. For example, in assessing the

probability of success of a presidential candidate, past cases are clearly of

relevance, but no two are similar enough to simply cite empirical frequen-

cies. The focus of this paper is the belief generation process in these decision

problems.

We consider a very simple model, according to which the probability of

an event is taken to be its similarity-weighted relative frequency. Thus, the

probability that a candidate will win the election is estimated by the propor-

tion of cases in which similar candidates won elections, where more similar

candidates are assigned higher weights than less similar ones. The deter-

minant of similarity may include factors such as party affi liation, political

platform, and experience, as well as gender, race, and age2. Our main point

is that the way similarity of cases should be judged is itself learnt from the

data. Whereas learning from past cases about the likelihood of future ones is

referred to as first-order induction, learning the similarity function, namely,

the way first-order induction should be conducted, is dubbed second-order

induction.

Using similarity-weighted averages is an intuitive idea that appeared

in statistics as “kernel methods” (Akaike, 1954, Rosenblatt, 1956, Parzen,

1962). Further, statistical methods also suggest finding the optimal band-

width of the kernel function (Nadaraya,1964, Watson, 1964), which is concep-

2Clearly, this model is simplistic in many ways. For example, it does not allow for the
identification of trends, as logistic regression would. Yet, it suffi ces for our purposes.

5



tually similar to the second-order induction studied here. Interestingly, very

similar processes were also suggested in psychology. The notion of “exem-

plar learning”(see Shepard, 1957, Medin and Schaffer, 1978, and Nosofsky,

1984) suggests that, when people face a categorization problem, the proba-

bility they would choose a given category can be approximated by similarity-

weighted frequencies. Further, it has also been shown that people learn the

relative importance of different attributes in making their similarity judg-

ments (Nosofsky, 1988, see Nosofsky, 2011 for a survey). Categorization in

general, and optimal categorization in particular, has also been suggested by

Fryer and Jackson (2008).

This paper is closer to Gilboa, Lieberman, and Schmeidler (GLS, 2006),

who suggested the notion of learning the similarity function from the data,

and referred to the optimal function as the “empirical similarity”. While their

paper can be viewed as suggesting a statistical technique, similar to the choice

of an optimal bandwidth in kernel estimation, our focus in this paper is on the

interpretation of the model as a description of the way people reason. Note

that the psychological evidence cited above deals with learning a similarity

function for the purpose of a categorization task, which is distinct from (and

perhaps cognitively less demanding than) the estimation of probabilities. Yet,

we find such learning to be rather intuitive. For example, a physician who

has to estimate the probabilities of success of a medical procedure would rely

on past data, and would use her experience to learn which medical variables

are more important than others. Similarly, in our motivating example, a

potential donor who tries to estimate a candidate’s probability of winning

would also look at past data, and use these data to learn how much weight

each observation should be assigned.

Argenziano and Gilboa (2017) study a second-order induction model

where the empirical similarity is computed by a leave-on-out cross-validation

technique. The focus of that paper is on asymptotic results regarding the

uniqueness of the empirical similarity function and the complexity of its com-
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putation, in particular when the number of relevant variables can be rather

large. By contrast, in this paper we consider the same model and study con-

ditions under which a single variable —such as “race”or “post-Glasnost”in

the examples above —will be included in the empirical similarity function.

Abstracting away from the other variables, and focusing on binary variables

throughout, we deal with a seemingly very simple problem, characterized by

no more than four parameters. We provide some results about values of these

parameters for which the similarity will, or will not, include a specific vari-

able, and show that the model captures the intuitions explained in subsection

1.1.

1.3 Equilibrium Selection

A theory of belief formation might be a building block in a theory of equilib-

rium selection. Indeed, if we know how people form beliefs, we can predict

that they best-respond to these beliefs, and if these best responses define an

equilibrium, this equilibrium would be a more likely prediction than others.

Indeed, the example of the collapse of the Soviet Bloc is naturally conceptu-

alized as a sequence of coordination games, with one equilibrium describing

a successful revolution and the other —no revolution attempt.

Embedding statistical learning in a theory of equilibrium selection raises

two issues having to do with strategic considerations. First, if players in a

game are aware of the fact that other players are also strategic, they will

not predict their behavior as if it simply were a natural phenomenon; they

would take into account other players’predictions, their predictions of others’

predictions and so forth. Thus, there is a gap between beliefs formed using

statistical and strategic reasoning. The former ignores the fact that other

players also learn from data, while the latter allows data to be completely

ignored. Second, there is also inter-period strategic reasoning. If players use

past data to make predictions and decisions, a current choice might have to

take into account its possible effects on the statistical learning of others in
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the future.

To deal with the first problem, we suggest to merge statistical and strate-

gic reasoning: statistics is used to generate initial beliefs p about the play

of the game (shared by all players), and these beliefs are used to compute

best responses. If these result in an equilibrium, we suggest it as a natural

candidate for the prediction of the way the game will be played. That is,

purely statistical, non-strategic reasoning is used to suggest naive beliefs,

and these are fed into strategic reasoning. We only use these initial beliefs

if the best responses to them are also best responses to themselves, that is,

as an equilibrium selection device. In other words, the naive, non-strategic

statistics are used as focal points for the game.

Inter-period strategic considerations may be very important in some se-

tups, but not in all. Polish citizens who had to decide whether to join the

revolution attempt in 1989 are unlikely to have put much weight on the im-

pact of their decision on a future revolution in Czechoslovakia. We suggest

to model these consecutive revolution attempts as a “statistical game”. A

statistical game is defined as a sequence of games played by disjoint sets of

players, with no direct strategic considerations across games played in dif-

ferent periods. However, each game starts with a draw of a set of variables

x = (x1, ..., xm), and, after the players make their moves, a realization of a

variable y. Further, the payoff of each player depends on the realization of

x, on the player’s own move, and on y (but not on others’moves given y).

Thus, it makes sense for each player to try to predict y based on its past

realizations in similar games. We assume that this prediction is done ac-

cording to similarity-weighted frequencies employing an empirical similarity

function. This process offers initial beliefs that can be fed into the strate-

gic reasoning process. Equilibria that can be justified by this process are

dubbed Similarity-Nash equilibria. We analyze a simple coordination game

(modeled as a statistical game) and show that a single precedent, such as a

successful revolution in Poland, defines a unique Similarity-Nash equilibrium
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corresponding to the intuition described above. In the coordination game we

consider the variables x = (x1, ..., xm) are payoff-neutral and can be viewed

as “sunspots”(Cass and Shell, 1983) that are commonly observed and used

for coordination in the game. As such, our theory of finding the optimal

similarity function can be viewed as a theory of sunspot selection.

The rest of the paper is organized as follows. Section 2 presents the sta-

tistical model and the notion of empirical similarity. Section 2.2 focuses on

a single variable and analyzes the importance of precedences from the per-

spective of the empirical similarity model. The analysis is extended beyond

precedents to general problems, asking under which condition the variable in

question will be included in an empirical similarity function. In particular,

the results show why, in this model, it is easier to establish reputation than

to re-establish it. Section 3 defines Statistical Games and Similarity-Nash

equilibria formally and applies the analysis to an example of equilibrium se-

lection in coordination games. Finally, Section 4 concludes with a general

discussion.

2 Second-Order Induction in Prediction Prob-
lems

2.1 Case-Based Beliefs and Second-Order Induction

A binary variable y ∈ {0, 1} is to be predicted based on other binary vari-
ables, x1, ..., xm ∈ {0, 1}. We assume that there are n observations of the
values of x = (x1, ..., xm) ∈ X ≡ {0, 1}m and of the corresponding y values.
Given a new value for the x’s, an agent attempts to predict the value of y.

Observations will be denoted by subscripts, so that observation i is (xi, yi)

where xi = (x1i , ..., x
m
i ) ∈ X and yi ∈ {0, 1}. A new data point xp is given,

and the agent attempts to predict yp.

We assume that prediction is made by a similarity function s : X ×X →
R+, such that the probability that yp = 1 is estimated by the similarity-
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weighted empirical frequency

ysp =

∑
i≤n s(xi, xp)yi∑
i≤n s(xi, xp)

(1)

if
∑

i≤n s(xi, xp) > 0 and ysp = 0.5 otherwise.3

In this paper we focus on a simple model, according to which the simi-

larity function takes values in {0, 1}. Further, we assume that for any given
similarity function, each variable either counts as relevant for prediction, or

as irrelevant.4 Thus, for a subset of predictors, J ⊂ M ≡ {1, ...,m}, let the
associated similarity function be:

sJ (xi, xp) =
∏
j∈J
1{xji=xjp} (2)

In other words, the similarity of two vectors is 1 iff they are identical on the

set of relevant variables, J . Clearly, the relation “having similarity 1”is an

equivalence relation.

We introduce the notion of second-order induction to capture the idea

that in order to obtain more accurate predictions, agents choose the similarity

function that best fits the data. We define the “empirical similarity” as a

similarity function that, had it been used to predict the existing data points,

where each is estimated based on the others, would have performed best. In

particular, we consider a leave-one-out cross-validation technique as a model

of the process people implicitly undergo in learning similarity from data.

Formally, for each subset of predictors, J ⊂M , let

yJi =

∑
r 6=i sJ(xr, xi)yi∑
r 6=i sJ(xr, xi)

3This formula can be extended to the case of more than two possible values for the
predictors xj and for y in a straightforward manner.

4Argenziano and Gilboa (2017) deal with this binary model as well as with a model
in which both the variables and the similarity function are continuous. They focus on
asymptotic analysis, and find similar results for the two models.
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and consider the sum of squared errors,

SSE (J) =
n∑
i=1

(
yJi − yi

)2
A function sJ such that J ∈ arg minSSE(J) is an empirical similarity func-

tion.

Observe that the empirical similarity need not be unique. To consider

the most trivial case, suppose that a variable xj is constant in the database.

In this case, SSE (J) = SSE (J ∪ {j}) for any J ⊂ M . By convention, we

may decide to drop such a variable (j), implicitly assuming that handling a

variable incurs some memory and computation costs that are assumed away

in this paper. However, there could be more interesting examples of non-

uniqueness. See Argenziano and Gilboa (2017) for details.

2.2 When is a Variable Relevant?

The focus of our analysis is the question of a variable’s relevance for pre-

diction. Formally, given a set of predictors, J ⊂ M and j /∈ J , we are

interested in the comparison of SSE (J) and SSE (J ∪ {j}). If SSE (J) >

SSE (J ∪ {j}), then the inclusion of the variable j provides a better fit to
the data. We then assume that people would take this variable into account

when assessing the probability that y = 1 in the next observation. If, by

contrast, SSE (J) < SSE (J ∪ {j}), the addition of the variable j to the
similarity function results in higher errors, and we assume that the variable

will be ignored by people who assess this probability. The reason that more

variables can result in worse predictions is related to “the curse of dimen-

sionality”: a set of predictors J splits the database into sub-databases with

identical
(
xl
)
l∈J values. A new variable splits each of these sub-databases

into smaller ones, so that their number grows exponentially in |J |. When
there are too few observations in a sub-database, the prediction error can
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grow5.

Whether a set of predictors J will perform better by the addition of a

variable j /∈ J depends mostly on how much information the latter carries
about y, given the variables J . In general, this information need not be

summarized by simple correlations or regularities. It is possible that for

some
(
xl
)
l∈J values of the variables in J , x

j = 1 makes y = 1 more likely,

and vice versa for other
(
xl
)
l∈J values. While such cases are theoretically

interesting and important, they seem to be more involved than our motivating

examples.6 We wish to focus attention on simple cases, in which, should a

variable be included, it is relatively clear what predictions it induces. We

therefore assume J = ∅ and address the question of whether a variable xj

should be included in the similarity function.

Intuitively, the question is about the difference in the proportion of cases

with y = 1 (vs. y = 0) in the two sub-databases, one with xj = 1, and its

complement, with xj = 0. If the proportion is the same, there is no predic-

tive power to be gained from splitting the database according to xj. If, by

contrast, the proportion is different, then xj provides statistical information

about y. Whether the additional statistical information is worth splitting

the database into two smaller sub-databases would depend on the sizes of

the sub-databases obtained, due to the curse of dimensionality discussed

above.

The n points in the database are divided into four types, according to the

values of xj and of y. Let the number of cases of each type be given by the

following case-frequency matrix:

# of cases xj = 0 xj = 1
y = 0 L l
y = 1 W w

5Note that this reason is distinct from overfitting, which may be yet another reason to
prefer small sets of predictors.

6Again, see Argenziano and Gilboa (2017) for discussion of the problem in the general
case, including problems having to do with computational complexity.
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We are interested in the sign of

∆ (L,W, l, w) ≡ SSE ({j})− SSE (∅)

where ∆ (L,W, l, w) > 0 implies that the variable j is not included in the

empirical similarity function, whereas ∆ (L,W, l, w) < 0 implies that it is.

Clearly, ∆ (L,W, l, w) = ∆ (W,L,w, l) and ∆ (L,W, l, w) = ∆ (l, w, L,W ),

as the SSE calculations do not change if we switch between 0 and 1 either

for a predictor xj or for the predicted variable y.

We assume that there is a non-trivial history in which xj = 0. Specifically,

we assume throughout that L,W > 2. This assumption means that (i) the

database contains a non-trivial number of cases overall, and that (ii) the

prediction of the variable in question, y, is a non-trivial task: there are a few

(at least three) cases with y = 0 as well as with y = 1.

Our focus in this paper is on databases for which the number of cases with

xj = 1 is small. We wish to study the change of beliefs when a new event

occurs —such as the election of an atypical candidate for the presidency, or

the behavior of a new agent who has no history, and so forth. For these

cases we will think of w and l as small (and sometimes zero). Databases

with w = l = 0 will be of special interest. They can be interpreted in two

ways, between which our model does not attempt to distinguish: first, it is

possible that all relevant agents are aware of the variable xj, and they notice

that xj = 1 has never been observed. Second, they might be situations in

which the variable xj hasn’t really occurred to anyone because it has never

been observed. For example, in the application of the model to the study

of reputation, the variable in question will be an agent’s proper name, and

agents were probably not aware of the variable before a person with that

proper name appears on stage. We do not attempt to distinguish between

the two interpretations, and do not need to for the sake of the model.
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2.2.1 Simple Regularities

The first result we establish is that, if there are suffi ciently robust regulari-

ties in the database, the empirical similarity will spot them. In particular,

suppose that the database contains at least two cases with xj = 1, and all

such cases have the same y value. Then, we prove that the variable j will be

included in the empirical similarity function, as it will be perceived to be of

predictive power. Formally,

Proposition 1 For any (L,W ), and any l, w > 1, we have

∆ (L,W, 0, w) , ∆ (L,W, l, 0) < 0.

Recall that we assume that L,W > 2, so that the sub-database for which

xj = 0 does not suggest a clear regularity about y. By contrast, in the

sub-database for which xj = 1, y is constant. If there are at least two cases

in this sub-database, second-order induction will “identify” the regularity

and include the variable j in the empirical similarity function. Proposition

1 is rather intuitive and turns out to be very simple to prove. Yet, it is

important because it shows that, if case-based predictions are allowed to use

second-order induction, they will not miss simple regularities in the data.

The parameter values w = 1, l = 0 (or vice versa, w = 0, l = 1) are

not covered by Proposition 1 but they are particularly interesting. They

correspond to new realities, where xj = 1 has never been observed before.

Our next result shows that, when a case with xj = 1 is observed for the first

time, the variable j will be included in the empirical similarity if and only

if the corresponding y value was the less frequent value in the rest of the

database. Formally,

Proposition 2 If W < L, ∆ (L,W, 0, 1) < 0 and ∆ (L,W, 1, 0) > 0. Sym-

metrically, if W > L, ∆ (L,W, 0, 1) > 0 and ∆ (L,W, 1, 0) < 0. Finally,

∆ (W,W, 1, 0) ,∆ (W,W, 0, 1) > 0.
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We find this result rather intuitive: when no cases with xj = 1 were ever

observed (w = l = 0), there is no real meaning to the variable xj: it is always

0 and can be ignored.7 When the first case with xj = 1 pops up, one is led

to ask, is this new feature useful? Should I make a note of the fact that the

new case had this new feature, or should I better dismiss it as noise? For

example, suppose that one is watching horse races, and classifies horses into

“very fast” (y = 1) or “regular” (y = 0), where the majority of the horses

are “regular”. At some point one observes, for the very first time ever, a

green horse. Stunning as this phenomenon is, the unusual color might not

be informative. Proposition 2 says that, if the green horse turns out to be

very fast, the next time a green horse will show up its color would be noticed.

By contrast, if the conspicuously colored horse turns out to be regular, the

special feature will be dismissed.

2.2.2 Losing Relevance through a Precedent

Our first two propositions investigated databases in which a simple regularity

holds: xj = 1 implies a specific value for y in every single observation in the

database. We now turn to the case in which no such rule holds, and for

xj = 1 both cases with y = 0 and with y = 1 have been observed. When

should the variable be included in the empirical similarity?

We first study the impact of a single precedent. Proposition 1 established

that if there are at least two cases in which xj = 1, and they all have the same

outcome, then the variable has enough predictive power to be included in the

empirical similarity. Proposition 3 shows that a single case will reverse this

result, unless the number of cases that established the regularity is suffi ciently

large:

Proposition 3 For every 0 < l ≤
⌊
L
W

⌋
+ 1, we have ∆ (L,W, l, 1) > 0.

7As mentioned above, in this case (where we have, in particular, ∆ (K,L, 0, 0) = 0), we
assume that j is not included in the optimal set of predictors.
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We interpret Proposition 3 as capturing the way that a single precedent

makes a variable lose importance. Consider our motivating example, namely,

the election of President Obama. We focus on the variable xj denoting race,

where xj = 1 means that the candidate is African-American. Assume that

the database in a typical voter’s mind includes all cases of people who ran for

the Democratic or Republican parties’nomination since WWII, where y = 1

stands for “was elected President”. The vast majority of them were white,

namely, had xj = 0. Of these, W won and L lost, where L is significantly

larger than W . (L/W ≈ 10 would seem like a reasonable assumption about

voter’s perception of a typical campaign.) On top of these white candidates,

there are also some attempts made by African-American candidates, but all

of those failed. Assume that the number of these attempts is l < 10.8

By Proposition 1, given zero successes by African-American candidates,

w = 0, and at least two failures, l > 2, the variable “race”has predictive

power and the empirical similarity function takes it into account. That is, the

probability of a successful campaign by an African-American candidate would

be estimated to be the relative frequency of successes in the sub-database of

African-Americans, namely, 0. This is the sense in which our model captures

the regularity “No African-American was ever elected president”. However,

after Obama’s election, the number of successes changed to w = 1. With

l < 10 ≤
⌊
L
W

⌋
+ 1, Proposition 3 implies that ∆ (L,W, l, 1) > 0. That

is, the single case of Obama suffi ces to change the similarity function and

drop “race”from the list of important variables. The probability of success

of a future campaign of an African-American candidate would be judged

according to other variables alone.9

8Relatively well-known campaigns are those of Shirley Chisholm (in 1972) and Jesse
Jackson (in 1984, 1988). There were several more, and our search came up with 6 such
campaigns. As far as a typical voter’s memory is concerned, l < 10 seems to be a reasonable
assumption.

9This probability is still relatively low, given that there are many more candidates who
lost than candidates who won. The point, however, is that an African-American candidate
would have the same perceived probability of success as a white candidate, while this was
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Notice that the result need not apply if l is larger than
⌊
L
W

⌋
+ 1. That

is, if the proportion of successes among African-Americans given the Obama

precedent, 1/ (l + 1), were still smaller than the corresponding proportion

among the rest, W/ (L+W ), the variable “race”could still be part of the

similarity function. Indeed, if the case of Obama were to change the pro-

portion of African-American successes from 0 to, say, 0.001, it would still be

much lower than the proportion of successes among the other (white can-

didate) campaigns, and one would expect that the two populations would

still be perceived as different for prediction purposes. (Proposition 4 below

implies that this is indeed the case if l is suffi ciently large.) The reason that a

single precedent could change the similarity function so dramatically is that

the number of failed attempts among African Americans was not that large.

2.2.3 Gaining Relevance

Consider an agent who’s new to an economic or political scene, and who

wishes to bring about a belief in a certain “success”outcome, y = 1, where

this outcome used to be the exception rather than the rule. Thus, statistical

analysis that takes into account all of history would suggest that y = 0 is

more likely than y = 1, and our agent tries to establish a reputation that

would dissociate her from past experiences. For example, the agent may be a

new dean who aims to enforce regulations more strictly than her predecessors,

or a central banker who intends to curb inflation. Let xj be the indicator

variable of the agent’s proper name, so that, starting with a clean slate, there

are no cases with xj = 1, and w = l = 0. However, past cases (for which

xj = 0) have W < L, and it is this tradition of failures that the agent wishes

to break away from.

Proposition 2 suggests that the new agent would have to invest an effort

in establishing y = 1 once in order to establish her reputation: with W <

L, ∆ (L,W, 0, 1) < 0, and xj would already enter the empirical similarity

not the case before the precedent.
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function. In our example, a single “success” can suffi ce for the dean to

convey the message that “the rules have changed”.

However, what will happen if the dean fails to enforce the rules at the

beginning of her tenure? Intuition suggests that in that case she could still

establish her reputation later on, but that this would become more costly.

To analyze this scenario, we wish to study the function ∆ (L,W, l, w) where

both l and w are allowed to be beyond 1.

Proposition 4 studies the behavior of∆ (L,W, l, w) as a function of each of

its two last arguments. In light of the symmetry∆ (L,W, l, w) = ∆ (W,L,w, l),

it suffi ces to study one of them, which we take to be w for simplicity of nota-

tion. We start from a scenario in which the sub-database with xj = 1 has, up

to integrality constraint, the same ratio of cases with y = 0 and y = 1 as the

sub-database with xj = 0. If this ratio is precisely the same, that is, w
l

= W
L
,

then xj is irrelevant for predicting y in future cases, and we would expect j to

be excluded from the optimal similarity function, that is, ∆ (L,W, l, w) > 0.

It turns out that this is the case also if w is only known to be the closest

integer to lW
L
, or one above it. (Part (i) of the Proposition 4.) Suppose that

we now increase w. We find that this improves the performance of the simi-

larity function that includes the variable, up to a point where it outperforms

the similarity function that does not include it. That is, if w/l is suffi ciently

larger than W/L (where the exact values of the parameters matter, and not

only their ratios), then ∆ (L,W, l, w) < 0 (Part(ii)). As could be expected,

the minimum w∗ > lW
L
for which this inequality holds increases in the num-

ber of cases with the opposite outcome, l (Part (iii)). Moreover, up to details

of integrality constraints, the number of additional cases needed to get to

this minimum (w∗ − w) is also non-decreasing in l (Part (iv)).
Formally, let [ ] : R→ Z be the nearest integer function, selecting the

truncation in case of a tie. (That is, for all x ∈ R and z ∈ Z, we have [x] = z

if x = z + ε and ε ∈ [−0.5, 0.5).) We prove the following:
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Proposition 4 Let L,W, l, w > 0 be any four integers such that L,W > 2,

l, w > 0, and w =
[
lW
L

]
. The following hold:

(i) ∆ (L,W, l, w), ∆ (L,W, l, w + 1) > 0.

(ii) There exists an integer w∗ (L,W, l) ≥ w+2 such that, for every q ≥ w,

q < w∗ (L,W, l) ⇒ ∆ (L,W, l, q) ≥ 0

q ≥ w∗ (L,W, l) ⇒ ∆ (L,W, l, q) < 0

(Clearly, if such an integer exists it is unique.)

(iii) w∗ (L,W, l) is non-decreasing in l.

(iv) If W/L is an integer, (w∗ (L,W, l)− w) is non-decreasing in l.

Thus, our model captures the fact that it is harder to re-establish reputa-

tion than to establish it at the outset. By Proposition 2, if W < L and l = 0

a single success (w = 1) suffi ces to establish reputation. By Proposition 4,

with l = 1 at least three such cases would be needed (parts (i)-(ii)). More

generally, for any number of adverse outcomes l > 0 there is a suffi ciently

large number of successes w that would eventually make one’s proper name

an important variable (part (ii)), but the additional number of successes re-

quired increases (part (iii)), and it does so more than proportionally, up to

integrality constraints (part (iv)). One does get a second chance to make a

first impression, but it becomes costlier.

3 Statistical Games

We now generalize the prediction problems discussed in section 2 to allow for

strategic interactions. A statistical game G∗ is a (finite or infinite) sequence

of period games (Gi)i≥1. The game Gi has a finite and non-empty set of

players Hi, where the Hi’s are pairwise disjoint. Game Gi is played in three

stages, as follows. First, (Stage 1) Nature moves and determines the values

of m binary variables, xi = (x1i , ..., x
m
i ) ∈ {0, 1}m. Then, (Stage 2) all the

players observe xi and make simultaneous moves: player h ∈ Hi selects an
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action ah ∈ Ahi (where Ahi is non-empty and finite). Finally, (Stage 3) Nature
selects a value for a variable yi ∈ {0, 1} and the game ends. The payoff for
player h ∈ Hi is a function of

(
xi, a

h, yi
)
. That is, a player’s payoff depends

on the others’moves only to the extent that these affect the outcome yi. (For

example, in the revolution game we present below, a player’s payoff depends

on whether a revolution attempt succeeds or not, as well as on her own choice

of supporting it, but, given yi, it is independent of the choices of the other

players.) In other words, having observed xi, yi is a suffi cient statistic for

the strategic aspect of the game. We also assume that, at the beginning of

period i, all the players in Hi observe the entire history of characteristics and

outcomes of past games, ((xr, yr))r<i but not the actions that were taken in

them.10

Statistical games span a gamut of social interactions that involve learning.

On the one extreme, one may consider pure prediction problems like those

in section 2, where, at period i, a predictor is asked to guess the value of

yi ∈ {0, 1} given the value of xi ∈ {0, 1}m and the history ((xr, yr))r<i. This

is a special case of a statistical game in which there is no strategic interaction

whatsoever. We may think of the predictor at time i as the single player h in

Hi, with a set of actions Ahi = {0, 1}, whose payoff function is the indicator
of a correct guess. On the other extreme, statistical games may suppress

the learning aspect and focus on the strategic one. For example, if there are

no predictors (m = 0), the only thing that a player needs to consider is the

distribution of yi. This may capture coordination games in which the only

role of history is to serve as a coordination device.

The notion of a statistical game, as well as the solution concept we suggest

for such games below, are compatible with several sets of implicit assump-

tions about the players’information. At a minimal level, the players may not

know the distribution of yi given xi , and they use the empirical similarity in

10Clearly, this assumption is important even though we already assumed that yr is a
suffi cient statistic for payoffs at stage r < i. For example, it does not allow a player in
stage i to follow a strategy that is a function of the move of another player in stage r < i.
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order to estimate it. This is the most natural interpretation if we consider a

non-strategic environment, such as a one-person prediction problem. Alter-

natively, one may adopt the standard (implicit) assumption in game theory,

namely, that the game G∗ is commonly known among its players. This would

imply that players know the distribution according to which Nature chooses

xi, given past history, ((xr, yr))r<i, as well as the conditional distribution of

yi (given (i) the history ((xr, yr))r<i; (ii) the current xi; and (iii) all players’

moves). Importantly, the prediction of yi based on the realization of xi then

becomes a prediction about the players’moves. For example, in a revolution

game all players might know what it would take for a revolution to succeed

(yi = 1) , in terms of the players’ choices. The belief about a revolution

succeeding induces a belief about what the other players are about to do.

The assumption that the sets of players Hi are pairwise disjoint implies

that equilibria of G∗ are basically selections of equilibria in period games

Gi, each defined by a realization of xi, for each i and each xi ∈ {0, 1}m

(that occurs with positive probability). That is, at an equilibrium of G∗,

players in Gi have to choose best responses to the others’moves in that

game, as they have no future to worry about. Conversely, a selection of

an equilibrium in each period game Gi (for each possible realization of xi)

yields an equilibrium ofG∗, because players of different periods’games cannot

coordinate deviations from the equilibrium path. Thus, the structure of G∗

guarantees that all Gi’s are strategically independent games.

Note that the games Gi are unrelated to each other apart from the infor-

mation about the variables ((xi, yi)). They have disjoint sets of players, and

may have completely unrelated sets of acts and payoff functions. The only

feature that relates them is the fact that in each game there is a realization

of xi (before players choose their moves), and a realization of yi (after they

do).11

11We implicitly assume that all the players encode information in the same way and
that they agree on the meaning of statements such as “xji = 0” or “yi = 1”. If, for
instance, different players think of a given case as a “success” (yi = 1) and others —as
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3.1 Similarity-Nash Equilibria

In this sub-section, we introduce an equilibrium notion for statistical games

that incorporates the notion of second-order induction. We assume that

players use the information available about past games to form initial beliefs

about the outcome of the current one, and consider equilibria in which players

best-respond to these initial beliefs.

Let there be a given a statistical game G∗ = (Gi)i≥1 with variables x =

(x1, ..., xm) ∈ {0, 1}m and y ∈ {0, 1}. Consider game Gi. Given Nature’s
move in Stage 1, xi is observed. Using the database ((xr, yr))r<i one obtains

an empirical similarity function si = sJ such J ∈ arg minSSE(J) with

SSE (J) =
∑
r<i

(ysJr − yr)
2

This function defines a probability distribution for yi, denoted psi . Specifi-

cally,

psi (yi = 1) = ysii (3)

psi (yi = 0) = 1− ysii

which we take to represent the beliefs of each player h in Gi about yi, if she

were to ignore strategic considerations completely.

Note that a strategy for player h in Gi, ah, maps all histories of the

form
(
((xr, yr))r<i , xi

)
into Ahi . Such a strategy is a best response to psi if

ah
(
((xr, yr))r<i , xi

)
∈ Ahi maximizes player h’s payoff in Gi given xi and the

belief psi about yi. (Recall that h’s payoff only depends on
(
xi, a

h, yi
)
, so

that, given knowledge of xi and beliefs over yi, the argmax of h’s expected

payoff is well-defined.) Strategies
(
ah
)
h
that are best responses to psi and

also happen to be best responses to themselves (that is, ah is a best response

to
(
ah
′)
h′ 6=h for all h) are called Similarity-Nash equilibrium.

a “failure” (yi = 0), without a 1-1 mapping between the diffenet languages they use, we
cannot assume a common process of statistical learning.
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Similarity-Nash equilibria seem natural under a variety of assumptions

about the players’information and strategic sophistication. For example, if

players do not engage in too involved strategic reasoning, they may be inter-

ested only in the bottom line captured by yi, best-respond to its distribution

and play the equilibrium strategies. Alternatively, they may use the esti-

mate of yi as an initial conjecture and then apply strategic reasoning along

the lines of Level-K reasoning, where Similarity-Nash equilibria result from

Level-1 reasoning that already results in an equilibrium. Further, one may

implicitly assume that the players are sophisticated enough to understand

the entire model, and they realize that choosing a way to reason about the

game can be viewed as a strategic choice in a “reasoning game”. Such a game

may be a coordination game, and if all players reason in a given way, it is a

best response for each to follow the same mode of reasoning. If Similarity-

Nash equilibria exist in the actual game, the way of reasoning we offer is an

equilibrium in the implicit reasoning game.

As our focus in this paper is second-order induction, we define Similarity-

Nash equilibria relative to the initial beliefs psi , namely, the empirical simi-

larity relative frequencies. However, one could use other initial beliefs as the

statistical starting point used for strategic reasoning. Specifically, one can

define the initial beliefs by first-order induction, that is, using an exogenously

given similarity function to provide the statistical reasoning. This is basically

the equilibrium selection process assumed in Steiner and Stewart (2008) and

in Argenziano and Gilboa (2012).12

Since we consider only binary variables yi, it is convenient to consider

games Gi with two strict (and thus pure) Nash equilibria for any possible

12Both papers study cased-based reasoning in a class of complete information normal
form coordination games. Games differ by one payoff-relevant parameter, and the similar-
ity between two games is a function of the difference between the values of this parameter
in the two games. Myopic players play a new game in each period and assess the expected
payoffof each action by its expected payoff, where the beliefs over the other players’choices
are given by similarity-weighted frequencies.
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xi.13 Similarity-Nash equilibria are suggested as a criterion for equilibrium

selection between these equilibria. Specifically, each equilibrium has a set of

beliefs such that the equilibrium strategies are the unique best responses to

any beliefs in this set. Harsanyi and Selten’s (1988) notion of risk dominant

equilibria is based on the size of maximal such sets. Similarity-Nash equi-

libria ignore the size of these sets and focus on the value of the statistical

estimate psi . In a sense, Similarity-Nash equilibria can be viewed as replacing

a uniform distribution over players’moves by statistical learning, which is

possible when the game is embedded in a history of other games. The analogy

to risk dominant equilibria is stronger when all stage games have the same

number of players, the same set of moves and the same payoff function for

each player. Statistical games allow more freedom in the statistical learning

procedure, where only the (xi, yi) relate the games played in different stages.

One can also view Similarity-Nash equilibria as a possible formalization

of Schelling’s (1960) focal points: one way in which an equilibrium can be

focal is that it has been played in the past. Thus, relative frequency offers a

natural criterion for selection of an equilibrium in a game that is being played

repeatedly, and Similarity-Nash equilibria focus on the relative frequency ac-

cording to the empirical similarity. Similarity-Nash equilibria are also defined

when the games Gi differ from each other, as long as the variables (xi, yi)

relate them in a meaningful way. For example, yi might indicate whether

a Pareto-dominating equilibrium has been played in the past, and thus the

model can capture Pareto-domination as a focal point, allowing statistical

learning across very different games.

In Section 4 we discuss a generalization of Similarity-Nash equilibria that

allows an iterative process of best-response reasoning, starting with the sta-

tistical estimate psi and leading to an equilibrium of the stage game.

13When more strict equilibria are considered, it is natural to extend the analysis to yi
that can assume at least as many values as there are equilibria.
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3.2 Example of Equilibrium Selection in a Coordina-
tion Game

We consider here a simple example of a sequence of revolution games played

by disjoint populations. At period i game Gi is played, describing a potential

revolution attempt in a new country i. The players Hi are citizens of country

i. Each citizen h observes the realization of x, xi, and has to decide whether

to join the revolution attempt, ah = 1, or not, ah = 0. As a result of

these choices, the revolution succeeds, yi = 1, or fails, yi = 0. Assume

that, irrespective of the values of xi, the revolution succeeds (Nature chooses

yi = 1) with probability f (α) ∈ [0, 1] where α is the proportion of players

(in Hi) that chose ah = 1. Further, we assume that f (α) is increasing, with

f (0) = ε

f (1) = 1− ε

for ε ∈ (0, 0.5). The assumptions that f (0) > 0 and f (1) < 1 reflect the fact

that the model is not expected to capture all the relevant factors, and allow

us to assume various histories in a way that is compatible with the model.

Let the payoff of Player h be determined only by her choice and the

success of the revolution:

Payoff to h yi = 1 yi = 0
ah = 1 1 0
ah = 0 0 1

Thus, a player’s best response is to join the revolution attempt if and only

if she thinks it is more likely to succeed than to fail.

We wish to study a single variable xj, such as “post-Glasnost”in Example

1.1.2 and ask when it will be used in the empirical similarity function, that

is, when will it be a sunspot, given a fixed set J of other variables. To

simply matters, assume that m = 1 and the question is whether x1 is used

for prediction or not. Thus, the history { (xr, yr) | r < i} is summarized in
four non-negative integers (L,W, l, w) as in Section 2.2. We allow history
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to contain revolution attempts against other regimes as well, some of which

have been successful. However, we assume that there are more unsuccessful

than successful attempts in the database.

We can now state

Corollary 1 Assume that L > W > 2. Then, at any Similarity-Nash equi-

librium:

(i) If w = 0 and l = 1, ah = 0 for all h ∈ Hi;

(ii) If w = 1 and l = 0, ah = 1 for all h ∈ Hi.

Recall that, before Glasnost (for x1 = 0), most revolution attempts failed

(L > W ). We consider the first post-Glasnost attempt and apply Proposition

1. Should the revolution attempt fail (w = 0 and l = 1), the variable x1

would be deemed irrelevant (by ∆ (L,W, 1, 0) > 0), and the probability of

a revolution succeeding would be estimated by W/ (L+ 1) < 0.5. Thus the

best response of each player would be ah = 0 and this is an equilibrium.

By contrast, if the revolution attempt succeeds (which has a positive

probability even if no player chooses ah = 1), then we’re in case (ii), w = 1

and l = 0. Then the proposition states that ∆ (L,W, 0, 1) < 0 and thus x1

will be part of the empirical similarity function. That is, the post-Glasnost

period would be considered a new era, and older cases would not factor into

the statistics. In the post-Glasnost sub-database the proportion of successes

is w/ (w + l), that is 100%. The probability of a revolution success would

then be estimated by w/ (w + l) = 1 > 0.5. Thus the best response of each

player would be ah = 1 and this, again, is an equilibrium.
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4 Discussion

4.1 Additional Examples

4.1.1 Example: The Collapse of the Soviet Bloc Revisited

The collapse of the Soviet Bloc involved more than one variable. While the

Soviet Bloc fell apart, the USSR remained a unified state. Despite the fact

that the USSR consisted of fifteen republics, some of which contained ethnic

majorities that seemed unhappy with Russian domination, for two more years

there were no revolution attempts within these republics. Only in 1991 did

the Baltic republics attempted to secede, and when they were allowed to, the

USSR disintegrated.

This can be viewed as another change in the similarity function: in

1989 the experience of satellite-but-independent states such as Poland and

Czechoslovakia didn’t seem relevant to the Baltics, because the latter were

part of the USSR. That is, there was a variable —“being a part of the USSR”

—which was apparently deemed relevant even after “post-Glasnost”proved

important. Taking these two variables into consideration, the post-Glasnost

experience of independent satellite states did not appear to be relevant to the

USSR republics. However, when there was a precedent among the Baltics,

the variable “being a part of the USSR”dropped out of the similarity func-

tion, and the rest of the USSR republics could rely on the same statistics as

did the independent states in 1989.

Soon after, Chechnya attempted to claim independence from Russia. A

success would have proven that even the variable “being a part of Russia”

was no longer relevant. This, apparently, was not something Russia could

afford. Thus, one could view the battle over Chechnya as a conflict over

future empirical similarity.
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4.1.2 Example: Currency Change

In an attempt to restrain inflation, central banks sometimes resort to chang-

ing the currency. France changed the Franc to New Franc (worth 100 “old”

francs) in 1960, and Israel switched from a Lira to a Shekel (worth 10 Liras)

in 1980 and then to a New Shekel (worth 1,000 Shekels) in 1985.

A change of currency has an effect at the perceptual level of the similarity

function. Different denominations might suggest that the present isn’t similar

to the past, and that the rate of inflation might change. However, if people

engage in second-order induction, they would observe new cases and would

learn from themwhether the perceptual change is of import. For example, the

change of currency in Israel in 1980 was not accompanied by policy changes,

and inflation spiraled into hyper-inflation. By contrast, the change in 1985

was accompanied by budget cuts, and inflation was curbed. The contrast

between these two examples suggests that economic agents are suffi ciently

rational to engage in learning the empirical similarity.

4.1.3 Example: Role Models

Our analysis of precedents, such as President Obama, provides an formal

model of the impact of “role models.”It has long been argued that students

belonging to a minority might rationally decide not to attempt to enter a

given professional career, requiring a costly investment in studies, unless

they have suffi cient evidence that access to that profession is not subject to

discrimination. Role models, i.e., minority members with a successful career

in that profession, can provide evidence of such lack of discrimination.14 Our

learning model provides an explanation of how the beliefs about chances of

success in a profession (y = 1) by a member of a minority (i.e., an individual

with xj = 1) are formed, how the presence of discrimination is assessed (i.e.,

in which cases the value of xj will be considered relevant for prediction), and

how precedents of successful professionals with similar features can make

14See Chung (2000) and references therein, and Bayer and Rouse (2016).
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beliefs more optimistic and hence encourage minority members to attempt

entry in a given profession.

4.2 Non-Binary Variables

Consider the motivating example again. We argued that the precedent of

President Obama reduced the importance of the variable “race”in similarity

judgments. This may make other African Americans more likely to win an

election for two reasons: first, they are similar to the precedent; second, the

attribute on which they differ from the vast majority of past cases is less

important. With variables that can take more than two values, one can have

the latter effect without the former. Suppose that, in an upcoming election,

an American-born man of Chinese origin considers running for offi ce. If,

indeed, the empirical similarity function does not put much weight on the

variable “race”, such a candidate would be more likely to win an election

given the case of Obama than it would have been without this case, without

necessarily being similar to the latter.15

4.3 Similarity Over Variables

Our focus is on similarity between cases, and how it is learnt. But similarity

can also be perceived among variables. For example, one might argue that

the precedent of President Obama may make it more likely that a woman be

elected president. Clearly, a non-white male candidate isn’t very similar to a

white female one, as far as “race”and “gender”are concerned. Further, even

if the variable “race”is no longer perceived as relevant, it doesn’t make a non-

white man more similar to a white woman than to a white man. However,

people might reason along the lines of, “Now that a non-white president was

15This prediction of our model could be tested empirically. Admittedly, should it prove
correct, one could still argue that the similarity function has a variable “Non-Caucasian”
(rather than “race”), so that a Chinese-born and an African-American are similar to each
other in this dimension. We find the change of the similarity function to be a more intuitive
explanation.
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elected, why not a woman?”Capturing such reasoning would require gen-

eralizing the model described above, allowing a similarity function between

variables. For example, “race”and “gender”are similar in that both are in

the category of “perceptual variables that were used to discriminate against

sub-groups, and that are frowned upon as source of discrimination in modern

democracies”. Due to this similarity, a change in the weight of one variable,

learnt from the empirical similarity as in this paper, may be reflected also in

the weight of another variable.

To consider another example, let us revisit the example of the collapse

of the USSR (4.1.1 above). One might argue that the variables “Being a

part of the Soviet Bloc”, “Being a part of the USSR”, and “Being a part

of Russia” bore some a priori similarity to each other. They seem to be

distinct, as the collapse of the Soviet Bloc didn’t immediately proceed to the

disintegration of the USSR itself. Yet, it is possible that the former inspired

the latter, two years later. This might be captured by the variable similarity

notion. Moreover, if Chechen rebels felt encouraged by the collapse of the

Soviet Bloc and of the USSR, they might have been following an inductive

process that involved variables before involving cases. Specifically, if, our of

the three variables two were proved unimportant, one might be justified in

assuming that the third one would follow suit, and make predictions based

on a similarity function that does not take it into account.

Observe that the similarity over variables will also be partly learnt from

the data. In the latter example, the a priori similarity between the three

variables involving the USSR had to be updated given the results of the

Chechen uprising. Clearly, such sophisticated forms of learning are beyond

the scope of the present paper.

4.4 Statistical Games and Other Classes of Games

Statistical games are reminiscent of “Congestion Games”(Rosenthal, 1973)

in that a player’s payoff depends only on a summary statistics of the others’
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choices. In a classical example, only the frequency of choice of each act

matters, rather than the identity of the players choosing it. This is akin

to our model, in which only the summary statistic yi matters for a player’s

payoff. However, in our case the period game need not be symmetric, and it

might be meaningless to consider the frequency of choices of players (or to

sum up their chosen variables), as their sets of moves might be unrelated to

each other.

Statistical games are similar to Correlated Equilibria (Aumann, 1974) in

that we assume that Nature sends a signal to each player before the game

is played. However, in our context the signal is commonly known. Thus,

any equilibrium of the large game has to induce an equilibrium in each pe-

riod game (given the realization of x). In this sense our correlating signals,

x, bring to mind “Sunspots” (Cass and Shell, 1983). In particular, if one

imposes the additional assumption that in a statistical game the x’s are

payoff-irrelevant, they do function like sunspots, as mere public correlation

devices. Viewed thus, our suggestion to use second-order induction to find

the similarity function can be considered a theory of sunspot selection.

When considered as a method of equilibrium selection in coordination

games, statistical games cannot fail to remind one of “Global Games”(Carls-

son and van Damme, 1993). As in the latter, our approach attempts to relate

a game to a larger class of games, and to allow the wider context aid in equi-

librium selection. However, in Global Games equilibria are chosen ex ante,

simultaneously for all games, whereas in statistical games they are chosen

sequentially, highlighting the role of statistical learning. Global Games rely

on some uncertainty about the game played, while in statistical games, at

each period i, Gi is commonly known among its players, and the variables xi
only serve as a coordination device.
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4.5 Extensions of Similarity-Nash Equilibria

4.5.1 Iterative Best Response

In some examples one needs more than one step of best-response reasoning

to arrive at an equilibrium. For example, consider a modified version of the

sequence of revolutions described in Section 3.2. Suppose that f (α) = α2 and

that there is a continuum of heterogeneous players where player h’s payoff is

given by
Payoff to h yi = 1 yi = 0
ah = 1 1 + εh 0
ah = 0 0 1− εh

and εh ∼ U (−1, 1), so that her best response is to join the revolution attempt

if and only if she thinks that the probability of success is at least 1−εh
2
∼

U (0, 1). For any initial belief psi (yi = 1) = p0 ∈ (0, 1), the best response

would be to join the revolution for a fraction α0 = p0 of the population and

not to join it for the remaining fraction. This in turn would generate beliefs

p1 = p2 < p0, to which the best response would be to join the revolution for

an analogous fraction of the population. A formal analysis of such a game

would require a generalized notion of Similarity-Nash equilibrium, allowing

for an iterative process of best-response to initial beliefs. Such an iterative

process would converge to an equilibrium with α = 0 for any initial belief

p ∈ (0, 1).

This process brings to mind Level-k reasoning, where one does not start

the process with an arbitrary, say, uniform distribution, but with the statis-

tical one obtained from the empirical similarity weighted frequencies.

Note that an iterative process of best responses is at the heart of equi-

librium selection in Global Games (Carlsson and van Damme, 1994). Thus,

an extension of our equilibrium selection to iterative best responses can si-

multaneously generalize Global Games (by allowing different games) and our

analysis above.
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4.5.2 Initial Beliefs

Selecting equilibria by (one shot or iterative) best responses to initial beliefs

can be applied to other classes of games. Indeed, one may start with any

beliefs p ∈
∑
about players’strategies, and define a strategy profile σ ∈

∑
to be k-level p-rationalizable if it can be obtained as best-response of degree

k to p. If there is some reason to believe that p makes sense as an initial, non-

strategic beliefs, a Nash equilibrium σ ∈
∑
that is k-level p-rationalizable

may be a more likely prediction than equilibria that aren’t (or that can only

be obtained by longer chains of reasoning).

Note that such an equilibrium selection procedure would require initial

beliefs about the play of the game by each player. By contrast, our def-

inition applies this idea only to statistical games, in which (i) one has to

specify initial beliefs only about the variable yi (and not the entire profile

of moves); and (ii) there exists a payoff-irrelevant history that suggests a

natural candidate for the initial beliefs.
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5 Appendix: Proofs

Whenever needed, we use partial derivatives to derive inequalities. In doing

so we obviously extend the definition of the function ∆ (L,W, l, w) to all

non-negative real numbers (L,W, l, w) by the function’s algebraic formula,

whenever well-defined.

Proof of Proposition 1:
Let there be given w > 1. We wish to prove that for any L,W > 2,

∆ (L,W, l, 0) < 0 (where the case l = 0, w > 1 is obviously symmetric).

The SSE’s are given by

SSE (∅) = (L+ l)

(
− W

l + L+W − 1

)2
+W

(
1− W − 1

l + L+W − 1

)2
and

SSE ({j}) = L

(
− W

L+W − 1

)2
+W

(
1− W − 1

L+W − 1

)2
(where the sub-database for which xj = 1 yields SSE = 0). Straightforward

calculation yields

∆ (L,W, l, 0) = −Wl

(
L (W − 2) + (W − 1)2

)
l + (L+W − 1) (L (W − 2) +W (W − 1))

(L+W − 1)2 (l + L+W − 1)2

which is clearly negative. ��

Proof of Proposition 2:
We need to show that

(i) If L < W , ∆ (L,W, 1, 0) < 0 and ∆ (L,W, 0, 1) > 0;

(ii) If L > W , ∆ (L,W, 1, 0) > 0 and ∆ (L,W, 0, 1) < 0;

(iii) ∆ (L,L, 1, 0) ,∆ (L,L, 0, 1) > 0.

We first study ∆ (L,W, 1, 0), and show that it is positive for L ≥ W and

negative for L < W . By symmetry, this will also show that ∆ (L,W, 0, 1) is

positive for L ≤ W and negative for L > W , together completing the proof.
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The SSE’s are given by

SSE (∅) = W

(
1− W − 1

L+W

)2
+ (L+ 1)

(
− W

L+W

)2
and

SSE ({j}) = W

(
1− W − 1

L+W − 1

)2
+ L

(
− W

L+W − 1

)2
+ 0.25

(where the sub-database for which xj = 1 yields SSE = 1
4
).

It follows that

∆ (L,W, 1, 0) =
1

4 (L+W − 1)2 (L+W )2

 L4 + L3 (4W − 2) + L2 (2W 2 + 2W + 1)
+L (−4W 3 + 6W 2 + 2W )
−3W 4 + 2W 3 + 5W 2 − 4W


(4)

Let a (L,W ) denote the the expression in the square brackets in (the RHS

of) equation (4), which clearly has the same sign as ∆ (L,W, 1, 0). First, we

observe that

a(L,L) = 4L
(
2L2 + 2L− 1

)
> 0.

This establishes Part (iii), and will also be a useful benchmark for Parts (i)

and (ii). Indeed, to prove that a(L,W ) > 0 (and thus that∆ (L,W, 1, 0) > 0)

for L > W , we will consider the partial derivative of a(L,W ) relative to its

first argument, and show that it is positive for L ≥ W . (Clearly, a(L,W ) is

a polynomial in its two arguments, and it is well-defined and smooth for all

real values of (L,W ).) To see this, observe that

∂a (L,W )

∂L
= 4L3 + 12L2W − 6L2 + 4LW 2 + 4LW + 2L− 4W 3 + 6W 2 + 2W (5)

= 4L3 + (12W − 6)L2 +
(
4W 2 + 4W + 2

)
L+

(
−4W 3 + 6W 2 + 2W

)
Observe that 12W−6 > 0 (asW > 2), and thus the only negative term in

this derivative is −4W 3. However, for L ≥ W it is true that 4LW 2−4W 3 ≥ 0

and thus, for L ≥ W we have ∂a(L,W )
∂L

> 0. Because, for L ≥ W , a (L,W )
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is strictly increasing in L and a(L,L) > 0, we also have a(L,W ) > 0 for

L > W .

We now turn to the case L < W , where equation (5) might be negative

(and, indeed, will become negative if L is held fixed and K → ∞.) Again
the strategy of the proof is to use direct evaluation at a benchmark and

partial derivative arguments beyond, though a few special cases will require

attention. The benchmark we use is the case W = L + 1. Here direct

calculations yield a (L,L+ 1) = −4L (2L2 − 1) < 0.

This time we consider the partial derivative of a (L,W ) wrt to its second

argument, and would like to establish that it is negative. If it were, increasing

K from (L+ 1) further up would only result in lower values of a (L,W ), and

therefore the negativity of a (L,W ) (and of ∆ (L,W, 1, 0)) for L < W would

be established.

Consider, then,

∂a (L,W )

∂W
= 4L3 + 4L2W + 2L2 − 12LW 2 + 12LW + 2L− 12W 3 + 6W 2 + 10W − 4

= 4L3 + (4W + 2)L2 +
(
12W − 12W 2 + 2

)
L+

(
6W 2 − 12W 3 + 10W − 4

)
< 4W 3 + (4W + 2)W 2 + 12W 2 + 2W − 12LW 2 + 6W 2 − 12W 3 + 10W − 4

< 4W 3 + (4W + 2)W 2 + 12W 2 + 2W + 6W 2 − 12W 3 + 10W − 4

= −4
(
−3W − 5W 2 +W 3 + 1

)
(6)

where the first inequality follows from the fact that L < W and the second

from the fact that L,W > 0.

We now observe that expression (6) is negative for W ≥ 6, and thus the

partial derivative ∂a(L,W )
∂W

is indeed negative for all W ≥ 6, L < W . Coupled

with the fact that a (L,L+ 1) < 0, we obtain a (L,W ) < 0 for all W ≥ 6

(and 2 < L < W ).

We now wish to show that a (L,W ) < 0 holds also for lower values of

W . However, as W > L > 2 only a few pairs of values (L,W ) are possible:

(3, 4),(3, 5),(4, 5). Direct calculation shows that a (L,W ) is negative for all
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these pairs. Specifically, a (3, 4) = −204, a (3, 5) = −1, 424, and a (4, 5) =

−496.This concludes the proof of Parts (i) and (ii). ��

It will turn out to be convenient to prove Proposition 4 before Proposition

3:

Proof of Proposition 4
It will be convenient to extend the definition of ∆ to real-valued argu-

ments, and use calculus. We will only resort to (first- and second- order)

partial derivatives with respect to the last two arguments. Note that for

positive integers L,W, l, w, the SSE formulae are

SSE (∅) = (L+ l)
(W + w)2

(L+W + l + w − 1)2
+ (L+ l)2

W + w

(L+W + l + w − 1)2
.

SSE ({j}) = LW
L+W

(L+W − 1)2
+ lw

l + w

(l + w − 1)2

It is therefore natural to define, for positive integers L,W , and any l, w ∈ R,

∆ (L,W, l, w) = LW
L+W

(L+W − 1)2
+ lw

l + w

(l + w − 1)2

− (L+ l)
(W + w)2

(L+W + l + w − 1)2
− (L+ l)2

W + w

(L+W + l + w − 1)2

as long as l + w 6= 1 − (L+W ) and w 6= 1 − l. Clearly, the function ∆

is a rational function in its four arguments, and apart from these points of

singularity, it is well-defined and smooth. Note that we are interested in l, w

that are positive integers, hence l, w ≥ 1. In particular, l + w ≥ 2 while

1 − (L+W ) < −3 and w ≥ 1 while 1 − l ≤ 0, so that none of the two

singular points of ∆ is within or even on the boundary of the range of values

that is of interest to the statement of the proposition. However, these points

will prove useful in analyzing the function.

Next, because our focus is on the behavior of ∆ as we change its fourth

argument, starting from the critical point w = lW
L
, it will simplify notation
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if we shift the fourth variable to center it around that point. Formally, let

ω ∈ R and define a function b : Z2+ × R2 → R by

b (L,W, l, ω) = ∆

(
L,W, l,

lW

L
+ ω

)
.

The statements in the Proposition are about the value of the ∆ (·) function
evaluated at points where the third argument is a positive integer and the

fourth argument is an integer larger or equal than
[
lW
L

]
. It is therefore useful

to notice that for any positive integers L,W, l, and integer z we can write

∆

(
L,W, l,

[
lW

L

]
+ z

)
= ∆

(
L,W, l,

lW

L
+ ε+ z

)
= b (L,W, l, z + ε) (7)

where ε =
[
lW
L

]
− lW

L
. Note that ε ∈ [−0.5, 0] if

[
lW
L

]
=
⌊
lW
L

⌋
and ε ∈ [0, 0.5)

if
[
lW
L

]
=
⌈
lW
L

⌉
.

Since the Proposition assumes w =
[
lW
L

]
≥ 1, it has to be the case that

lW
L
> 0.5 and − lW

L
< −0.5.

We prove the proposition as follows:

(1) We first show that b (L,W, l, ω) is strictly decreasing in ω for ω ≥ 1

(Lemma 1);

(2) Next, we prove that b (L,W, l, ω) has a limit as ω →∞ and that it is

a negative number (Lemma 2);

(3) Direct calculation shows that b (L,W, l, 1.5) > 0, and from this we

conclude that, as a function of ω, b (L,W, l, ω) has a unique root larger than

1.5 (Lemma 3);

(4) We prove that b (L,W, l, ω) > 0 for ω ∈ [−0.5, 1.5] (Lemma 4);

(5) Next, we show that ∂b(L,W,l,ω)
∂l

> 0 for ω ≥ 2 (Lemma 5);

(6) We then show that, for all l′ > l > 1, w̃ > l′W
L
, if ∆ (L,W, l, w̃) ≥ 0

then ∆ (L,W, l′, w̃) ≥ 0 (Lemma 6).

Before we proceed to formally state and prove these lemmas, let us explain

why they prove the result:

Part (i) follows from (4): we need to show that (for all L,W > 2, l, w > 0),

we have ∆ (L,W, l, w) ,∆ (L,W, l, w + 1) > 0. In terms of the function b,
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∆ (L,W, l, w) = b (L,W, l, ε) and ∆ (L,W, l, w + 1) = b (L,W, l, ε+ 1). Thus

we have to show that b (L,W, l, ε) , b (L,W, l, ε+ 1) > 0 where ε =
[
lW
L

]
−

lW
L
∈ [−0.5, 0.5). Clearly, this follows from Lemma 4.

Part (ii) follows from (1) and (3) because b is a smooth function of ω in

the range ω ≥ 1.

Part (iii) follows from (6): If l′ is such that
[
l′W
L

]
≥ w∗ (L,W, l)− 2, the

claim follows from the fact that w∗ (L,W, l′) ≥
[
l′W
L

]
+ 2. Thus we focus on

the case
[
l′W
L

]
< w∗ (L,W, l)− 2.

Using part (i) and the definition of w∗, ∆ (L,W, l, q) ≥ 0 for any integer

q such that 0 ≤ q ≤ w∗ (L,W, l) − 1. Claim (6) implies that for the same

values of q, ∆ (L,W, l′, q) ≥ 0. It follows that the smallest integer w′′ (w′′ >[
l′W
L

]
) for which ∆ (L,W, l′, w′′) becomes negative is greater or equal than

w∗ (L,W, l) and thus w∗ (L,W, l′) ≥ w∗ (L,W, l).

Finally, to see Part (iv), assume that W/L is an integer, and consider

integers l′ > l > 1. Let w =
[
lW
L

]
and w′ =

[
l′W
L

]
, that is, w = lW

L
and

w′ = l′W
L
as these are integers. Then, Lemma 5 implies that, if b (L,W, l, ω) =

∆ (L,W, l, w + ω) > 0 for ω ≥ 2, then b (L,W, l′, ω) = ∆ (L,W, l′, w′ + ω) >

0 (for the same ω). It follows that the smallest integer ω (ω > 1) for

which ∆ (L,W, l′, w′ + ω) becomes negative is bigger than that for which

∆ (L,W, l, w + ω) becomes negative and thusw∗ (L,W, l′)−w′ ≥ w∗ (L,W, l)−
w.

We start by providing the explicit formula for b (L,W, l, ω):

b (L,W, l, ω) =
LW (L+W )

(L+W − 1)2
+
l(lW + Lω)[l(L+W ) + Lω]

[lW + L(l + ω − 1)]2
(8)

−(l + L)(lW + LW + Lω)(lL+ L2 + lW + LW + Lω)

(−L+ lL+ L2 + lW + LW + Lω)2

This is a rational function in ω, with two vertical asymptotes where either

the denominator of the first term or the denominator of the third term in 8
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vanishes. We denote these singular points by ω and ω, respectively:

ω = 1− l (L+W )

L
= 1− l − lW

L
< 0

ω = 1− (l + L) (L+W )

L
< ω

Thus, for ω > ω, b (L,W, l, ω) is a smooth function.

We can now establish:

Lemma 1 b (L,W, l, ω) is strictly decreasing in ω for ω ≥ 1.

Proof:
Differentiate b (L,W, l, ω) with respect to ω:

∂b (L,W, l, ω)

∂ω
=

(2L(l + L)(lW + L(W + ω))(l(L+W ) + L(L+W + ω)))

(L2 + lW + L(−1 + l +W + ω))3

−(L(l + L)(l(L+ 2W ) + L(L+ 2(W + ω))))

(L2 + lW + L(−1 + l +W + ω))2

+
(lL2(−2lW + l2(L+W ) + lL(−1 + ω)− 2Lω))

(lW + L(−1 + l + ω))3

The above expression can be rewritten as

−L
3 [z0(L,W, l) + z1(L,W, l)ω + z2(L,W, l)ω

2 + z3(L,W, l)ω
3 + z4(L,W, l)ω

4]

(lW + L(l + ω − 1))3(L2 + lW + L(l +W + ω − 1))3

(9)

where z0(L,W, l), z1(L,W, l), z2(L,W, l), z3(L,W, l), z4(L,W, l) are defined as:

z0(L,W, l) = −2l4(L−W )(L+W )3 − l2L2(L+W )2(6 + L(2L− 9)− 2W 2)

−2l3L(L+W )2(L(2L− 3)− 2W 2)

+lL3
[
L(2 + 3(L− 2)L) + 4W + 6(L− 2)LW + 3(+L− 2)W 2

]
+L4 [2W − L(L+W − 1)]

z1(L,W, l) = L


L3 [(2(l − 1)4 + 4(l − 1)3L+ (3− 4l + 2l2)L2]

+W


6(l − 1)l(2− l + l2)L2

+6(2l − 1)(1− l + l2)L3

+3(1− 2l + 2l2)L4 + 6lL(l + L)(1 + l2 + lL)W
+2l(l + L)(2l + l2 + L+ lL)W 2
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z2(L,W, l) = 3L2

2l3W 2 + L

 (−2 + 4l − 4l2 + 2l3)L+ L2 [2− 4l + 3l2 + (l − 1)L]
+[(4l(1− l + l2) + 2L+ l(6l − 4)L+ (2l − 1)L2]W

+(3l2 + lL)W 2


z3(L,W, l) = L3

[
L3 + 2l(3l − 2)W + L2(−4 + 6l +W ) + L(6− 8l + 6l2 − 2W + 6lW )

]
z4(L,W, l) = L4(−2 + 2l + L)

First, notice that L3 and the denominator of expression (9) are strictly pos-

itive, hence the sign of (9) is equal to the opposite sign of the polynomial in

ω on its numerator. Second, notice that z1(L,W, l), z2(L,W, l), z3(L,W, l),

and z4(L,W, l) are strictly positive for all admissible values of {L,W, l}. It
follows that the derivative of the polynomial in ω on the numerator of (9)

is strictly positive for positive values of ω. Hence, if we can show that the

polynomial is positive for some positive value of ω, then it is positive for all

larger values of ω as well. Finally, we evaluate the polynomial at ω = 1 and

show that it is positive.

z0(L,W, l) + z1(L,W, l) (1) + z2(L,W, l) (1) + z3(L,W, l) (1) + z4(L,W, l) (1)

= 2l(l + L)(L+W )3[L2 + l2W + lL(2 +W )] > 0

This allows us to conclude that ∂b(L,W,l,ω)
∂ω

< 0 for all ω ≥ 1. ��

Lemma 2 ∃ limω→∞ b (L,W, l, ω) < 0.

Proof:
Observe that

lim
ω→∞

b (L,W, l, ω) =
LW (L+W )

(L+W − 1)2
+ l − l − L

=
−L(L− 1)2 − (L− 2)LW

(L+W − 1)2
< 0.

Which concludes the proof of the lemma. �

Lemma 3 b (L,W, l, ω) has exactly one root in ω ∈ (1.5,∞) .
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Proof:
We know that the singular points of b are negative. This means that for

ω ≥ 0, b (L,W, l, ω) is a smooth function. Further, algebraic calculations16

show that b (L,W, l, 1.5) > 0 for all L,W > 2, l > 1 such that
[
lW
L

]
≥ 1.

b (L,W, l, 1.5) > 0 and we established that b (L,W, l, ω) < 0 for ω large

enough. Hence it has to have a root at some ω > 1.5. Further, it is unique

because b is strictly decreasing in ω over this range. �

Lemma 4 b (L,W, l, ω) > 0 for ω ∈ [−0.5, 1.5].

Proof:
We need to consider two cases.

Case 1: l = 1

In this case, the vertical asymptotes are at w = −W
L
− (W + L) and

ω = −W
L
< −0.5 (the inequality holds because it must be true that

[
lW
L

]
=[

W
L

]
≥ 1) so for ω ≥ −0.5 the function is smooth. Algebraic calculations17

show that for l = 1, for all L,W > 2 such that
[
lW
L

]
≥ 1, ∂b(L,W,l,ω)

∂ω
is strictly

negative for all ω ≥ −0.5. This, together with the fact that b (L,W, l, 1.5) >

0, proves that b (L,W, l, ω) > 0 for ω ∈ [−0.5, 1, 5].

Case 2: l > 1

Algebraic calculations18 show that for l > 1, for all L,W > 2 such that[
lW
L

]
≥ 1, b (L,W, l,−0.5) > 0. To study the sign of b (L,W, l, ω) for ω ∈

[−0.5, 1.5] we observe that it is positive at ω = −0.5 and at ω = 1.5, and that

it is continuous on the interval. Thus, to prove that it is positive throughout

the interval it suffi ces to show that it has no roots in it.

Observe that b (L,W, l, ω) is a rational function in ω with a fourth degree

polynomial (in ω) in its numerator. Every root of b is a root of this polyno-

mial, and thus b can have at most four real roots. We claim that it has at

least one real root in each of the following intervals:

16Available upon request. (Part (a) in the Appendix for referees)
17Available upon request. (Part (c) in the Appendix for referees)
18Available upon request. (Part (b) in the Appendix for referees).
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(a) (ω, ω)

(b) (ω,−0.5)

(c) (1.5,∞).

To see that there is a root in (a), observe that

lim
ω→+ω

b (L,W, l, ω) = lim
ω→−ω

b (L,W, l, ω)

=
LW (L+W )

(L+W − 1)2
− L2l (l − 1)

0
− L (L+ l) (L+ LW − Ll) (L+W + 1)

L2 (L+W )2
= −∞

lim
ω→+ω

b (L,W, l, ω)

=
LW (L+W )

(L+W − 1)2
+
l[−L (L+W + l − 1)] [−L (L+W − 1)]

L2 (L+W )2

−−L
2 [l (L+ 2l − 1) + l (l − 1)]

0+
= +∞

Thus, b, which is continuous over (ω, ω), goes from +∞ to −∞ and has to

cross 0 over the interval.

As for (b), observe, again, that limω→+ω b (L,W, l, ω) = −∞ and that

b (L,W, l, 0.5) > 0.

Finally, (c) has been established in Lemma 3.

We can now consider the interval of interest, [−0.5, 1.5]. We know that b

is positive at the two endpoints. If it were non-positive at some point over

this interval, the numerator of b would have to have two roots in the interval

—either two distinct roots or a multiple one. In either case, we would have a

total of five real roots for a polynomial of degree 4, which is impossible, and

thus we conclude that b is strictly positive throughout [−0.5, 1.5]. �

Lemma 5 b (L,W, l, ω) is strictly increasing in l for ω ≥ 2.

Proof:
The derivative of b (L,W, l, ω) wrt l is:

L3
ζ0 (L,W, ω) + ζ1 (L,W, ω) l + ζ2 (L,W, ω) l2 + ζ3 (L,W, ω) l3

(−L+ lL+ lW + Lω)3(−L+ lL+ L2 + lW + LW + Lω)3
(10)
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where ζ0 (L,W, ω) , ζ1 (L,W, ω) , ζ2 (L,W, ω) , ζ3 (L,W, ω) are defined as:

ζ0 (L,W, ω) = L3(ω−1)


L3ω2 +W (4(ω − 1)2ω +W 2(2ω − 1) + 3W (1− 3ω + 2ω2))

+L2(3(ω − 1)ω2 +W (2ω(1 + ω)− 1))

+L

(
2(ω − 1)2ω(1 + ω) +W 2(ω(4 + ω)− 2)

+3W (1 + ω(−3 + ω + ω2))

)


ζ1(L,W, ω) = L2


W 2(12W (ω − 1)2 +W 2(2ω − 3) + 6(ω − 1)2(2ω − 1))

+L4(ω − 2)ω + 3L2(2(ω − 1)2ω2 + 4W (ω − 1)2(1 + ω) +W 2(ω2 − 3))
+LW (−6 + 6W (ω − 1)2(4 + ω) + 6ω(4− 4ω + ω3) +W 2(−9 + ω(4 + ω)))

+L3(6(ω − 1)2ω +W (−3 + ω(3ω − 4)))


ζ2(L,W, ω) = 3L (L+W )2

(
L
(
L (ω − 2) + 2 (ω − 1)2

)
ω

+W 2 (2ω − 3) +W
(
4 (ω − 1)2 + L (ω2 − 3)

) )
ζ3(L,W, ω) = 2(L+W )3(L(ω − 2)ω +W (2ω − 3))

First, notice that L3 and the denominator of expression (10) are strictly posi-

tive. Second, notice that ζ0 (L,W, ω) , ζ1 (L,W, ω) , ζ2 (L,W, ω) , ζ3 (L,W, ω)

are strictly positive for all admissible values of {L,W} and ω ≥ 2. Since l

is an integer. it follows that the polynomial in l on the numerator of (10) is

strictly positive for ω ≥ 2. This allows us to conclude that ∂b(L,W,l,ω)
∂ω

> 0 for

all ω ≥ 2. �

Lemma 6 For all l′ > l > 1, w̃ > l′W
L
, if∆ (L,W, l, w̃) ≥ 0 then∆ (L,W, l′, w̃) ≥

0.

Proof:
If w̃ =

[
l′W
L

]
or w̃ =

[
l′W
L

]
+ 1, the conclusion ∆ (L,W, l′, w̃) ≥ 0 follows

from Part (i).

Assume, then, that w̃ ≥
[
l′W
L

]
+2 ≥

[
lW
L

]
+2. Recall that w =

[
lW
L

]
with

ε =
[
lW
L

]
− lW

L
and denote w′ =

[
l′W
L

]
, ε′ =

[
l′W
L

]
− l′W

L
. Next, let ω = w̃−w

and ω′ = w̃ − w′. Thus

w̃ = w + ω =
lW

L
+ ε+ ω = w′ + ω′ =

l′W

L
+ ε′ + ω′

Clearly, as l′ > l, we have w′ ≥ w and therefore ε′ + ω′ ≤ ε + ω. Note that

ω, ω′ ≥ 2 and thus ω + ε, ω′ + ε′ ≥ 1.
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We assume that

∆ (L,W, l, w̃) = ∆ (L,W, l, w + ω) = b (L,W, l, ω + ε) ≥ 0

and need to show

∆ (L,W, l′, w̃) = ∆ (L,W, l′, w′ + ω′) = b (L,W, l′, ω′ + ε′) ≥ 0.

Indeed, b (L,W, l, ω + ε) ≥ 0, coupled with Lemma 5, implies that b (L,W, l′, ω + ε) ≥
0. Further, as ω′+ ε′ ≤ ω+ ε, Lemma 1 (with ω+ ε, ω′+ ε′ ≥ 1) implies that

b (L,W, l′, ω′ + ε′) ≥ 0, which completes the proof of the lemma. ��

Proof of Proposition 3
The proof relies on the analysis used to prove Proposition 4. Let us denote

by l̄ the closest integer to L
W
(= wL

W
because we deal with the case w = 1),

that is, l̄ =
[
L
W

]
.

We need to show that, for every 0 < l ≤
⌊
L
W

⌋
+ 1, ∆ (L,W, l, 1) > 0.

Recalling the symmetry of ∆ with respect to values of y, ∆ (L,W, l, 1) =

∆ (W,L, 1, l). Thus, we need to show that ∆ (W,L, 1, l) > 0 for all 0 < l ≤⌊
L
W

⌋
+ 1.

In (7) we had

∆

(
L,W, l,

[
lW

L

]
+ z

)
= ∆

(
L,W, l,

lW

L
+ ε+ z

)
= b (L,W, l, z + ε)

which, replacing L and W, as well as l and w, yields

∆

(
W,L,w,

[
wL

W

]
+ z

)
= ∆

(
W,L,w,

wL

W
+ ε+ z

)
= b (W,L,w, z + ε)

and by setting w = 1, also

∆

(
W,L, 1,

[
L

W

]
+ z

)
= ∆

(
W,L, 1,

L

W
+ ε+ z

)
= b (W,L, 1, z + ε)

For 0 < l ≤
⌊
L
W

⌋
+ 1, denoting z = l − l̄ we have l = l̄ + z =

[
L
W

]
+ z.

We can then write

∆ (W,L, 1, l) = ∆

(
W,L, 1,

[
L

W

]
+ z

)
= ∆

(
W,L, 1,

L

W
+ ε+ z

)
= b (W,L, 1, z + ε)
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where ε =
[
L
W

]
− L

W
∈ [−0.5, 0.5) and z ∈ {1 −

[
L
W

]
, ..., 1} if

[
L
W

]
=
⌊
L
W

⌋
and z ∈ {1−

[
L
W

]
, ..., 0} if

[
L
W

]
=
⌊
L
W

⌋
+ 1.

Denoting the fourth argument of b by ω = z+ε, we observe that, because

z ≥ 1 −
[
L
W

]
, ω ≥ 1 − L

W
. Further, as z ≤ 1 and ε < 0.5, ω < 1.5. Thus, it

suffi ces to show that b (W,L, 1, ω) > 0 for ω ∈
[
− L
W

+ 1, 1.5
]
. However, we

know that b (W,L, 1, ω) is continuous and differentiable for ω > − L
W
, that

∂b(W,L,1,ω)
∂ω

< 0 for all ω ≥ − L
W
, and that b (W,L, 1, 1.5) > 0. Therefore,

b (W,L, 1, ω) > 0 for all ω ≥ − L
W
. This concludes the proof. �
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7 Appendix for Referees

a) Calculation of b (L,W, l, 1.5) > 0.

We evaluate the function b (L,W, l, ω) at ω = 1.5 and find the following

expression:

L ∗ g (L,W, l)

(−1 + L+W )2(L+ 2lL+ 2lW )2(L+ 2lL+ 2L2 + 2lW + 2LW )2

where g (L,W, l) can be expressed as a polynomial in W :

g (L,W, l)

= (32l4 + 64l3L+ 32l2L2)W 5

+16l
[
2L3 + l3(8L− 1) + 2l2L(1 + 8L) + lL2(5 + 8L)

]
W 4

+4lL
[
12l3(4L− 1) + 3lL2(21 + 16L) + L2(4 + 27L) + 8l2(−1 + 3L+ 12L2)

]
W 3

+2L2
[
−3(L− 2)L2 + 8l4(8L− 3) + 16l3(−2 + 3L+ 8L2)+

2l2(−6− 6L+ 69L2 + 32L3) + 2lL(6− L+ 33L2)

]
W 2

+

[
16l4(2L− 1) + 3L(2 + 5L− 4L2) + 32l3(−1 + L+ 2L2)

+4l2(−3− 12L+ 29L2 + 8L3) + 4l(−6 + 15L− 14L2 + 17L3)

]
L3W

−3L4 (L− 1)2 (3 + 2L) + 12l2L4 (L− 1)2 + 12lL4 (L− 1)3

Notice that for W,L > 2 and l > 0 the terms multiplying W 5, W 4, and

W 3 are positive. The terms multiplying W 2 and L3W and the constant are

polynomials in l. For l > 0, all three are increasing in l, as the coeffi cients of

the positive powers of l are positive. Moreover, all three are positive when

evaluated are l = 1, hence for all l > 1 as well. In particular, the coeffi cient

of W 2 evaluated at l = 1 is equal to −68 + 112L + 270L2 + 127L3 > 0. The

coeffi cient of L3W evaluated at l = 1 is equal to−84+82L+139L2+88L3 > 0.

Finally, the constant evaluated at l = 1 is equal to 3L4 (2L− 3) (L− 1)2 > 0.

We have proved that g (L,W, l) > 0. Since L
(−1+L+W )2(L+2lL+2lW )2(L+2lL+2L2+2lW+2LW )2

>

0, this concludes the proof.
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b) Calculation of b (L,W, l,−0.5) > 0 for l > 1.

We evaluate the function b (L,W, l, w) at w = −0.5 and find the following

expression:

−L ∗ h (L,W, l)

(−1 + L+W )2(−3L+ 2lL+ 2lW )2(−3L+ 2lL+ 2L2 + 2lW + 2LW )2

where h (L,W, l) can be expressed as a polynomial in L :

h (L,W, l)

= (20l − 18)L7 +
[
−4l2(8W − 5) + l(−76 + 92W ) + 45− 36W

]
L6

+
[
−36 + 4(23− 10l)l + (81− 4l(90 + l(−75 + 16l)))W − 2(9− 78l + 64l2)W 2

]
L5

+

[
9− 36l + 20l2 + (−54 + 388l − 528l2 + 224l3 − 32l4)W
+(36− 492l + 780l2 − 256l3)W 2 + (116l − 192l2)W 3

]
L4

+

[
−4l(18− 43l + 24l2 − 4l3)− 4l(−74 + 234l − 168l2 + 32l3)W

−4l(52− 185l + 96l2)W 2 − 4l(32l − 8)W 3

]
WL3

−8l2W 2
[
−19 + 56W − 30W 2 + 4W 3 + l2(−6 + 24W ) + l(24− 84W + 32W 2)

]
L2

−16l3W 3
[
6− 3l + (8l − 14)W + 4W 2

]
L− 16l4W 4(2W − 1)

In what follows, we prove that h (L,W, l) < 0 for all l > 0 and L,W > 2. The

constant term is negative. The coeffi cient of L is negative because it is the

product of a negative term and a quadratic expression in W with a positive

coeffi cient on the square which is positive and increasing atW = 2, hence for

any larger W too. Similarly, the coeffi cient of L2 is negative because it is the

product of a negative term and a quadratic expression in l with a positive

coeffi cient on the square which is positive and increasing at l = 2, hence for

any larger l too.

The coeffi cient of L3 is the product of W, which is positive, and a third

degree polynomial in W which can be shown to be negative in the relevant

range. In particular, the polynomial has a negative coeffi cient on the third

and second power. At W = 2, this polynomial is equal to −56l + 236l2 −
288l3 − 240l4 which is negative for all l > 1. Moreover, its derivative at

W = 2 is equal to −152l+ 488l2− 864l3− 128l4 which is also negative for all
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l > 1. Finally, the fact that this derivative is negative W = 2 implies that it

is also negative for all values of W > 2, because the negative coeffi cients on

the third and second powers of W guarantee that the function is concave in

W for positive W .

The coeffi cient of L4 is a third degree polynomial in W which can be

shown to be negative in the relevant range (l > 1, W > 2). The polynomial

has a negative coeffi cient on the third power. Evaluated at W = 2, it takes

value 45−300l+548l2−576l3−64l4 < 0 for all l > 1. Moreover, its derivative

wrt W evaluated at W = 2 is equal to 90− 188l+ 288l2− 800l3− 32l4 which

is also negative for all l > 1. Finally, its second derivative wrt W is equal to

−8 (−9 + 123l − 195l2 + 64l3 + (144l − 87)lW ) which is negative at W = 2

and decreasing in W for all positive values of W .

The coeffi cient of L5 is a quadratic function of W with a negative co-

effi cient on the square, which is negative and decreasing at W = 3, hence

negative for all larger values of W too. The coeffi cient of L6 is a quadratic

function of l with a negative coeffi cient on the square, which is positive for

l = 2 and negative for all larger values of l. The coeffi cient of L7 is positive.

Since the coeffi cient L7 is positive, and we want to prove that the whole

polynomial in L is negative, we prove that the sum of the terms in L7 and

L5 is negative.

First, notice that the condition lW
L
≥ 1

2
implies that L ≤ 2lW, which in

turn implies:

(20l − 18)L7 < 4 (20l − 18)L5l2W 2

which in turn implies that

(20l − 18)L7 +

[
−36 + 4(23− 10l)l

+(81− 4l(90 + l(−75 + 16l)))W − 2(9− 78l + 64l2)W 2

]
L5

< 4 (20l − 18)L5l2W 2 +

[
−36 + 4(23− 10l)l

+(81− 4l(90 + l(−75 + 16l)))W − 2(9− 78l + 64l2)W 2

]
L5

=

[
(80l − 72) l2W 2 − 36 + 4(23− 10l)l

+(81− 4l(90 + l(−75 + 16l)))W − 2(9− 78l + 64l2)W 2

]
L5

=
[(

92l − 40l2 − 36
)

+
(
300l2 − 64l3 − 360l + 81

)
W + (−128l2 + 236l − 90)W 2

]
L5
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The last expression is a quadratic in W which is negative for all W > 2. In

particular, it has a negative coeffi cient on the square, hence it is concave.

Evaluated atW = 2 it is equal to −128l3+48l2+316l−234 < 0 for all l > 1.

Moreover, its derivative evaluated atW = 2 is equal to −64l3−212l2+584l−
279 < 0 for all l > 1.

To conclude the proof that the whole polynomial in L is negative, we

still need to address the fact that the coeffi cient of L6 is positive at l = 2.

In particular, we do so by proving that the sum of the terms in L6 and L4

is negative at l = 2. First, notice that the condition lW
L
≥ 1

2
implies that

L ≤ 2lW, which in turn implies:[
−4l2(8W − 5) + l(−76 + 92W ) + 45− 36W

]
/l=2L

6

< 4
[
−4l2(8W − 5) + l(−76 + 92W ) + 45− 36W

]
/l=2L

4l2W 2

which in turn implies that

=
[
−4l2(8W − 5) + l(−76 + 92W ) + 45− 36W

]
/l=2L

6

+L4
[

9− 36l + 20l2 + (−54 + 388l − 528l2 + 224l3 − 32l4)W
+(36− 492l + 780l2 − 256l3)W 2 + (116l − 192l2)W 3

]
/l=2

< 4
[
−4l2(8W − 5) + l(−76 + 92W ) + 45− 36W

]
/l=2L

4l2W 2

+L4
[

9− 36l + 20l2 + (−54 + 388l − 528l2 + 224l3 − 32l4)W
+(36− 492l + 780l2 − 256l3)W 2 + (116l − 192l2)W 3

]
/l=2

=
(
−216W 3 − 308W 2 − 110W + 17

)
L4 < 0 for all W > 2.

This concludes the proof that b (L,W, l,−0.5) > 0 for l > 1.

c) Calculation of ∂b(L,W,l,w)
∂w

< 0 for all w ≥ −W
L
for the case l = 1

For l = 1, the b (L,W, l, w) function and its derivative with respect to w

are

b (L,W, 1, w) =
LW (L+W )

(L+W − 1)2
+
L+W + Lw

W + Lw

−(1 + L)(W + LW + Lw)(L+ L2 +W + LW + Lw)

(L2 +W + LW + Lw)2
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∂b (L,W, 1, w)

∂w
=

−L3φ (L,W,w)

(W + Lw)2 (L2 +W + LW + Lw)3

where φ (L,W,w) is the following cubic expression in w in which all the

coeffi cients, including the constant, are positive.

φ (L,W,w)

= L5 + 3L3W + 3L4W + 4LW 2 + 8L2W 2 + 4L3W 2 + 2W 3 + 4LW 3 + 2L2W 3

+w
(
3L4 + 8L2W + 10L3W + 2L4W + 4LW 2 + 6L2W 2 + 2L3W 2

)
+w2

(
4L3 + 2L4 + L5 + 2L2W + 3L3W + L4W

)
+ w3L4

The sign of the coeffi cients guarantees that the expression is positive, for all

w ≥ 0. To examine the sign of φ (L,W,w) for w ∈ [−W
L
, 0), notice that:

a) φ
(
L,W,−W

L

)
= L2(L+W )3 > 0

b) φ (L,W, 0) = L5+ 3L3W + 3L4W + 4LW 2+ 8L2W 2+ 4L3W 2+ 2W 3+

4LW 3 + 2L2W 3 > 0

c)

∂φ (L,W,w)

∂w
=

(
3L4 + 8L2W + 10L3W + 2L4W + 4LW 2 + 6L2W 2 + 2L3W 2

)
+2w

(
4L3 + 2L4 + L5 + 2L2W + 3L3W + L4W

)
+ 3L4w2

>
(
3L4 + 8L2W + 10L3W + 2L4W + 4LW 2 + 6L2W 2 + 2L3W 2

)
+2w

(
4L3 + 2L4 + L5 + 2L2W + 3L3W + L4W

)
>

(
3L4 + 8L2W + 10L3W + 2L4W + 4LW 2 + 6L2W 2 + 2L3W 2

)
−2

W

L

(
4L3 + 2L4 + L5 + 2L2W + 3L3W + L4W

)
= 3L3 (L+ 2W ) > 0

where the first inequality follows from the fact that 3L4w2 > 0 and the

second from the fact that w > −W
L
.

Hence we can conclude that φ (L,W,w) is positive and increasing in the

whole interval
(
−W

L
, 0
)
, hence the function b (L,W, 1, w) is decreasing for all

w > −W
L
.
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Abstract

Agents make predictions based on similar past cases, while also learning the

relative importance of various attributes in judging similarity. We ask whether

the resulting “empirical similarity” is unique, and how easy it is to find it.

We show that with many observations and few relevant variables, uniqueness

holds. By contrast, when there are many variables relative to observations,

non-uniqueness is the rule, and finding the best similarity function is computa-

tionally hard. The results are interpreted as providing conditions under which

rational agents who have access to the same observations are likely to con-

verge on the same predictions, and conditions under which they may entertain

different probabilistic beliefs.
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1 Introduction

Where do beliefs come from? How do, and how should economic agents estimate

the likelihood of future events? Decision theory remains mostly silent on this point.

The axiomatic foundations laid by Ramsey (1926a,b), de Finetti (1931,1937), Savage

(1954), and Anscombe-Aumann (1963) are very powerful in arguing that rational

individuals should behave as if they had probabilistic beliefs (to be used for expected

utility maximization), and arguably also that actual economic agents behave this way.

But they shed no light over the question of the selection of prior probabilities. In a

sense, they deal with form but not with content.

The natural answer to the belief formation problem is provided by equilibrium

analysis: whether in games or in markets, rational agents’ beliefs are assumed to

coincide with the modeler’s. However, equilibria need not be unique. And, more

fundamentally, one needs to ask whether agents’behavior will converge to an equi-

librium in the first place, which brings us back to the belief formation question. In

short, it appears that there is a need for theories of belief formation that would be

(i) relatively general and applicable to a variety of economic settings; (ii) suffi ciently

rational to credibly apply to weighty economic decisions; and (iii) intuitive enough to

be thought of as idealized models of the way actual people think.

In the quest for reasonable models of belief formation, two fellow disciplines might

be of help: statistics and psychology. The former has a normative flavor, while

the latter —descriptive. Statistics and, more recently, machine learning attempt to

develop effective ways of prediction based on past data, with no claim to describe the

way people think. By contrast, psychology aims at modeling human reasoning, be it

more or less rational. Recent developments in cognitive science highlight a promising

bridge between these disciplines: a specific class of learning techniques developed in

statistics and machine learning, namely kernel methods and support vector machines,

are closely related to ‘exemplar learning’ models developed in psychology: “...kernel

methods have neural and psychological plausibility, and theoretical results concerning

their behavior are therefore potentially relevant for human category learning.”(Jaekel,

Schoelkopf, and Wichmann, 2009, p. 381). This paper presents a model of belief

formation based both on kernel techniques and on insights from the exemplar learning

literature.

We start by assuming that the probability of a future event is estimated by its
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similarity-weighted relative frequency in the past.1 More explicitly, given past obser-

vations (xi, yi)i≤n (where xi is a vector of real-valued predictors and yi is the indicator

of the event in question), and a new point xp, the probability of the event occurring

next is estimated by

P (yp = 1) =

∑
i≤n s(xi, xp)yi∑
i≤n s(xi, xp)

(1)

where s is a non-negative similarity function defined on pairs of x vectors. When

all past events are deemed equally relevant, probability is estimated by empirical

frequency. But in general past occurrences are weighted by their similarity: more

similar circumstances gain higher weight than less similar ones. This estimation is

referred to as first-order induction.

The second level of learning involves finding a similarity function, to be used in

(1), from the data as well. Specifically, we consider a Leave-One-Out cross-validation

technique: each similarity function is assessed by the sum of squared errors it would

have yielded, were it to be used in sample, to predict each yi based on the other

observations. A function that brings this sum of squared errors to a minimum is

referred to as an “empirical similarity”, and it is used here as an obviously idealized

model of the way people learn which features are more important than others to assess

similarities. Because this process deals with learning how first-order induction should

be performed, it will be dubbed second-order induction.

We first point out that the empirical similarity function need not take into ac-

count all the variables available. For reasons that have to do both with the curse of

dimensionality and with overfitting, one may prefer to use a relatively small set of the

variables to a superset thereof. We provide conditions under which it is worthwhile

to add a variable to the arguments of the similarity function. Next, we observe that

the empirical similarity need not be unique, and that people who have access to the

same database may end up using different similarity functions to obtain the “best”

fit. Further, we show that finding the best similarity function is a computationally

complex (NP-Hard) problem. Thus, even if the empirical similarity is unique, it does

not immediately follow that all agents can find it. Rational agents might therefore

end up using different, suboptimal similarity functions.

There are many modeling choices to be made, in terms of the nature of the vari-

1We follow the convention in psychology and decision theory to label kernel functions as ‘similarity
functions.’
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ables (the predictors and the predicted), as well as of the similarity function. We

study here two extreme cases: in the “binary”model all the variables take only the

values {0, 1}, and so does the similarity function. Further, we consider only similar-
ity functions that are defined by weights in {0, 1}: each variable is either taken into
account or not, and two observations are similar (to degree 1) if and only if they are

equal on all the relevant variables. In the “continuous”model, by contrast, all vari-

ables (predictors and predicted) are continuous, and the similarity function is allowed

to take any non-negative value as well. We focus on functions that are exponential

in weighted Euclidean distances where the weights are allowed to be non-negative

extended real numbers.

In both models we find the same qualitative conclusions: (i) If the number of

predictors is fixed, and the predicted variable is a function of the predictors, then, as

the number of observations grows following an i.i.d. process, the empirical similarity

will learn the functional relationship. The similarity function is likely to be unique,

but even if it is not, different empirical similarity functions would provide the same

predictions (Propositions 2 and 4). By contrast (ii) If the number of predictors is

large relative to the number of observations, it is highly probable that the empirical

similarity will not be unique (Propositions 3 and 5). Further, (iii) If the number of

predictors is not bounded, the problem of finding the empirical similarity is NPC

(Theorems 1 and 2).

To see the implications of these results, let us contrast two prediction problems:

in the first, an agent tries to estimate the probability of his car being stolen. In

the second, the probability of success of a revolution attempt. In the first problem,

there are several relevant variables to take into account, such as the car’s worth, the

neighborhood in which it is parked, and so forth. One can think of the number of

these variables as relatively limited. By contrast, the number of observations of cars

that were or were not stolen is very large. In this type of problems it stands to reason

that empirical similarity be unique. Further, as the number of variables isn’t large,

the complexity result has little bite. Thus, different people are likely to come up with

the same similarity functions, and therefore with the same probabilistic predictions.

By contrast, in the revolution example the number of observations is very limited.

One cannot gather more data at will, neither by experimentation nor by empirical

research. To complicate things further, the number of variables that might be relevant

predictors may be very large. Researchers may come up with novel perspectives on

4



a given history, and suggest new military, economic, and sociological variables that

might help judge which historical cases are similar to which. In this type of examples

our results suggest that the optimal similarity function may not be unique, and that,

even if it is unique, people may fail to find it. That is, to the extent that second-order

induction describe a psychological process people implicitly go through, they may

learn to judge similarity by functions that are not necessarily the best one. It follows

that they may also not find the same function (even if the “best”one is unique). As a

result, it may not be too surprising that experts may disagree on the best explanation

of historical events, and, consequently, on predictions for the future.

The rest of this paper is organized as follows. The next subsection discusses first-

and second-order induction, and the specific formulas we use, in the literatures in

statistics, psychology, and decision theory. Section 2 deals with the questions of

monotonicity, uniqueness, and computational complexity of the empirical similarity

function in the binary model, while Section 3 provides the counterpart analysis for

the continuous model. Section 4 concludes with a general discussion.

1.1 Related Literature

Using similarity-weighted averages is an intuitive idea that appeared in statistics as

“kernel methods” (Akaike, 1954, Rosenblatt, 1956, Parzen, 1962). Further, it has

also been suggested that the “best” kernel function be estimated from the data.

In particular, Nadaraya (1964) and Watson (1964) suggested to find the optimal

bandwidth of the kernel (see also Park and Marron, 1990). Our focus is mostly on

the qualitative question, namely, which variables to include in the function, rather

than on the quantitative one, that is, how close is “close”. The question of optimal

bandwidth is obviously of interest in applied statistical work, but for the purposes of

economic modeling we find the choice of variables to be of greater import. Be that as

it may, we are unaware of results about optimal kernel functions that are along the

lines of our results here.

Cortes and Vapnik (1995) suggested the widely-used method of “support vector

machines” (SVMs) for classification problems. This technique is based on the idea

that if a simple linear classifier might not exist in the original space, there might

still be one in a higher dimensional space. The latter is often taken to be the kernel

functions defined by points in the learning database, resulting in kernel classification
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coupled with optimization of the coeffi cients of the kernel function, and of the func-

tions itself. This technique is also used to estimate probabilities (see Vapnik, 2000)

along lines that are similar to logistic regression. We are unaware of results in this

literature that are similar to ours.

The formula (1) also appeared in the psychological literature, in the Generalized

Context Model (Medin and Schaffer, 1978, and Nosofsky, 1984). In this domain the

task that participants in an experiment are asked to perform is typically a classifi-

cation task (to guess whether yp = 1 or yp = 0), rather than probability assessment

(that is, to provide a number in [0, 1] for the probability that yp = 1). However,

when modeling the frequency with which participants classify a new case as yp = 1

or yp = 0, it appears that these frequencies are given by (1). In particular, the model

finds that classification of a new ‘exemplar’ is based on the similarity between the

latter and a set of training exemplars, with a mental process that resembles our notion

of first order induction. Exemplars are represented as points in a multidimensional

psychological space and the similarity between any two is a decreasing function of

their distance in this space (the Multidimensional Scaling Approach, see Shepard,

1957,1987). Importantly, Nosofsky (1988) finds that people seem to learn the relative

importance of different attributes in the similarity function in a process that resem-

bles what we call second order induction. (See Nosofsky, 2014, for a survey). The

fact that, for classification problems, the same formula appeared in machine learning

and in psychology was noted by Jaekel, Schoelkopf, and Wichmann (2008, 2009).

Yet, formal analysis of optimal similarity functions, whether for classification or for

probability estimation, seems to be lacking.

Similarity-based classification was axiomatized in Gilboa and Schmeidler (2003),

and similarity-weighted probability estimation as in (1) was axiomatized in Billot,

Gilboa, Samet, and Schmeidler (2005) and in Gilboa, Lieberman, and Schmeidler,

[GLS] (2006) (the former for the case of y being a discrete variable with at least 3

values, the latter for the case of two values discussed here). GLS (2006) also suggested

the notion of “empirical similarity”, based on the notion of a maximum likelihood

estimator of the similarity, assuming that the actual Data Generating Process (DGP)

is similarity-based.2 Lieberman (2010, 2012) analyzed the asymptotic properties of

2The learning process presented here has been suggested and analyzed in GLS (2006) as a sta-
tistical technique. However, in this paper our focus is descriptive, and we use the model to describe
human reasoning. In this sense our paper is similar to Bray (1982), who considers a statistical
technique, namely OLS, as a model of economic agents’reasoning.
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such estimators. (See also Lieberman and Phillips, 2014, 2017). The asymptotic

results in this literature assume a given DGP (typically, using a formula such as (1),

with a noise variable, as the “true”statistical model), whereas our results are more

agnostic about the underlying DGP.

In sum, both the formula (1) and the notion of learning the optimal similarity

function to be used within it, have appeared in psychology, statistics and machine

learning, and decision theory. Given the independent derivation of the same idea in

first two disciplines, which are very different in terms of their goals, these notions

of first- and second-order induction hold a promise for modeling beliefs of economic

agents. The statistical pedigree suggests that this mode of belief formation is not

irrational in any obvious and systematic way; the psychological ancestry indicates

that it is not too far from what human beings might conceive of.

2 A Binary Model

2.1 Case-Based Beliefs

The basic problem we deal with is predicting a value of a variable y based on other

variables x1, ..., xm. We assume that there are n observations of the values of the x

variables and the corresponding y values, and, given a new value for the x’s, attempt

to predict the value of y. This problem is, of course, a standard one in statistics and

in machine learning. However, in these fields the goal is basically to find a prediction

method that does well according to some criteria. By contrast, our interest is in mod-

eling how people tend to reason about such problems3. We focus here on prediction

by rather basic case-based formulae.4 These are equivalent to kernel methods, but we

stick to the terms “cases”and “similarity”—rather than “observations”and “kernel”

—in order to emphasize the descriptive interpretation adopted here.

We assume that prediction is made based on a similarity function s : X × X →
3Luckily, the two questions are not divorced from each other. For example, linear regression has

been used as a model of reasoning of economic agents (see Bray, 1982). Similarly, non-parametric
statistics suggested kernel methods (see Akaike, 1954, Rosenblatt, 1956, Parzen, 1962, and Silverman,
1986) which turned out to be equivalent to models of human reasoning. Specifically, a kernel-
weighted average is equivalent to “exemplar learning”in psychology, and various kernel techniques
ended up being identical to similarity-based techniques axiomatized in decision theory. (See Gilboa
and Schmeidler, 2012.)

4As in Gilboa and Schmeidler (2001, 2012).
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R+. Such a function is applied to the observable characteristics of the problem at

hand, xp =
(
x1p, ..., x

m
p

)
, and the corresponding ones for each past observation, xi =

(x1i , ..., x
m
i ), so that s(xi, xp) would measure the degree to which the past case is similar

to the present one. The similarity function should incorporate not only intrinsic

similarity judgments, but also judgments of relevance, probability of recall and so

forth.5

In this section we present a binary model, according to which all the variables —

the predictors, x1, ..., xm, and the predicted, y —as well as the weights of the variables

in the similarity function and the similarity function itself take values in {0, 1}. This
is obviously a highly simplified model that is used to convey some basic points.

More formally, let the set of predictors be indexed by j ∈ M ≡ {1, ...,m} for
m ≥ 0. When no confusion is likely to arise, we will refer to the predictor as a

“variable” and also refer to the index as designating the variable. The predictors

x ≡ (x1, ..., xm) assume values (jointly) in X ≡ {0, 1}m and the predicted variable, y,
—in {0, 1}. The prediction problem is defined by a pair (B, xp) where B = {(xi, yi)}i≤n
(with n ≥ 0) is a database of past observations (or “cases”), xi = (x1i , ..., x

m
i ) ∈ X,

and yi ∈ {0, 1}, and xp ∈ X is a new data point. The goal is to predict the value of

yp ∈ {0, 1} corresponding to xp, or, more generally, to estimate its distribution.
Given a function s : X ×X → {0, 1}, the probability that yp = 1 is estimated by

the similarity weighted average6

ysp =

∑
i≤n s(xi, xp)yi∑
i≤n s(xi, xp)

(2)

if
∑

i≤n s(xi, xp) > 0 and ysp = 0.5 otherwise.

This formula is identical to the kernel-averaging method (where the similarity

s plays the role of the kernel function). Because the similarity function only takes

values in {0, 1}, it divides the database into observations (xi, yi) whose x values are

similar (to degree 1) to xp, and those who are not (that is, similar to degree 0), and

estimates the probability that yp be 1 by the relative empirical frequencies of 1’s in

the sub-database of similar observations.
5Typically, the time at which a case occurred would be part of the variables x, and thus recency

can also be incorporated into the similarity function.
6Gilboa, Lieberman, and Schmeidler (2006) provide axioms on likelihood judgments (conditioned

on databases) that are equivalent to the existence of a function s such that (6) holds for any database
B. Billot, Gilboa, Samet, and Schmeidler (2005) consider the similarity-weighted averaging of
probability vectors with more than two entries.
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Finally, we specify the similarity function as follows: given weights for the vari-

ables, (w1, ..., wm) ∈ X (≡ {0, 1}m), let

sw (xi, xp) =
∏

{j|wj=1}

1{xji=xjp} (3)

(where sw (xi, xp) = 1 for all (xi, xp) if wj = 0 for all j.) Thus, the weights (w1, ..., wm)

determine which variables are taken into consideration, and the similarity of two

vectors is 1 iff they are identical on these variables. Clearly, the relation “having

similarity 1”is an equivalence relation.

2.2 Empirical Similarity

Where does the similarity function come from? The various axiomatic results men-

tioned above state that, under certain conditions on likelihood or probabilistic judg-

ments, such a function exists, but they do not specify which function it is, or which

functions are more reasonable for certain applications than others. The notion of

second-order induction is designed to capture the idea that the choice of a similarity

function is made based on data as well. It is thus suggested that, within a given

class of possible functions, S, one choose a function that fits the data best. Finding
the weights w such that, when fed into sw, fit the data best renders the empirical

similarity problem parametric: while the prediction of the value of y is done in a

non-parametric way (as in kernel estimation), relying on the entire database for each

prediction, the estimation of the similarity function itself is reduced to the estimation

of m parameters.

To what extent does a function “fit the data”? One popular technique to evaluate

the degree to which a prediction technique fits the data is the “leave one out”cross-

validation technique: for each observation i, one may ask what would have been

the prediction for that observation, given all the other observations, and use a loss

function to assess the fit. In our case, for a database B = {(xi, yi)}i≤n and a similarity
function s, we simulate the estimation of the probability that yi = 1, if only the other

observations {(xk, yk)}k 6=i were given, using the function s; the resulting estimate

is compared to the actual value of yi, and the similarity is evaluated by the mean

squared error it would have had.

Explicitly, let there be given a set of similarity functions S. (In our case, S = { sw |w ∈ X }.)
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For s ∈ S, let

ysi =

∑
k 6=i s(xk, xi)yk∑
k 6=i s(xk, xi)

if
∑

j 6=i s(xj, xi) > 0 and ysi = 0.5 otherwise. Define the mean squared error to be7

MSE (s) =

∑n
i=1 (ysi − yi)

2

n
.

It will be useful to define, for a set of variables indexed by J ⊆ M , the indicator

function of J , wJ , that is,

wlJ =

{
1 l ∈ J
0 l /∈ J

.

To simplify notation, we will use MSE (J) for MSE (swJ ).

The similarity functions we consider divide the database into sub-databases, or

“bins”, according to the values of the variables in J . Formally, for J ⊆ M and

z ∈ {0, 1}J , define the J-z bin to be the cases in B that correspond to these values8.

Formally, we will refer to the set of indices of these cases, that is,

b (J, z) =
{
i ≤ n

∣∣xji = zj ∀j ∈ J
}

as “the J-z bin”.

It will also be convenient to define, for J ⊆ M , and z ∈ {0, 1}J , j ∈ M\J , and
zj ∈ {0, 1}, the bin obtained from adding the value zj to z. We will denote it by

(
J · j, z · zj

)
= (J ∪ {j}, z′)

where z′l = zl for l ∈ J and z′j = zj.

Clearly, a set J ⊆ M defines 2|J | such bins (many of which may be empty).

A new point xp corresponds to one such bin. The probabilistic prediction for yp
corresponding to xp is the average frequency of 1’s in it. If a bin is empty, this

prediction is 0.5. Formally, the prediction is given by

y(J,z) =

∑
i∈b(J,z) yi

|b (J, z)| (4)

7Similar results would hold for other loss functions. See subsection 4.1.
8Splitting the database into such bins is clearly an artifact of the binary model. We analyze a

more realistic continuous model in Section 3.
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if |b (J, z)| > 0 and y(J,z) = 0.5 otherwise.

For the sake of calculating the empirical similarity, for each i ≤ n we consider the

bin containing it, b (J, z), and the value ysi is the average frequency of 1’s in the bin

once observation i has been removed from it. If b (J, z) = {i}, that is, the bin contains
but one observation, taking one out leaves us with an empty database, resulting in a

probabilistic prediction —and an error —of 0.5. Formally, the leave-one-out prediction

for i ∈ b (J, z) is

y
(J,z)
i =

∑
k∈b(J,z),k 6=i yk

|b (J, z)| − 1
(5)

if |b (J, z)| > 1 and y(J,z)i = 0.5 otherwise.

Given the predictions y(J,z)i , we can now calculate MSE(J) for all the possible

similarity functions. We will not, however, stop here and select the similarity function

that minimizes the mean squared error as the “empirical similarity”. There is one

more element to consider. In choosing a subset of variables to be included in J , it

seems likely that people would prefer a smaller set of predictors, given a fixed level

of goodness of fit, and that they would even be willing to trade off the two.9 There

are two types of considerations leading to such a preference. The first, statistical

considerations are normative in nature, and have to do with avoiding overfitting. The

second are psychological, and have a descriptive flavor: people may not be able to

recall and process too many variables10. Moreover, one may argue that such preference

for a smaller set of predictors is evolutionarily selected partly due to the statistical

normative considerations. We will capture this preference using the simplest model

that conveys our point. Let us assume that the agent selects a similarity function

that minimizes an adjusted mean squared error. Formally, the agent is assumed to

select a set of indices J that minimizes

AMSE(J, c) ≡MSE(J) + c|J |

for some c ≥ 0. We will typically think of c as small, so that goodness of fit would

9As we will shortly discuss, for case-based prediction the minimization of the MSE may favor
smaller sets of predictors even without the introduction of preference for simplicity.
10As a normative theory, the preference for simple theories is famously attributed to William

of Ockham (though he was not explicitly referring to out-of-sample prediction errors), and runs
throughout the statistical literature of the 20th century (see Akaike, 1974). As a descriptive theory,
the preference for simplicity appears in Wittgenstein’s Tractatus (1922) at the latest.
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outweigh simplicity as theory selection criteria, but as positive, so that complexity

isn’t ignored. Given a cost c, we will refer to a similarity function s = swJ for

J ∈ arg minAMSE(J, c) as an empirical similarity function.

We now turn to analyze the properties of the empirical similarity, to address

the question of whether we should expect rational agents with access to a common

database to agree on their predictions.

2.3 Monotonicity

We start by showing that using a relatively small set of variables for prediction might

be desirable even with c = 0, because the goodness-of-fit (for a given database) can

decrease when adding one more predictor: MSE can be non-monotone with respect

to set inclusion.11 The reason is a version of the problem known as “the curse of

dimensionality”: more variables that are included in the determination of similarity

would make a given database more “sparse”. The following example illustrates.

Example 1 Let n = 4 and m = 1. Consider the following database and the corre-

sponding MSE’s of the subsets of the variables:

i x1i yi

1 0 0

2 0 1

3 1 0

4 1 1

J MSE (J)

∅ 4/9

{1} 1

The specific form of the curse of dimensionality that affects the leave-one-out

criterion is due to the fact that this criterion compares each observation (y) to the

average of the other observations. A bin that contains a > 0 cases with yi = 1 and

b > 0 cases with yi = 0 has an average y of a
a+b
. But when an observation yi = 1 is

taken out, it is compared to the average of the remaining ones, a−1
a+b−1 <

a
a+b
, and vice

versa yi = 0 (which is compared to a
a+b−1 >

a
a+b
). In both cases, the squared error

decreases in the size of the bin because the larger the bin, the smaller the impact of

taking out a single observation on the average of the remaining ones.

11Notice that this cannot happen with other statistical techniques such as linear regression.
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The above suggests that in appropriately-defined “large”databases the curse of

dimensionality would be less severe and adding variables to the set of predictors would

be easier than in smaller databases. To make this comparison meaningful, and control

for other differences between the databases, we can compare a given database with

“replications”thereof, where the counters a and b above are replaced by ta and tb for

some t > 1. Formally, we will use the following definition.

Definition 1 Given two databases B = {(xi, yi)}i≤n and B′ = {(x′k, y′k)}k≤tn (for
t ≥ 1), we say that B′ is a t-replica of B if, for every k ≤ tn, (x′k, y

′
k) = (xi, yi) where

i = k(modn).

Consider a database B′ which is a t-replica of the database in Example 1. It can

readily be verified that

MSE (∅) =

(
2t

4t− 1

)2
<

(
t

2t− 1

)2
= MSE ({1}) .

Indeed, the dramatic difference of theMSE’s in Example 1 ([MSE ({1})−MSE (∅)])

is smaller for larger t’s, and converges to 0 as t → ∞. However, it is still positive.
This suggests that there is something special about Example 1 beyond the size of

the database. Indeed, the variable in question, x1, is completely uninformative: the

distribution of y is precisely the same in each bin (i.e., for x1 = 0 and for x1 = 1), and

thus there is little wonder that splitting the database into these two bins can only

result in larger errors due to the smaller bin sizes, with no added explanatory power

to offset it. Formally, we define informativeness of a variable (for the prediction of y

in a database B) relative to a set of other variables as a binary property:

Definition 2 A variable j ∈ M is informative relative to a subset J ⊆ M\ {j} in
database B = {(xi, yi)}i≤n if there exists z ∈ {0, 1}J such that |b (J, z · 0)| , |b (J, z · 1)| >
0 and

y(J ·j,z·0) 6= y(J ·j,z·1).

In other words, a variable xj is informative for a subset of the variables, J , if, for

at least one assignment of values to these variables, the relative frequency of y = 1 in

the bin defined by these values and xj = 1 and the relative frequency defined by the

same values and xj = 0 are different.
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One reason that a variable j may be uninformative relative to a set of other

variables is that it can be completely determined by them. Formally,

Definition 3 A variable j ∈ M is a function of J ⊆ M\ {j} in database B =

{(xi, yi)}i≤n if there is a function f : {0, 1}J → {0, 1} such that, for all i ≤ n,

xji = f
((
xki
)
k∈J

)
.

If j is a function of J , the bins defined by J and by J∪{j} are identical, and clearly
j cannot be informative relative to J . However, as we saw above, a variable j may fail

to be informative relative to J also if it isn’t a function of J . To determine whether

j is a function of J we need not consult the y values. Informativeness, by contrast, is

conceptually akin to correlation of the variable xj with y given the variables in J .

We can finally state conditions under which more variables are guaranteed to

result in a lower MSE. Intuitively, we want to start by adding a variable that is

informative (relative to those already in use), and to make sure that the database

isn’t split into too small bins. Formally,

Proposition 1 Assume that j is informative relative to J ⊆M\ {j} in the database
B = {(xi, yi)}i≤n. Then there exists a T ≥ 1 such that, for all t ≥ T , for a t-replica of

B,MSE (J ∪ {j}) < MSE (J). Conversely, if j is not informative relative to J , then

for any t-replica of B, MSE (J ∪ {j}) ≥ MSE (J), with a strict inequality unless j

is a function of J .

We note in passing that informativeness of a variable does not satisfy monotonicity

with respect to set inclusion:

Observation 1 Let there be given a database B = {(xi, yi)}i≤n, a variable j ∈ M ,
and two subsets J ⊆ J ′ ⊆ M\ {j}. It is possible that j is informative for J , but not
for J ′ as well as vice versa.

2.4 Uniqueness

We have seen in section 2.3 that monotonicity of theMSE is not generally guaranteed.

Immediate implications are that the best fit is not necessarily achieved by a unique

subset of variables J , and in particular by the full set of all available predictors

(J = M). For concreteness, consider the following database
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Example 2 Let n = 12 and m = 2. Consider the following database and the corre-

sponding MSE’s of the subsets of the variables:

i x1i x2i yi

1 1 0 0

2 1 0 1

3 0 1 0

4 0 1 1

5-8 0 0 0

9-12 1 1 1

J MSE (J)

∅ 0.2975

{1} 0.2

{2} 0.2

{1, 2} 0.3333

Thus, the set of variables that minimize the MSE and the AMSE need not

be unique.12 Observe that the different similarity functions will also differ in their

predictions, both in-sample and certainly also out-of-sample. To see that, let us

begin with the prediction for observations i = 1, 2. In these, x1i = 1 and x2i = 0.

The similarity function sJ that corresponds to J = {1} yields an estimated y value
of ysJi = 0.8 whereas the similarity sJ ′ for J ′ = {2} yields ysJ′i = 0.2. Thus, even

though the two similarity functions obtain the same MSE, and this is the minimal

one over all such functions, their predictions for 4 out of the 12 observations in the

sample are very different. Clearly, two such functions can also disagree over the

predictions out of sample. In fact, they can disagree on out of sample observations

even if they fully agree in sample, for example, if in the sample two variables have the

same informational content. Specifically, if in the sample x1 = x2, for any c > 0 the

optimal similarity function will not include both variables. Assume that it includes

one of them. Then there are at least two similarity functions that minimize theMSE

and that are indistinguishable over all the observations in the sample. Yet, if a new

observations would have x1p 6= x2p, these two functions might well disagree.

This raises the issue of when can we reasonably expect rational agents faced with

the same prediction problem to adopt the same empirical similarity. In this section,

we derive two results that characterize suffi cient conditions for the two possible cases.

Proposition 2 identifies a class of prediction problems for which including all avail-

able predictors in the similarity function does indeed minimize the MSE, hence the

AMSE too as long as the cost c is suffi ciently small. At the other extreme, Proposi-

12In this example we only compute the MSE, and the minimizers are the two singletons. Clearly,
for a small enough c these two subsets are also the minimizers of the AMSE.
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tion 3 identifies a class of prediction problems for which at least two disjoint subsets

of variables minimize MSE and AMSE. The comparison between the conditions

in Propositions 2 and 3 sheds light on features of a prediction problem that make

agreement among rational agents more or less likely to occur.

Let us first consider data generating processes that are conducive to the inclusion

of all variables in the empirical similarity. Assume that the values of the predictors,

(xi) are i.i.d. with a joint distribution g on X, and that yi = f (xi) for a fixed

f : X → {0, 1}.13 Let us refer to this data generating process as (g, f). We introduce

the following definition, then present our result:

Definition 4 A variable j ∈ M is informative for (g, f) if there are values z−j =(
zk
)
k 6=j such that (i) f (z−j · 0) 6= f (z−j · 1); and (ii) g (z−j · 0) , g (z−j · 1) > 0, where

z · q ∈ X is the vector obtained by augmenting z−jwith zj = q for q ∈ {0, 1}.

Proposition 2 Assume a data generating process (g, f) where all j ∈ M are infor-

mative for (g, f). Then there exists c̄ > 0 such that, for all c ∈ (0, c̄),

P

(
arg min

J⊆M
AMSE (J, c) = {M}

)
→n→∞ 1

The proposition thus says that, if there is an underlying relationship so that the

distribution of yi is a function of xi, but xi alone, and this function remains constant

for all observations, then, with a large enough database (i.e. fixing m and allowing n

to grow) the only set of predictors that minimize the AMSE is the set of all predictors

—unless some of them are not informative.

By contrast, let us now consider the other extreme case, where n is fixed and m

is allowed to grow. In this case, under fairly general probabilistic assumptions, we

find the opposite conclusion, namely that non-uniqueness is the rule rather than the

exception. Formally, fix n and (letting m grow) assume that for each new variable j,

and for every i ≤ n,

P
(
xji = 1

∣∣xlk, l < j or (l = j, k < i)
)
∈ (η, 1− η)

13One may consider more general cases in which y is random, and P ( yi = 1 |xi ) = f (xi) for
some f : X → [0, 1]. In this case one can prove results that are similar to Proposition 4 below.
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for a fixed η ∈ (0, 0.5). That is, we consider a rather general joint distribution of

the variables xj =
(
xji
)
i≤n, with the only constraint that the probability of the next

observed value, xji , being 1 or 0, conditional on all past observed values, is uniformly

bounded away from 0, where “past”is read to mean “an observation of a lower-index

variable or an earlier observation of the same variable”. For such a process we can

state:

Proposition 3 For every n ≥ 4, every c ≥ 0, and every η ∈ (0, 0.5), if there are at

least two cases with yi = 1 and at least two with yi = 0, then

P

(
∃J, J ′ ∈ arg minJ⊆M AMSE (J, c) ,

J ∩ J ′ = ∅

)
→m→∞ 1

Proposition 2 can be viewed as dealing with a classical scientific problem, where

the set of relevant variables is limited, and many observations are available, perhaps

even by active experimentation. In this case we would expect that all informative

variables would be used in the optimal similarity function (if the fixed cost per variable

is suffi ciently low). Thus the set of optimal functions will be a singleton, defined by

the setM , and, in particular, different people who study the same database are likely

to converge on the same similarity function and therefore on the same predictions for

any new data point xp. By contrast, Proposition 3 deals with cases that are more

challenging to scientific study: the number of observations is fixed —which suggests

that active experimentation is ruled out —and also considered to be small relative to

the number of predictors that may be deemed relevant. The data generating process

in Proposition 3 can be viewed as a model of a process in which people come up

with additional possible predictors for a given set of cases. For example, presidential

elections and revolutions have a number of relevant cases that is more or less fixed,

but these cases can be viewed from new angles, by introducing new variables that

might be pertinent. The Proposition suggests that, when more and more variables

are considered, we should not be surprised if completely different (that is, disjoint)

sets of variables are considered “best”, and, as a result, different people may entertain

different beliefs about future observations based on the same data.
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2.5 Complexity

Examples in which different sets of variables obtain precisely the same, minimal

AMSE might be knife-edge, hence disagreement might appear to be unlikely to occur

in practice. In this section, we present a second reason why rational agents faced with

the same prediction problem might adopt different similarity functions and disagree

in their predictions. As the number of possible predictors in a database grows, so does

the complexity of finding the optimal set of variables, even if it is unique. Formally,

we define the following problem:

Problem 1 EMPIRICAL-SIMILARITY: Given integers m,n ≥ 1, a database B =

{(xi, yi)}i≤n, and (rational) numbers c, R ≥ 0, is there a set J ⊆M ≡ {1, ...,m} such
that AMSE(J, c) ≤ R?

Thus, EMPIRICAL-SIMILARITY is the yes/no version of the optimization prob-

lem, “Find the empirical similarity for database B and constant c”. We can now

state

Theorem 1 EMPIRICAL-SIMILARITY is NPC.

It follows that, when many possible variables exist, we should not assume that

people can find an (or the) empirical similarity. That is, it isn’t only the case that

there are 2m different subsets of variables, and therefore as many possible similarity

functions to consider. There is no known algorithm that can find the optimal simi-

larity in polynomial time, and it seems safe to conjecture that none would be found

in the near future.14 Clearly, the practical import of this complexity result depends

crucially on the number of variables, m.15 For example, if m = 2 and there are only 4

subsets of variables to consider, it makes sense to assume that people find the “best”

one. Moreover, if n is large, the best one may well be all the informative variables.16

14This result is the equivalent of the main result in Aragones et al. (2005) for regression analysis.
Thus, both in rule-based models and in case-based models of reasoning, it is a hard problem to find
a small set of predictors that explain the data well.
15Indirectly, it also depends on n. If n is bounded, there can be only a bounded number (2n) of

different variable values, and additional ones need not be considered.
16If we restrict EMPIRICAL-SIMILARITY to accept problems with a bounded m, say, m ≤ m0,

then it obviously becomes polynomial (in n, involving coeffi cients of the order of magnitude of 2m).
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3 A Continuous Model

One can extend the model to deal with continuous variables, allowing the predictors

(x1, ..., xm) to assume values (jointly) in a set X ⊆ Rm while the predicted variable,
y, — in a set Y ⊆ R. It is natural to use the same formulae of similarity-weighted
average used for the binary case, i.e.,

ysp =

∑
i≤n s(xi, xp)yi∑
i≤n s(xi, xp)

(6)

this time interpreted as the predicted value of y (rather than the estimation of the

probability that it be 1). This formula was axiomatized in Gilboa, Lieberman, and

Schmeidler (2006).17 In case s(xi, xp) = 0 for all i ≤ n, we set ysp = y0 for an arbitrary

value y0 ∈ Y .18

For many purposes it makes sense to consider more general similarity functions,

that would allow for values in the entire interval [0, 1] and would not divide the

database into neatly separated bins. In particular, Billot, Gilboa, and Schmeidler

(2008) characterize similarity functions of the form

s (x, x′) = e−n(x,x
′)

where n is a norm on Rm. Indeed, this functional form is often used in explaining

psychological data about classification problems.19 Gilboa, Lieberman, and Schmei-

dler (2006) and Gayer, Gilboa, Lieberman (2007) also study the case of a weighted

17If Y is discrete, we may also define the predicted value of yp by

ŷsp ∈ arg max
y

∑
i≤n

s(xi, xp)1{y=yi} (7)

which is equivalent to kernel classification and has been axiomatized in Gilboa and Schmeidler
(2003).
18We choose some value y0 only to make the expression ȳsp well-defined. Its choice will have no

effect on our analysis.
19Shepard (1987) suggests that a similarity function which is exponential in distance (in a “psy-

chological space”) might be a ‘universal law of generalization.’See Nosofsky (2014) for a more recent
survey. Note, however, that the similarity function in that literature is mostly for a classification
task, rather than for probability estimation.
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Euclidean distance, where

sw (x, x′) = exp

(
−

m∑
j=1

wj
(
xj − x′j

)2)
(8)

with wj ≥ 0.20

We will use the extended non-negative reals, R+ ∪ {∞} = [0,∞], allowing for the

value wj =∞. Setting wj to∞ would be understood to imply sw (x, x′) = 0 whenever

xj 6= x′j, but if xj = x′j, the j-th summand in (8) will be taken to be zero. In other

words, we allow for the value wj = ∞ with the convention that ∞ · 0 = 0. This

would make the binary model a special case of the current one. (Setting wj = ∞
in (8) where wj = 1 in (3).) For the computational model, the value ∞ will be

considered an extended rational number, denoted by a special character (say “∞”).
The computation of sw (x, x′) first goes through all j ≤ m, checking if there is one for

which xj 6= x′j and wj =∞. If this is the case, we set sw (x, x′) = 0. Otherwise, the

computation proceeds with (8) where the summation is taken over all j’s such that

wj <∞.
The definition of the empirical similarity extends to this case almost verbatim: the

MSE is defined in the same way, and one can consider similarity functions given by

(8) for some non-negative (wj)j≤m. Rather than thinking of MSE (s) as a function

of a set of predictors, J ⊆ M , denoted MSE (J) as above, one would consider it as

a function of a vector of weights, w = (wj)j≤m, denoted MSE (w). We will similarly

define the adjusted MSE by

AMSE(w, c) ≡MSE(w) + c|J (w) |

where

J (w) =
{
j ≤ m

∣∣wj > 0
}
.

That is, a positive weight on a variable incurs a fixed cost. This cost can be thought of

as the cost of obtaining the data about the variable in question, as well as the cognitive

cost associated with retaining this data in memory and using it in calculations.

20If one further assumes that there is a similarity-based data generating process driven by a
function as the above, one may test hypotheses about the values of the weights wj . See Lieberman
(2010, 2012), and Lieberman and Phillips (2014, 2017). In most of these results the exponential
function is assumed, though some results hold more generally.
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However, when we think of an empirical similarity as a function sw that minimizes

the AMSE, we should bear in mind the following.

Observation 2 There are databases for which

arg min
w∈[0,∞]m

MSE (w) = ∅.

(This Observation is proved in the Appendix.) The reason that the argmin of the

MSE may be empty is that the MSE is well-defined at wj = ∞ but need not be

continuous there. We will therefore be interested in vectors w that obtain the lowest

MSE approximately.

We can define approximately optimal similarity: for ε > 0 let

ε- arg minAMSE =
{
w ∈ [0,∞]m

∣∣∣AMSE (w, c) ≤ inf
w′
AMSE (w′, c) + ε

}
Thus, the ε-arg minAMSE is the set of weight vectors that are ε-optimal. We are

interested in the shape of this set for small ε > 0.

3.1 Almost-Uniqueness

We argue that the main messages of our results in the binary case carry over to

this model as well. Again, the key questions are the relative sizes of n and m, and

the potential causal relationships between observations: when there are n >> m

independent observations that obey a functional rule y = f (x) —which, in particular,

implies that xi contains enough information to predict yi —the optimal weights will be

unique, and different people are likely to converge to the same opinion. By contrast,

whenm >> n, it is likely that different sets of variable will explain the same (relatively

small) set of observations.

Let us first consider the counterpart of (g, f) processes, where the observations

(xi, yi) are i.i.d. For simplicity, assume that each x
j
i and each yi is in the bounded

interval [−K,K] for K > 0. Let g be the joint density of x, with g (z) ≥ η > 0

for all x ∈ X ≡ [−K,K]mand let a continuous f : X → [−K,K] be the underlying
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functional relationship between x and y so that21

yi = f (xi) .

Refer to this data generating process as (g, f).

Proposition 4 Assume a data generating process (g, f) (where f is continuous). Let

there be given ν, ξ > 0. There are an integer N0 and W0 ≥ 0 such that for every

n ≥ N0, the vector w0 defined by w
j
0 = W0 satisfies

P (MSE (w0) < ν) ≥ 1− ξ.

The proposition says that, if there is an underlying relationship so that yi is a

continuous function of xi, and this function remains constant for all observations,

then, when the database is large enough, with very high probability, this relationship

can be uncovered. This is a variation on known results about convergence of kernel

estimation techniques (see Nadaraya, 1964, Watson, 1964) and it is stated and proved

here only for the sake of completeness.22

We take Proposition 4 as suggesting that, under the assumption of the (g, f)

process, different individuals are likely to converge to similar beliefs about the value

of yp for a new case given by xp within the known range. The exact similarity function

that different people may choose may not always be identical. For example, if x1i = x2i

for every observation in the database, one function sw may obtain a near-perfect fit

with w1 >> 0 and w2 = 0 and another, sw
′
, — with w′1 = 0 and w′2 >> 0. If

one individual uses sw to make predictions, and another — sw
′
, they will agree on

the predicted values for all x that are similar to those they have encountered in the

database. In a sense, they may agree on the conclusion but not on the reasoning. But,

as long as they observe cases in which x1 = x2, they will not have major disagreements

about any particular prediction.

However, we also have a counterpart of Proposition 3: given n,m, assume that

for each i ≤ n, yi is drawn, given (yk)k<i, from a continuous distribution on [−K,K]

with a continuous density function hi bounded below by η > 0. Let v be a lower

21Similar conclusion would follow if we allow yi to be distributed around f (xi) with an i.i.d. error
term.
22We are unaware of a statement of a result that directly implies this one, though there are many

results about optimal bandwidth that are similar in spirit.
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bound on the conditional variance of yi (given its predecessors). Next assume that,

for every j ≤ m and i ≤ n, given (yi)i≤n,
(
xli
)
i≤n,l<j, and

(
xji
)
k<i
, xji is drawn from

a continuous distribution on [−K,K] with a continuous conditional density function

gji bounded below by η > 0. Thus, as in Proposition 3, we allow for a rather general

class of data generating processes, where, in particular, the x’s are not constrained to

be independent.23 The message of the following result is that the empirical similarity

is non-unique.

For such a process we can state:

Proposition 5 Let there be given c ∈ (0, v/2). There exists ε̄ > 0 such that for all

ε ∈ (0, ε̄) and for every δ > 0 there exists N such that for every n ≥ N there exists

M (n) such that for every m ≥M (n),

P (ε- arg minAMSE is not connected) ≥ 1− δ.

The fact that the ε-arg minAMSE is not a singleton is hardly surprising, as we

allow the AMSE to be ε-away from its minimal value. However, one could expect

this set to be convex, as would be the case if we were considering the minimization

of a convex function. This convexity would also suggest a simple follow-the-gradient

algorithm to find a global minimum of the AMSE function. But the Proposition

states that this is not the case. For ε = 0 we could expect ε-arg minAMSE to be

a singleton (hence a convex set), but as soon as ε > 0 we will find that there are

ε-minimizers of the AMSE whose convex combinations need not be ε-minimizers.

Clearly, this is possible because our result is asymptotic: given ε we let n, and

then m ≥ M (n) go to infinity. But we find the present order of quantifiers to be

natural: ε indicates a degree of tolerance to suboptimality, and it can be viewed as a

psychological feature of the agent, as can the cost c. The pair (ε, c) can be considered

as determining the agent’s preferences for the accuracy and simplicity trade-off. An

agent with given preferences is confronted with a database, and we ask whether her

“best”explanation of the database be unique as more data accumulate. Proposition

5 suggests that multiplicity of local optima of the similarity function is the rule when

the number of variables is allowed to increase relative to that of the observations.
23The assumption of independence of the yi’s is only used to guarantee that each observation yi

has suffi ciently close other observations, and it can therefore be significantly relaxed.
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3.2 Complexity

Importantly, our complexity result extends to the continuous case. Formally,

Problem 2 CONTINUOUS-EMPIRICAL-SIMILARITY: Given integers m,n ≥ 1,

a database of rational valued observations, B = {(xi, yi)}i≤n, and (rational) numbers
c, R ≥ 0, is there a vector of extended rational non-negative numbers w such that

AMSE(w, c) ≤ R?

And we can state

Theorem 2 CONTINUOUS-EMPIRICAL-SIMILARITY is NPC.

As will be clear from the proof of this result, the key assumption that drives the

combinatorial complexity is not that x, y or even w are binary. Rather, it is that

there is a fixed cost associated with including an additional variable in the similarity

function. That is, that the AMSE is discontinuous at wj = 0.2425

To conclude, it appears that the qualitative conclusion, namely that people may

have the same database of cases yet come up with different “empirical similarity”

functions to explain it, would hold also in a continuous model.

4 Discussion

4.1 Robustness of the Results

There are a number of modeling decisions to be made in order to state formal results

as those above, including the ranges of the variables, of the similarity functions, of the

weights therein, as well as the loss functions used to measure the in-sample fit, and

the cross validation criterion. Our choices were guided by what seemed the simplest

and/or most commonly used definitions, and yet one may wonder how robust are the

results.
24To see that this complexity result does not hinge on specific values of the variables xji and each

yi, one may prove an analogous result for a problem in which positive-length ranges of values are
given for these variables, where the question is whether a certain AMSE can be obtained for some
values in these ranges.
25See also Eilat (2007), who finds that the fixed cost for including a variable is the main driving

force behind the complexity of finding an optimal set of predictors in a regression problem (as in
Aragones et al., 2005).
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Let us first comment on the ranges of the variables: we study here two extreme

cases, one in which all variables are in {0, 1}, and the other in which they are con-
tinuous. The former seems best suited to clarify conceptual issues, but it may be

oversimplified in some ways. (In particular, in our model similarity is a binary rela-

tion which is also transitive.) The latter model is obviously more flexible, but requires

messier statements of the results. As the same conceptual results hold in both, one

may speculate that this will be the case for various intermediate cases (say, continuous

variables with a binary similarity function, or vice versa).

The selection criteria for the optimal similarity function are not crucial for most

of our results. In fact, the results are all based on perfect fits: Propositions 2 and

4 state that, with high probability, a perfect fit will be obtained only by including

all informative variables, thus resulting in a unique set of variables (in the binary

model), or an almost-unique collection of weights (in the continuous one). By contrast,

Propositions 3 and 5, which state that, with very high probability the (ε-)optimal

similarity function will not be unique also rely on perfect fits, only this time a perfect

fit that is obtained by disjoint sets of variables. Finally, the complexity results are

also based on a perfect fit which is equivalent to a perfect set cover. When perfect fit

is involved, most selection criteria agree. In particular, we need a loss function and

a cross-validation technique that yields 0 loss if, and only if, a perfect fit is obtained

in-sample.

The only important assumption for the complexity results (Theorems 1 and 2)

is the discontinuity of the AMSE near zero weights. That is, we assume, in a way

that’s similar to the adjusted R2 in linear regression, that there is a minimal fixed

cost to be paid for the inclusion of a variable (that is, to have a positive weight for

that variable). This discontinuity at 0 adds the combinatorial aspect to the AMSE

minimization problem, and allows the reduction of combinatorial problems as in our

proofs. Our complexity results do not directly generalize to an objective function

that is continuous at zero. Furthermore, it is possible that they do not hold in

this case.26 However, as explained above, we find the discontinuous cost function

rather reasonable: the difference between a weight wj > 0 and wj = 0 involves the

need to collect and recall data about the variable, to use another variable in making

computations, and so forth. It seems that some cost is incurred by the inclusion of a

26Eilat (2007) proves, in the context of linear regression, that Aragones et al. (2005) complexity
result holds if the cost function is discontinuous at zero, but not otherwise.
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variable, and that this cost isn’t entirely negligible if we think of the model as trying

to capture a cognitive process people undergo in trying to make predictions.

4.2 Learnability

Our analysis can be viewed as adding to a large literature on what can and what

cannot be learnt. We consider the problem of predicting yp based on a database

(xi, yi)i≤n and the value of xp. One can distinguish among three types of set-ups:

(i) There exists a basic functional relationship, y = f (x), where one may obtain

observations of y for any x one chooses to experiment with;

(ii) There exists a basic functional relationship, y = f (x), and one may obtain

i.i.d. observations (x, y), but can’t control the observed x’s;

(iii) There is no bounded set of variables x such that yi depends only on xi,

independently of past values.

Set-up (i) is the gold standard of scientific studies. It allows testing hypotheses,

distinguishing among competing theories and so forth. However, many problems in

fields such as education or medicine are closer to set-up (ii). In these problems one

cannot always run controlled experiments, be it due to the cost of the experiments,

their duration, or the ethical problems involved. Still, statistical learning is often

possible. The theory of statistical learning (see Vapnik, 1998) suggests the VC di-

mension of the set of possible functional relationships as a litmus test for the classes

of functions that can be learnt and those that cannot. Finally, there are problems

that are closer to set-up (iii). The rise and fall of economic empires, the ebb and

flow of religious sentiments, social norms and ideologies are all phenomena that affect

economic predictions, yet do not belong to problems of types (i) or (ii). In particular,

there are many situations in which there is causal interaction among different obser-

vations, as in autoregression models. In this case we cannot assume an underlying

relationship y = f (x), unless we allow the set of variables x to include past values of

y, thereby letting m grow with n.

Our results are in line with the general message of statistical learning theory.

Specifically, our positive learning results, namely, Propositions 2 and 4, assume that

there is an underlying functional relationship of the type y = f (x), keep m fixed and

let n grow to infinity. The fact that learning is possible under these circumstances

may not seem like a major surprise. Observe, however, that our results do not deal
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with learning the function f directly and, for that reason, they do not directly follow

from results about classes of functions with a low VC dimension. In particular, in our

model the prediction of y is always done non-parametrically, by weighted averages

of other y values, rather than by some direct function of the x variables. In this

context, our learning results should be interpreted as saying that if, unbeknownst to

the agent, y is a function of x, but the agent adheres to case-based prediction as she

usually does, she is likely to make correct predictions even though she is ignorant of

the nature of the underlying process.

Our negative results (Propositions 3 and 5) may also sound familiar: with few

observations and many variables, learning is not to be expected. However our notion

of a negative result is starker than that used in the bulk of the literature: we are not

dealing with failures of convergence with positive probability, but with convergence to

multiple limits. In particular, we conclude that, with very high probability, there will

be vastly different similarity functions, each of which obtains a perfect fit to the data.

When applied to the generation of beliefs by economic agents, our results discuss the

inevitability of large differences in opinion. Finally, our complexity results (Theorems

1 and 2), which also point at inability of learning, seem to have no obvious counterpart

in the literature. Importantly, these results show that learning might be diffi cult even

in the simple process discussed here (and justified by psychological research).

4.3 Compatibility with Bayesianism

There are several ways in which the learning process we study can relate to the

Bayesian approach. First, one may consider our model as describing the generation

of prior beliefs, along the lines of the “small world”interpretation of the state space

(as in Savage, 1954, section 5.5). In the examples discussed above this “prior”would

be summarized by a single probability number, and there wouldn’t be any opportunity

to perform Bayesian updating. One may develop slightly more elaborate models, in

which each case would involve a few stages (say, demonstrations, reaction by the

regime, siege of parliament...) and use past cases to define a prior on the multi-stage

space, which can be updated after some stages have been observed. Our approach

is compatible with this version of Bayesianism, where the similarity-based relative

frequencies using the empirical similarity is a method of generating a prior belief over

the state space.
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Alternatively, one can adopt a “large world” or “grand state space” approach,

in which a state of the world resolves any uncertainty from the beginning of time.

Savage (1954) suggests to think of a single decision problem in one’s life, as if one

were choosing a single act (strategy) upon one’s birth. Thus, the newborn baby

would need to have a prior over all she may encounter in her lifetime. For many

applications one may need to consider historical cases, and thus the prior should be

the hypothetical one the decision maker would have had, had she been born years

back. The assumption that newborn entertain a prior probability over the entire

paths their lives would take is a bit fanciful. Further, the assumption that they

would have such a prior even before they could make any decisions conflicts with

the presumably-behavioral foundations of subjective probability. Yet, this approach

is compatible with the process we describe: in the language of such a model, ours

can be described as agents having a high prior probability that the data generating

process would follow the empirical similarity function. In the context of a game (such

as a revolution), this would imply that they expect other players’beliefs to follow a

similar process.

There are ways of implementing the Bayesian approach that are in between the

small world and the large world interpretation, and these are unlikely to be compatible

with our model. For example, assume that an agent believes that the successes of

revolutions generates a (conditionally) i.i.d. sequence of Bernoulli random variables,

with an unknown parameter p. As a Bayesian statistician, she has a prior probability

over p, and she observes past realizations in order to infer what p is likely to be. This

Bayesian updating of the prior over p to a posterior has no reason to resemble our

process of learning the similarity function.

In this paper we focus on probabilistic beliefs, or point estimates of the variable y

given the x’s. In case of uniqueness of the similarity function, or at least agreement

among all the empirical similarity functions, one may consider these estimates to be

objective, and proceed to assume that all rational agents would share them. But in

case of disagreement, one may ask whether it is rational for the agents to disagree.

For example, if there are multiple similarity functions that obtain a best fit, is it

rational for an agent to choose one and based her predictions on that function alone?

Wouldn’t it more rational for her, assuming unbounded computational ability, to find

all optimal functions and somehow take them into account in her predictions? These

are valid questions which are beyond the scope of this paper.
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4.4 Agreement

Economic theory tends to assume that, given the same information, rational agents

would entertain the same beliefs: differences in beliefs can only arise from asymmetric

information. In the standard Bayesian model, this assumption is incarnated in the

attribution of the same prior probability to all agents, and it is referred to as the

“Common Prior Assumption”. Differences in beliefs cannot be commonly known, as

proved by Aumann (1976) in the celebrated “agreeing to disagree”result.

The Common Prior Assumption has been the subject of heated debates (see Mor-

ris, 1995, Gul, 1998, as well as Brandenburger and Dekel, 1987 in the context of Au-

mann, 1987). We believe that studying belief formation processes might shed some

light on the reasonability of this assumption. Specifically, when adopting a small

worlds view, positive learning results (such as Propositions 2 and 4) can identify

economic set-ups where beliefs are likely to be in agreement. By contrast, negative

results (such as Propositions 3 and 5) point to problems where agreement is less likely

to be the case.

In Argenziano and Gilboa (2018) we apply this approach to equilibrium selection

in coordination games. We study in detail the extreme case of adding a single variable

to the similarity function in the binary model: assuming that there is agreement about

the other set of relevant variables, J , will a new variable j /∈ J be added to it? This is
about as small as a small world can be, and we interpret our analysis in that paper as

shared by all players in the game. By contrast, when the number of variables grows,

players may play off-equilibrium due to the negative results proved above.

4.5 Higher-Order Induction Processes

Second-order processes raise questions about yet higher order processes of the same

nature, and the possibility of infinite regress. The question then arises, why do we

focus on second-order induction and do not climb up the hierarchy of higher-order

inductive processes? Higher order induction can indeed be defined in the context of

our model. Our notion of second-order induction consists of learning the similarity

function from the database of observation. One may well ask, could this learning

process be improved upon? For example, we have been using a leave-one-out tech-

nique. But the literature suggests also other methods, such as k-fold cross-validation,

in which approximately 1/k of the database is taken out each time, and their y values
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are estimated by the remaining observations. One can consider, for a given data-

base, the choice of an optimal k, or compare these methods to bootstrap methods

(see, for instance, Kohavi, 1995). Similarly, kernel methods can be compared to

nearest-neighbor methods (Fix and Hodges, 1951, 1952). In short, the process we

assume in this paper, of second-order induction, can itself be learnt by what might be

called third-order induction, and an infinite regress can be imagined. Isn’t restricting

attention to second-order induction somewhat arbitrary? Is it a result of bounded

rationality?

A few comments are in order. First, in some types of applications lower orders may

provide good approximations. For example, suppose that it is indeed the case that

y = f (x) as in Propositions 2 and 4. Zero-order induction may refer to the assumption

that there is nothing to be learnt from the past about the future, or, at least, that

the x variables contain no relevant information. This would surely lead to poor

predictions as compared to the learnable process (y = f (x)). First-order induction

would be using a fixed similarity function to predict y based on its past values. This

would provide much better estimates, though also systematic biases (in particular,

near the boundaries of the domain of x). Thus, second-order induction is needed,

which, in particular, leads to higher weights, and “tighter” similarity functions for

large n. This is basically the message of Propositions 2 and 4: similarly to decreasing

the bandwidth of the Nadaraya-Watson estimator when n increases, computing the

empirical similarity leads (with very high probability) to convergence of the estimator

to yp = f (xp). Third-order induction could improve these results, say, by making

the rate of convergence faster. But it is not needed for the conceptual message of

Propositions 2 and 4, and, importantly, of Propositions 3 and 5: for a small m and

increasing n we can expect learning to occur, and agreement to result, whereas neither

is guaranteed whenm is large relative to n. Thus, the marginal contribution of higher

orders of induction, in terms of the conceptual import of our results, seems limited.

Second, our model can also be applied to strategic set-ups, such as equilibrium

selection in coordination games. In these set-ups the data generating process is partly,

or mostly about the reasoning of other agents, and being even one level behind the

others may have a big effect of the accuracy of one’s predictions, as well as on one’s

payoff. However, in such a game any reasoning method can be an equilibrium in

the “meta-game”, in which players select a reasoning method and then use it for

predicting others’behavior. For example, players might adopt zero-order induction,
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assume that the past is completely irrelevant and make random selections at each

period. Thus, zero-order induction can be an equilibrium of the meta-game. Similarly,

first-order induction may be the selected equilibrium (as in Steiner and Stewart, 2008,

Argenziano and Gilboa, 2012). Viewed thus, we suggest that second-order induction

is a natural candidate for a focal point in the reasoning (meta-)game. Assuming that

people do engage in this process in non-strategic set-ups, where it might lead to good

predictions (as suggested by Propositions 2 and 4), we propose that in a strategic

set-up second-order induction may be the equilibrium players coordinate on. Clearly,

this is an empirical claim that needs to be tested. However, stopping at second-order

induction doesn’t not involve any assumption bounded rationality; it is only a specific

theory of focal points in the reasoning game.

Lastly, we point out that higher orders of induction may generate identification

problems: since the agents in our model are assumed to learn parameters (as the

parameters of the similarity function in second-order induction), one should be con-

cerned about higher orders of induction increasing the number of parameters. Surely,

it is possible that third- or even fourth-order induction would be identifiable and

generate better predictions. But an infinite regress is likely to generate a model that

cannot be estimated from the finite database, and the optimal choice of the order

of induction in the model may follow considerations such as the Akaike Information

Criterion (Akaike, 1974).

4.6 Cases and Rules

As mentioned above, one can assume that people use rule-based, rather than case-

based reasoning, and couch the discussion in the language of rules. Rules are naturally

learnt from the data by a process of abduction (or case-to-rule induction), which can

also be viewed as a type of second-order induction.

While the two modes of reasoning can sometimes be used to explain similar phe-

nomena, they are in general quite different. First, sets of rules may be inconsistent,

whereas this is not a concern for databases of cases. Second, association rules such

as “if xi belongs to a set..., then yi is...”do not have a bite where their antecedent is

false. Finally, association rules, which are natural for deterministic predictions, need

to be augmented in order to generate probabilities.

We find case-based reasoning to be simpler for our purposes. Cases never contra-
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dict each other; their similarity-weighted relative frequency always defines a probabil-

ity; and, importantly, they are a minimal generalization of simple relative frequencies

that used to define objective probabilities. However, additional insights can be ob-

tained from more general models that combine case-based and rule-based reasoning,

with second-order induction processes that learn the similarity of cases as well as the

applicability and accuracy of rules.
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5 Appendix A: Proofs

Proof of Proposition 1:
Assume first that j ∈M is informative relative to J ⊆M\ {j} inB = {(xi, yi)}i≤n.

Let z ∈ {0, 1}J be such that |b (J, z · 0)| , |b (J, z · 1)| > 0 and

y(J ·j,z·0) 6= y(J ·j,z·1)

Assume that B′ is a t-replica of B. The main point of the proof is that, for

large enough t, the MSE of a given subset of variables, L, could be approximated

by a corresponding expression in which y(L,z)i (computed for the bin in which i was

omitted) is replaced by y(L,z) (computed for the bin without omissions), and then

to use standard analysis of variance calculation to show that the introduction of an

informative variable can only reduce the sum of squared errors.

Formally, let bt(L, z′) denote the L-z′ bin in B′ (so that |bt (L, z′)| = t |b (L, z′)|).
Recall that

MSE (L) =
1

n

∑
z′∈{0,1}L

∑
i∈bt(L,z′)

(
y
(L,z′)
i − yi

)2
and define

MSE ′ (L) =
1

n

∑
z′∈{0,1}L

∑
i∈bt(L,z′)

(
y(L,z

′) − yi
)2
.

It is straightforward that y(L,z
′)

i − y(L,z′) = O
(
1
t

)
and

MSE (L)−MSE ′ (L) = O

(
1

t

)
. (9)

Let us now consider the given set of variables J and j ∈M\J that is informative
relative to J . For any z′ ∈ {0, 1}J we have

∑
i∈b(J,z′)

(
y(J,z

′) − yi
)2
≥

∑
i∈b(J,z′)

(
y(J ·j,z′·xji) − yi

)2
and for z (for which y(J ·j,z·0) 6= y(J ·j,z·1) is known),

∑
i∈b(J,z)

(
y(J,z) − yi

)2
>
∑

i∈b(J,z)

(
y(J ·j,z·xji) − yi

)2
+ c
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where c > 0 is a constant that does not depend on t. It follows that

MSE ′ (J ∪ {j}) ≤MSE ′ (J)− c′

where c′ = |b(J,z)|
n

c > 0 is independent of t. This, combined with (9), means that

MSE (J ∪ {j}) < MSE (J) holds for large enough t.

Conversely, if j is not informative relative to J , then it remains non-informative

for any t-replica of B. If j is a function of J , then the J bins and the J ∪ {j}-bins
are identical, with the same predictions and the same error terms in each, so that

MSE (J ∪ {j}) = MSE (J). Assume, then, that j is not informative relative to J

(for B and for any replica thereof), but that j isn’t a function of J . Thus, at least

one J-bin of B, and of each replica thereof, B′, is split into two J ∪ {j}-bins, but the
average values of y in any two such sub-bins are identical to each other. It is therefore

still true that MSE ′ (J ∪ {j}) = MSE ′ (J) because the sum of squared errors has

precisely the same error expressions in both sides. However, for every set of variables

L and every L-bin in which there are both yi = 1 and yi = 0, the error terms for

that bin inMSE (L) are higher than those inMSE ′ (L): the leave-one-out technique

approximates yi = 1 by y(L,z
′)

i < y(L,z
′) and yi = 0 by y(L,z

′)
i > y(L,z

′). Further the

difference
∣∣∣y(L,z′)i − y(L,z′)

∣∣∣ decreases monotonically in the bin size. Therefore, if at
least one J-bin is split into two J ∪ {j}-bins, we obtain MSE (J ∪ {j}) > MSE (J).

�

Proof of Observation 1:
Consider a database obtained by t > 1 replications of the following (n = 4t,

m = 3):
i x1i x2i x3i yi

1 0 0 1 1

2 0 1 1 0

3 1 0 0 0

4 1 1 0 1

Clearly, y is a function of (x1, x2). In fact, it is the exclusive-or function, that is

y = 1 iff x1 = x2. Neither 1 nor 2 is informative relative to ∅, but each is informative
relative to the other. (Thus, for J ≡ ∅ ⊆ J ′ ≡ {2}, j = 1 is informative relative to

J ′ but not relative to J .) However, 1 is not informative relative to J ′′ = {2, 3} (while
it is relative to its subset J ′).
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To see that the latter can happen also when the variable in question isn’t a function

of the other ones, consider the following example. Consider n = 15,m = 2:

i x1i x2i yi

1 0 0 0

2 0 0 1

3-6 0 1 0

7-8 0 1 1

9-10 1 0 0

11-12 1 0 1

13-14 1 1 0

15 1 1 1

It can be verified that x1 is informative relative to ∅ but not relative to {2}. �

Proof of Proposition 2:
Assume a data generating process (g, f) for which all j ∈M are informative. For

a given j ∈ M there exists z−j ∈ {0, 1}m−1 such that f (z−j · 0) 6= f (z−j · 1) (hence

[f (z−j · 0)− f (z−j · 1)]
2

= 1) and g (z−j · 0) , g (z−j · 1) > 0. Consider a proper sub-

set of predictors, J ( M , and let j /∈ J . Assume that n is large. Focus on an

observation i whose xi is in the bin defined by z−j · 0, and consider its estimated ȳi.
In the computation of the latter (according to J , which does not include j) there are

observations xk in the bin defined by z−j · 1, and they contribute 1 to the sum of

squared errors. Clearly, the opposite is true as well. Hence, focusing on these bins

alone we find a lower bound of the sum of squared errors
∑n

i=1 (ysi − yi)
2 that is of the

order of magnitude of 2ng (z−j · 0) g (z−j · 1). (We skip the standard approximation

argument as in the proof of Proposition 1.)

For large enough n, we can therefore conclude that with arbitrarily high proba-

bility we have

MSE (J)−MSE (J ∪ {j}) > g
(
z−j · 0

)
g
(
z−j · 1

)
for every J ⊆ M\ {j}. Observe that there are finitely many bins, and therefore, for
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a given δ > 0 one can find N such that for every n ≥ N

P

(
MSE (J)−MSE (J ∪ {j}) > g (z−j · 0) g (z−j · 1)

∀j ∈M,∀J ⊆M\ {j}

)
≥ 1− δ. (10)

We now turn to select a value c̄ > 0 that would be small enough so that the

reduction in the AMSE thanks to omitting a variable j would not be worth the

increase due to the error. For each j, let

dj = max
{
g
(
z−j · 0

)
g
(
z−j · 1

) ∣∣ z−j ∈ {0, 1}m−1 f
(
z−j · 0

)
6= f

(
z−j · 1

) }
and

d ≡ min
j∈M

dj.

Note that dj > 0 for all j (as each j is informative), and hence d > 0. Set c̄ = d/2.

Given δ > 0 letN be such that for every n ≥ N (10) holds. Let c ∈ (0, c̄). We know

thatMSE (M) = 0 andAMSE (M) = mc. By the choice of c̄, arg minJ⊆M AMSE (J, c) =

{M}. Hence for any δ > 0 there exists N such that for every n ≥ N

P

(
arg min

J⊆M
AMSE (J, c) = {M}

)
≥ 1− δ.

�

Proof of Proposition 3:
As there are at least two observations with the value of yi = 0 and at least two

with yi = 1, if there is a variable j such that xji = yi (or x
j
i = 1 − yi) for all i ≤ n,

the set J = {j} obtains MSE (J) = 0 (and AMSE (J) = c). We will show that the

proposition holds for J and J ′ that are (distinct) singletons.

Let the variables be generated according to the process described with 0 < η < 0.5.

Each xj has a probability of equalling y that is at least ηn. The probability it does not

provide a perfect fit is bounded above by (1− ηn) < 1 —which is a common bound

across all possible realizations of previously observed variables. The probability that

none of m such consecutively drawn variables provides a perfect fit is bounded above

by (1− ηn)m → 0 as m → ∞. Similarly if we consider m = 2k variables, and ask

what is the probability that there is at least one among the first k and at least one

among the second k such that each provides a perfect fit (xji = yi for all i) is at least

[1− (1− ηn)m]
2 → 1 as m→∞. �
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Proof of Theorem 1:
Clearly, EMPIRICAL-SIMILARITY is in NP. Given a set of variable indices,

J ⊆M ≡ {1, ...,m}, computing its AMSE takes no more than O (n2m) steps.

The proof is by reduction of the SET-COVER problem to EMPIRICAL-SIMILARITY.

The former, which is known to be NPC (see Garey and Johnson, 1979), is defined as

Problem 3 SET-COVER: Given a set P , r ≥ 1 subsets thereof, T1, ..., Tr ⊆ P , and

an integer k (1 ≤ k ≤ r), are there k of the subsets that cover P? (That is, are there

indices 1 ≤ i1 ≤ i2 ≤ ... ≤ ik ≤ r such that ∪j≤kTij = P?)

Given an instance of SET-COVER, we construct, in polynomial time, an instance

of EMPIRICAL-SIMILARITY such that the former has a set cover iff the latter has

a similarity function that obtains the desired AMSE. Let there be given P , r ≥ 1

subsets thereof, T1, ..., Tr ⊆ P , and an integer k. Assume without loss of generality

that P = {1, ..., p}, that ∪i≤rTi = P , and that zuv ∈ {0, 1} is the incidence matrix of
the subsets, that is, that for u ≤ p and v ≤ r, zuv = 1 iff u ∈ Tv.
Let n = 2 (p+ 1) and m = r. Define the database B = {(xi, yi)}i≤n as follows.

(In the database each observation is repeated twice to avoid bins of size 1.)

For u ≤ p define two observations, i = 2u− 1, 2u by

xji = zuj yi = 1

and add two more observations, i = 2p+ 1, 2p+ 2 defined by

xji = 0 yi = 0.

Next, choose c to be such that 0 < c < 1
mn3

, say, c = (mn3)
−1
/2 and R = kc. This

construction can obviously be done in polynomial time.

We claim that there is a cover of size k of P iff there is a similarity function defined

by a subset J ⊆ M ≡ {1, ...,m} such that AMSE(J, c) ≤ R. Let us begin with the

“only if” direction. Assume, then, that such a cover exists. Let J be the indices

1 ≤ i1 ≤ i2 ≤ ... ≤ ik ≤ r = m of the cover. For every i ≤ 2p, there exists j ∈ J such
that xji = 1 and thus i is not in the same bin as 2p+1, 2p+2. It follows that for every

i′ such that swJ (xi, xi′) = 1 we have yi′ = yi = 1 and thus y
swJ
i = 1 = yi. Similarly,

for i = 2p+ 1 and i′ = 2p+ 2 are similar only to each other and there we also obtain

perfect prediction: y
swJ
i = 0 = yi. To conclude, SSE (J) = MSE (J) = 0. Thus,

37



AMSE(J, c) = MSE (J) + c |J | = ck = R.

Conversely, assume that J ⊆ M ≡ {1, ...,m} is such that AMSE(J, c) ≤ R.

We argue that we have to have SSE (J) = MSE (J) = 0. To see this, assume, to

the contrary, that J does not provide a perfect fit. Thus, there exists i such that

y
swJ
i 6= yi. As yi ∈ {0, 1} and y

swJ
i is a relative frequency in a bin of size no greater

than n, the error
∣∣yswJi − yi

∣∣ must be at least 1
n
. Therefore, SSE (J) ≥ 1

n2
and

MSE (J) ≥ 1
n3
. However, R = ck ≤ cm and as c < 1

mn3
as we have cm < 1

n3
. Hence

MSE (J) ≥ 1
n3
> cm ≥ R, that is, MSE (J) > R and AMSE(J, c) > R follows, a

contradiction.

It follows that, if J obtains a low enough AMSE (AMSE(J, c) ≤ R), it obtains a

perfect fit. This is possible only if within each J-bin the values of yi’s are constant.

In particular, the observations i = 2p+ 1 and i′ = 2p+ 2 (which, being identical are

obviously in the same bin) are not similar to any other. That is, for every i ≤ 2p we

must have swJ (xi, x2p+1) = 0. This, in turn, means that for every such i there is a

j ∈ J such that xji 6= xj2p+1. But x
j
2p+1 = 0 so this means that xji = 1. Hence, for

every u ≤ p there is a j ∈ J such that xj2u = zuj = 1, that is, {Tv}v∈J is a cover of P .
It only remains to note that AMSE(J, c) ≤ R implies that |J | ≤ k. �

Proof of Observation 2:
Assume that m = 1, n = 4 and

i xi yi

1 0 0

2 1 0

3 3 1

4 4 1

In this example observations 1, 2 are closer to each other than each is to any of

observations 3, 4 and vice verse. (That is, |xi − xj| = 1 for i = 1, j = 2 as well as

for i = 3, j = 4, but |xi − xj| ≥ 2 for i ≤ 2 < j.) Moreover the values of y are the

same for the “close”observations and different for “distant”ones. (That is, yi = yj

for i = 1, j = 2 as well as for i = 3, j = 4, but |yi − yj| = 1 for i ≤ 2 < j.) If we

choose a finite w, the estimated value for each i, ȳswi , is a weighted average of the two

distant observations and the single close one. In particular, for every w <∞ we have

MSE (w) > 0.
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Observe that w = w1 =∞ doesn’t provide a perfect fit either: if we set w = w1 =

∞, each observation i is considered to be dissimilar to any other, and its y value is
estimated to be the default value, ȳswi = y0. Regardless of the (arbitrary) choice of

y0, the MSE is bounded below by that obtained for y = 0.5 (which is the average y

in the entire database). Thus, MSE (∞) ≥ 0.25.

Thus, MSE (w) > 0 for all w ∈ [0,∞]. However, as w → ∞ (but w < ∞),
for each i the weight of the observation that is closest to i converges to 1 (and the

weights of the distant ones —to zero), so that ȳswi → yi. Hence, MSE (w)→w→∞ 0.

We thus conclude that infw∈[0,∞]MSE (w) = 0 but that there is no w that minimizes

the MSE. �

Proof of Proposition 4:
We wish to show that arbitrarily low values of the MSE can be obtained with

probability that is arbitrarily close to 1. Let there be given ν > 0 and ξ > 0. We wish

to find N0 and W0 such that for every n ≥ N0, the vector w0 defined by w
j
0 = W0

satisfies

P (MSE (w0) < ν) ≥ 1− ξ.

To this end, we first wish to define “proximity”of the x values that would guarantee

“proximity”of the y values. Suppose that the latter is defined by ν/2. As the function

f is continuous on a compact set, it is uniformly continuous. Hence, there exists θ > 0

such that, for any x, x′ that satisfy ‖x− x′‖ < θ we have [f (x)− f (x′)]2 < ν/2. Let

us divide the set X into (4K
√
m/θ)

m equi-volume cubes, each with an edge of length
θ

2
√
m
. Two points x, x′ that belong to the same cube differ by at most θ

2
√
m
in each

coordinate and thus satisfy ‖x− x′‖ < θ/2. Let us now choose N1 such that, with

probability of at least (1− ξ/2), each such cube contains at least two observations xi
(i ≤ N1). This guarantees that, when observation i is taken out of the sample, there

is another observation i′ (in the same cube), with [yi′ − f (xi)]
2 < ν/2.

Next, we wish to bound the probability mass of each cube (defined by g). The

volume of a cube is
(

θ
2
√
m

)m
and the density function is bounded from below by

η. Thus, the proportion of observations in the cube (out of all the n observations)

converges (as n→∞) to a number that is bounded from below by ζ ≡ η
(

θ
2
√
m

)m
> 0.

Choose N0 ≥ N1 such that, with probability of at least (1− ξ/2), for each n ≥ N0

the proportion of the observations in the cube is at least ζ/2. Note that this is a

positive number which is independent of n.
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Finally, we turn to choose W0. For each i, the proportion of observations xk with

[f (xi)− f (xk)]
2 > ν is bounded above by (1− ζ). Define w0 by w

j
0 = W0. Observe

that, as W0 →∞, ∑
k 6=i,[f(xi)−f(xk)]2>ν s(xi, xk)∑
k 6=i,[f(xi)−f(xk)]2≤ν s(xi, xk)

→ 0

and this convergence is uniform in n (as the definition of ζ is independent of n). Thus

a suffi ciently high W0 can be found so that, for all n ≥ N0, MSE (w0) < ν with

probability (1− ξ) or higher. �

Proof of Proposition 5:
The general idea of the proof is very similar to that of Proposition 3: non-

uniqueness is obtained by showing that two variables can each provide perfect fit

on their own. In the continuous case, however, to obtain perfect fit one needs a bit

more than in the binary case: in the latter, it was suffi cient to assume that there are

at least two observations with yi = 0 and two with yi = 1; in the continuous case we

need to make sure that each yi has a close enough yk. For this reason, we state and

prove the result for a large n; yet, M (n) will be larger still, so that we should think

of this case as m >> n.

We now turn to prove the result formally. It will be convenient to define, for

w ∈ [0,∞]m, supp(w) =
{
l ∈M

∣∣wl > 0
}
.

Let there be given c > 0. Choose ε̄ = c/3. We wish it to be the case that if

MSE (w) ≤ ε with #supp(w) = 1, then w ∈ ε-arg minAMSE, but for no w ∈
ε-arg minAMSE is it the case that #supp(w) > 1. Clearly, the choice ε̄ = c/3

guarantees that for every ε ∈ (0, ε̄), the second part of the claim holds: if a vector

w satisfies MSE (w) ≤ ε, no further reduction in the MSE can justify the cost of

additional variables, which is at least c. Conversely, because c < v/2 (the variance

of y), a single variable j that obtains a near-zero MSE would have a lower AMSE

than the empty set.

Let there now be given ε ∈ (0, ε̄) and every δ > 0. We need to find N and, for

every n ≥ N , M (n), such that for every n ≥ N and m ≥M (n),

P (ε- arg minAMSE is not connected) ≥ 1− δ.
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Let N be large enough so that, with probability (1− δ/2), for all n ≥ N ,

max
i

min
k 6=i

[yi − yj] < ε/2.

(To see that such an n can be found, one may divide the [−K,K] interval of values

to intervals of length ε/2 and choose N to be large enough so that, with the desired

probability, there are at least two observations in each such interval.)

Given such n ≥ N and the realizations of (yi)i≤n, consider the realizations of x
j.

Assume that, for some j, it so happens that
∣∣xji − yi∣∣ < ε/4 for all i ≤ n. In this

case, by setting wj to be suffi ciently high, and wl = 0 for l 6= j, one would obtain

MSE (w) ≤ ε and AMSE (w) ≤ ε + c.27 For each j, however, the probability that

this will be the case is bounded below by some ξ > 0, independent of n and j. Let

M1 (n) be a number such that, for any m ≥M1 (n), the probability that at least one

such j satisfies
∣∣xji − yi∣∣ < ε/4 is (1− δ/4), and letM (n) > M1 (n) be a number such

that, for any m ≥ M (n), the probability that at least one more such j′ > j satisfies∣∣∣xj′i − yi∣∣∣ < ε/4 is (1− δ/8).

Thus, for every n ≥ N , and every m ≥ M (n), with probability 1 − δ there are
two vectors, wj with support {j} and wj′ with support {j′}, each of which obtaining
MSE (w) ≤ ε and thus, both belonging to ε-arg minAMSE. To see that in this

case the ε-arg minAMSE is not connected, it suffi ces to note that no w with support

greater than a singleton, nor a w with an empty support (that is, w ≡ 0) can be in

the ε-arg minAMSE. �

Proof of Theorem 2:
We first verify that the problem is in NP. Given a database and a vector of

extended rational weights wj ∈ [0,∞], the calculation of the AMSE takes O (n2m)

steps as in the proof of Theorem 1. Specifically, the calculation of the similarity

function s (x, x′) is done by first checking whether there exists a j such that wj =∞
and xj 6= x′j (in which case s (x, x′) is set to 0), and, if not —by ignoring the j’s for

which wj =∞.
The proof that it is NPC is basically the same as that of Theorem 1, and we use the

same notation here. That is, we assume a given instance of SET-COVER: P , r ≥ 1

27The fact that xji is close to yi is immaterial, of course, as the variables x
j
i are not used to predict

yi directly, but only to identify the yk that would. If x
j
i is close to some monotone function of yi

the same argument would apply.
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subsets thereof, T1, ..., Tr ⊆ P , and an integer k, with P = {1, ..., p}, ∪i≤rTi = P , and

the incidence matrix zuv ∈ {0, 1}. We let n = 2 (p+ 1) and m = r, and, for u ≤ p,

i = 2u − 1, 2u is given by xji = z′uj,yi = 1 whereas for i = 2p + 1, 2p + 2, xji = 0 and

yi = 0. We again set c = (mn3)
−1
/2 and R = kc. This construction can obviously

be done in polynomial time.

We claim that there exists a vector w with AMSE(w, c) ≤ R iff a cover of size k

exists for the given instance of SET-COVER.28 For the “if”part, assume that such a

cover exists, corresponding to J ⊆M . Setting the weights

wj =

{
∞ j ∈ J
0 j /∈ J

one obtains AMSE(w, c) ≤ R.

Conversely, for the “only if”part, assume that a vector of rational weights w =

(wj)j (w
j ∈ [0,∞]) obtains AMSE(w, c) ≤ R. Let J ⊆ M be the set of indices of

predictors that have a positive wj (∞ included). By the definition of R (as equal to

ck), it has to be the case that |J | ≤ k. We argue that J defines a cover (that is, that

{Tv}v∈J is a cover of P ).
Observe that, if we knew that |J | = k, the inequality

AMSE(w, c) = MSE (w) + c |J | ≤ R = ck

could only hold ifMSE (w) = 0, from which it would follow that w provides a perfect

fit. In particular, for every i ≤ 2p there exists j ∈ J such that xji 6= xj2p+1 that is,

xji = 1, and J defines a cover of P .

However, it is still possible that |J | < k and 0 < MSE (w) ≤ c (k − |J |). Yet, even
in this case, J defines a cover. To see this, assume that this is not the case. Then, as

in the proof of Theorem 1, there exists i ≤ 2p such that for all j, either wj = 0 (j /∈ J)
or xji = 0 = xj2p+1. This means that s (xi, x2p+1) = s (xi, x2p+2) = 1. In particular,

y2p+1 = y2p+2 = 0 take part (with positive weights) in the computation of yswi and we

have yswi < 1 = yi. In the proof of Theorem 1 this suffi ced to bound the error |yswi − yi|
from below by 1

n
, as all observations with positive weights had the same weights. This

28This proof uses values of x and of y that are in {0, 1}. However, if we consider the same problem
in which the input is restricted to be positive-length ranges of the variables, one can prove a similar
result with suffi ciently small ranges and a value of R that is accordingly adjusted.
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is no longer the case here. However, the cases 2p+1, 2p+2 obtain maximal similarity

to i (s (xi, x2p+1) = s (xi, x2p+2) = 1), because xj2p+1 = xj2p+2 = xji (= 0) for all j with

wj > 0. (It is possible that for other observations l ≤ 2p we have s (xi, x2p+1) ∈ (0, 1),

which was ruled out in the binary case. But the weights of these observations are

evidently smaller than that of 2p+ 1, 2p+ 2.) Thus we obtain (again) that the error

|yswi − yi| must be at least 1
n
, from which SSE (w) ≥ 1

n2
and MSE (w) ≥ 1

n3
follow.

This implies AMSE(w, c) > R and concludes the proof. �
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