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1 Introduction

There is a whole range of papers1 offer a variety of theories and models in an attempt

to explain the 2007–2009 financial crisis. This paper highlights and focuses on one key

aspect of that sort: the gap between the objectives of investors on one hand, and the

incentives of investment funds and brokers on the other.

Consider an investor who has some funds already invested through investment

firms. She wants to reallocate her funds among the firms according to their perfor-

mance. While the goal of the investor is to maximize her total expected earnings,

each investment firm tries to maximize the overall amount of funds bestowed in its

hands to manage. The rule by which the investor reallocates her funds determines

the environment in which the investment firms operate: it determines their incentives

and ultimately their modus operandi. This rule is referred to as a reward scheme.

Reward schemes are supposed to guarantee that financial managers will make every

effort necessary to produce the optimal possible investments for their investors.

Even though these goals are rather clear, their effects are relatively vague. When

the outcomes are stochastic and the schemes are based on past performance, the agents2

(in order to serve their own interests) might take unnecessary risks, from the investors’

perspectives. Therefore, the formulation of rewards schemes must guarantee that the

agents will act according to the best interests of the investors.

In the current paper we address this issue through a simple set-up. We assume

that a decision maker (DM) invests her funds through several investment firms. By

the end of the year, she uses the net profits for her personal needs, and reallocates the

funds according to a reward scheme that depends on the firms’ performance.

This general set-up may also accommodate for other scenarios. One example is a

situation where the DM wishes the invest additional funds based on the earnings the

firms produced in the past year (see Section 2). Yet another example that applies to

out model is a scenario where the DM is a manager who wishes to expand divisions in

her corporation based on their annual return, and so on.

The core of the problem we address lies in the discrepancy between the motivations

1See, e.g., Fligstein and Goldstein (2010); Hansen (2009); and Simpson (2011). In addition, Akerlof
and Romer (1993) gives some theoretical insight into the subject of opportunism in finicial institutions.
For a general survey on the wrong incentives that led to the financial crisis of 2007–2009, see Fligstein
and Roehrkasse (2013).

2We sometimes refer to the firms as agents, and to the investor as decision maker.
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of the economic entities involved. While the firms wish to maximize the total expected

funds they manage, the DM wishes to maximize the expected return of her investment.3

Typically, these two motivations do not agree. By and large, the competition between

firms pushes them to take riskier actions. To make things even worse, the DM cannot

fully monitor the precise actions of the firms. She can typically observe only the

quarterly, or annual, earnings reports. As a result, the investment firms may abuse

this situation to increase their own expected payoffs at the expense of the DM’s profit.

Our objective in this paper is twofold: to establish a formal model for the analysis of

this problem and to introduce constructive methods that will incentivize the investment

firms to act in accordance with the goals of the DM.

The share of the funds a specific firm gets to manage depends not only on its

own past performance, but on other firms’ performance as well. The reward scheme

introduced by the DM will actually induce a competition between the firms, or an

investment game, as we call it. A reward scheme is said to be optimal if in every

equilibrium (of the investment game) all firms act according to the best interest of the

DM.

We first prove that for every market, i.e., for every set of possible actions of the

investment firms, the DM can find an optimal reward scheme. This means that by

properly designing the reward scheme, the DM can have the firms act in any equilibrium

so as to maximize the DM’s profits. The proof we provide is constructive and holds

for a general number of firms and actions. More specifically, we present an optimal

reward scheme that is linear in the sum of differences of the firms’ earnings.

When the market changes frequently and the set of actions changes considerably,

the DM might not be able to design, in advance, an optimal scheme. The question

arises whether there is a universal optimal reward scheme that could cater to any set

of possible actions. It turns out that here things are less optimistic. We show that

one cannot devise a reward scheme which remains optimal for every set of actions. In

other words, in order to be able to design an optimal reward scheme, the DM should

either know what investment options are available for the firms (for investment), or at

least the bound of their yields.

This paper differs from the related literature in several respects. In most previous

3We first consider a risk-neutral DM, i.e., an investor who wishes only to maximize her expected
profits. Subsequently, we generalize our results to any expected utility maximizer DM. In other words,
we extend our results to include risk aversion, risk loving, and so on.
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works (see Subsection 1.1 ahead), the DM faces agents of various types and various

abilities. While the DM cannot distinguish between agents of different types, their

types do affect the DM’s utility. For instance, different workers vary in their produc-

tivity rates, thus affecting their employers’ profit. A leading question in the literature

is whether the DM can design a reward scheme that rewards skilled agents, and screens

out unskilled ones.

In our setting, in contrast, all agents are potentially of the same type. They are all

experts, all exposed to the same data and, most importantly, all have the same set of

possible actions.4 This assumption distinguishes our work from most previous financial

studies. In our set-up, using agents of the same type requires almost no assumptions

over the information structure and over the probability space. However, the effects

of private information and different trading abilities, that are the main focus in most

previous studies, remain vague.

Nevertheless, the idea that all the information is available to the agents is consistent

with studies showing that returns are, mostly in the short term and to some extent

also in the long run, predictable.5 For this reason, we assume that investment firms

have value-enhancing trading abilities. From a clear theoretical point of view, this is

not unprecedented, as can be seen in Treynor and Black (1973); Admati and Pfleiderer

(1997); and Elton and Gruber (2004).

We show that the outcome, in a scenario of homogeneous agents, could still be

unfavourable to the DM. Such a scenario is illustrated in the motivating example

(Section 2). In this example, an investor has her funds managed by some investment

firms. In order to induce a profit-maximizing competition between the firms, she

considers reallocating the funds according to a winner-takes-all reward scheme. It

turns out that in the unique equilibrium of the investment game induced, all firms

invest in the portfolio that serves worst the interests of the DM.

In our context, even in the presence of skilled and unskilled fund managers, and even

if the investor succeeds in screening out the unskilled ones, the skilled fund managers

can still fail to deliver significant returns. This may happen due to the fact that their

incentives are ill-matched with the objectives of the investor. In this paper we focus

4In contrast, e.g., to the set-up of Sharpe (1981); Berk and Green (2004); and Dybvig et al. (2010),
among many others.

5See, e.g.,Dai and Singleton (2002); Lewellen (2004); Torous et al. (2004); Cochrane and Piazzesi
(2005); Campbell and Yogo (2006); Ang and Bekaert (2007); and Lettau and Van Nieuwerburgh
(2008).
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on the issue of ensuring an optimal outcome for the DM, independently of the agents’

skill level. In a broad sense, our main goal resembles the optimal auction design of

Myerson (1981), whose goal is to provide an optimal mechanism that serves best the

goals of the seller (and in our case, maximizes the DM’s revenue).

Though we mainly use the terms ‘investor’ and ‘investment firms’, our model is not

limited to this environment alone. The model we propose applies to many environ-

ments, and is especially relevant to the relations between shareholders and managers

of financial institutions. These relations were, and still are, a central issue in the eco-

nomic world. A key aspect in these relations is the disparity between the managers’

self-interests and those of the company, and thus of the shareholders. A clear evidence

for this tension could be found in the words of the 13th Federal Reserve chairman, Alan

Greenspan: “I made a mistake in presuming that the self-interests of organizations,

specifically banks and others, were such as that they were best capable of protecting

their own shareholders and their equity in the firms”.6

1.1 Related literature

Taking a broad perspective of the subject, our work lies between the economic lit-

erature and the financial one. On one hand, we are using basic game theory and

mechanism design approach to tackle the problem of an optimal incentive scheme in

a general principle-agent problem. On the other hand, we apply our results mainly

to the problem of delegated portfolio management in financial markets. Both fields

are well-studied, and therefore we will not be able to relate specifically to all previous

works (See Stracca (2006) for a comprehensive survey of the field).

Numerous studies were conducted on the importance of performance-based payoffs

and reputation in non-deterministic markets. These studies were conducted for a good

reason: the need to sustain a high-level of reputation is the one objective nearly all

agents have in common in almost any market, and specifically so in non-deterministic,

performance-based markets.

This need is sometimes translated to a well-known phenomenon called “herding”,

where agents tend to mimic other agents, though they can perform better indepen-

dently. Mimicking other competitors enables the agents to level their returns relative

to the market, and therefore preserve their reputation. One can even track back this

6New York Times, “Greenspan ‘shocked’ that free markets are flawed”, October 23, 2008.
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concept to the words of Keynes (1936): “Worldly wisdom teaches that it is better for

reputation to fail conventionally than to succeed unconventionally.” (Book 4, Chapter

12, page 158).

This phenomenon is a key element in our work, and is best exemplified by the

motivating example in Section 2. In our set-up, the agents can always choose an optimal

portfolio for the investor. Yet they chose to balance their gains and losses relative to

the other agents by investing (like their competitors) in a sub-optimal manner.

In this context, a reward scheme is a sophisticated ranking mechanism by which

firms are ranked according to their past performance. Nonetheless, an important dis-

tinction should be made. Our result show that the reputation should not be limited

to an ordinal ranking. In the optimal reward scheme we propose, the cardinality is

crucial. Specifically, our optimal reward scheme states that every firm starts out with

the same basic share. Any deviation from this basic share is proportional to the firm’s

excess return relative to the market’s average.

One of the first papers to deal with the problem of herding is Scharfstein and

Stein (1990). It shows that under certain circumstances agents simply mimic the

behaviour of others, ignoring substantive information they posses. Specifically, when

the market assesses the capabilities of an agent according to his performance, as well

as his conventionality, agents may mimic each other, thus leading to a sub-optimal

outcome.

Dasgupta and Prat (2006) continues this line of work. It studies the effect of fund-

managers’ career concerns on their performance. Given a specific model, Dasgupta and

Prat show that without career concerns, only fund managers with special abilities will

trade. However, they also prove that career concerns may lead to an equilibrium where

unskilled fund managers have to trade in order to stand out, which may involve taking

unnecessary risks. This work is generalized to a dynamic model in Dasgupta and Prat

(2008). However, the latter focuses on the effect of career concerns on market prices

and trading volume. In both cases the investors are risk-neutral return maximizers.

In general, the manipulability abilities of unskilled agents were proven to exist in

more than a few papers, such as Lehrer (2001); Sandroni et al. (2003); Sandroni (2003);

Shmaya (2008); and Olszewski and Sandroni (2008).

Foster and Young (2010) proves that it is almost impossible to generate a reward

scheme in which skilled agents are rewarded while unskilled ones are eliminated from

the market. This result is based on the assumption that the agents’ strategies and
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tactics are not observable. Recently, He et al. (2015) showed that this result could be

inverted when a liquidation boundary is set along with a requirement from the agents

to deposit their own money to offset potential losses.

In the financial literature, Sharpe (1981) is one of the first studies that deals with

the issue of using multiple asset managers, and the need to provide good incentives

(or otherwise coordinate between different managers). This work was later followed

by Barry and Starks (1984) and more recently by Van Binsbergen et al. (2008). In

general, these papers focus on the impact of decentralized investment management

when using multiple investment firms. These papers require much more structure over

the available assets in the entire market, and for each investment firm, separately.

Our non-existence theorem regarding a universal optimal reward scheme also has

some parallels in the literature. Holmstrom and Milgrom (1991) studies the principal-

agent problem in a set-up completely different from ours, yet it reaches a similar

conclusion according to which, sometimes the only optimal reward scheme is constant.

It proves that in order to increase their payoff, agents would divert their effort to where

it is easier to measure their performance, and derives implications with respect to job

design. For example, teachers that receive bonuses according to their students’ test

scores, might neglect other important aspects.

Assuming that some actions are known to the risk-neutral investor, Carroll (2015)

examines contracts where the investor evaluates the performance of the agent through

a worst-case criterion consistent with her own knowledge. Under these conditions, it

shows that linear contracts are optimal. Nevertheless, one should not confuse this

linearity and our proposed linear reward scheme. In Carroll (2015) the conclusion is

that a fixed share of the return is optimal, whereas we suggest a contract where the

linearity is taken with comparison to other agents.

Although we mainly consider a market with competing firms, the problem we dis-

cuss relates to studies where economic incentives, in accordance with social norms,

affect the production within firms. Huck et al. (2012) uses a simple model of team

production to show that contract designing can increase or decrease the total effort

exerted by workers. They study team-pay contracts- i.e., contracts that depend on

the total effort of the workers, when employees are either selfish, or team spirited-

and relative-performance contracts that depend on individual efforts. In their setup,

they show that a competition between workers can decrease the overall production of

the firm, while team incentives can increase the production of each worker. They also
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prove that higher bonuses can reduce efforts by reducing the social pressure of other

workers on the individual worker.7 The model of Huck et al. (2012) and similar ones

relate to the dynamic model that we present later, in Section 5.

1.2 Outline of the paper

The paper is organized as follows. Section 2 presents a simple 2-firm reward-scheme

problem that illustrates the drawbacks of results-based incentives in competitive non-

deterministic markets. In Section 3 we present the model along with the main assump-

tions. Section 4 includes the main results, divided into three parts: in Subsection 4.1

we show how to formulate an optimal reward scheme for any specific market and a

risk-neutral DM. These results are extended in Subsection 4.2 to an expected-utility

maximizer DM. In Subsection 4.3 we prove that, unless independent of the outcomes,

every reward scheme might fail as the market evolves. Concluding remarks and addi-

tional comments are presented in Section 5.

2 A motivating example: a 2-firm reward-scheme

problem

An investor wishes to invest some funds through one of two investment firms: Firm

1 and Firm 2. The DM has already some funds invested through these firms and she

wishes to allocate additional funds according to some predetermined rule that depends

on the firms’ yearly earnings.

The goal of the DM is to maximize the expected earnings of current and future

investments. However, as she is not aware of the possible bonds in the market, she

chooses to allocate the entire available amount to the firm which presents the highest

earnings by the end of the year (i.e., a winner-takes-all reward scheme). In case both

firms present the same earnings, the funds are equally divided between the two firms.

Suppose that the firms can invest either in Bond X1, which yields 5% per year with

probability (w.p.) 1, or in Bond X2, which yields 5.1% per year w.p. 0.6 and 0% per

year w.p. 0.4%. The goal of the firms is to maximize their expected earnings and to

7This line of investigation could be traced back to the work of Kandel and Lazear (1992), on how
profit sharing and peer pressure affect the actions of workers in a company. In addition, one should
acknowledge the contributions of Holmstrom and Milgrom (1990); Bacharach (1999); and Fischer and
Huddart (2008), to this field.
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maximize the overall amount of funds they manage, according to the utility functions

given below.

In this example we prove that, although investing in Bond X2 is substantially

worse than investing in Bond X1 (in terms of both expected return and risk), the

unique equilibrium in the induced game is when both firms invest in X2.

Formally, let A � tX1, X2u be the set of (pure) actions available to the firms. The

distributions of X1 and X2 (when considered as random variables) is the following:

X1 � 1.05 per year w.p. 1, X2 �

#
1.051, per year w.p. 3

5
,

1.0, per year w.p. 2
5
.

These distributions are common knowledge between the firms. The firms can also mix

between X1 and X2. That is, Firm i may decide to invest, say, a portion αi P r0, 1s

of the money it manages in X1 and 1 � αi in X2. To such a strategy we refer as a

diversified strategy.

The utility functions of the investment firms depend on a parameter λ P r0, 1s. Let

σi � αiX1 � p1� αiqX2 be the strategy of Firm i. The utility of Firm 1, U1 is defined

as follows:8

U1pσ1, σ2q � λEpσ1q � p1 � λqE

�
1tσ1¡σ2u �

1tσ1�σ2u
2



�

� λEpα1X1 � p1 � α1qX2q � (1)

� p1 � λq

�
Pr ppα1 � α2qrX1 �X2s ¡ 0q �

Pr ppα1 � α2qrX1 �X2s � 0q

2



.

In words, the utility function of Firm 1 is a weighted average (λ vs. 1 � λ) of its

earnings (e.g., Epα1X1 � p1 � α1qX2q) and the probability that the additional funds

are allocated to Firm 1. Firms 2’s utility function is defined in a similar fashion.

The following lemma shows that while the firms maximize their profits, the result

is unfavorable to the DM.

Lemma 1. For every 0 ¤ λ   1
1.194

� 0.83, the unique equilibrium is when both firms

choose to invest only in Bond X2.

While the expected earnings per year of Bond X2 is 3.006%, that of Bond X1 is 5%.

It turns out that the reward scheme (i.e., the winner-takes-all mechanism) is adversarial

8In what follows E stands for the expectation.
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to the interests of the DM: the unique equilibrium is pX2, X2q, which from the DM’s

perspective is the worst possible result. Moreover, even from the firms’ perspective

the equilibrium pX2, X2q is Pareto-dominated by any other profile pσ1, σ2q, such that

σ1 � σ2.

Proof. Fix λ P
�
0, 1

1.194

�
. Assume that Firm 1 employs σ1 � α1X1 � p1 � α1qX2

and Firm 2 employs σ2 � α2X1 � p1 � α2qX2, where 0 ¤ α1, α2 ¤ 1. The first term

λEpσ1q of Firm 1’s utility equals λp1.0306 � 0.0194α1q, which is linearly increasing in

α1 when λ ¡ 0. The second term equals

p1 � λq

�
Prpσ1 ¡ σ2q �

1

2
Prpσ1 � σ2q



� p1 � λq �

$'&
'%

3{5, if α1   α2,

1{2, if α1 � α2,

2{5, if α1 ¡ α2.

When λ � 0, the strategy σ1 � X2 (i.e., α1 � 0) is a dominant strategy and the result

holds. We may thus assume that λ P
�
0, 1

1.194

�
. By the linearity in αi, a profile of

strategies in which αi   α�i cannot be an equilibrium, since Firm i has a profitable

deviation to αi�α�i
2

. This deviation increases the first term of Firm i’s utility without

affecting the second term.

In addition, if α1 � α2 ¡ 0, then any firm can make an infinitesimal deviation

to αi � ε P p0, αiq and gain 3p1�λq
5

instead of 1�λ
2

with an infinitesimal loss in λEpσiq.

Therefore, we only need to consider the profile where α1 � α2 � 0, that is, pX2, X2q.

A direct computation shows that no profitable deviation exists and the result holds.

We point out that the linearity of λEpσiq in αi implies that we only need to verify that

deviating to X1 is not profitable.

It is important to note that the utility functions in this example are not linear.

If we would let the firms invest their entire allocation either in X1 or in X2, without

allowing diversified investments, we would get a game where each firm has only two

possible actions at its disposal. In such case the payoff matrix would be the following:

X1 X2

X1 0.5 � 0.55λ, 0.5 � 0.55λ 0.4 � 0.65λ , 0.6 � 0.4306λ
X2 0.6 � 0.4306λ, 0.4 � 0.65λ 0.5 � 0.5306λ, 0.5 � 0.5306λ

Table 1: The two pure-action game.
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Table 1 presents a 2-player game with the relevant expected values. It is easy to

see that X2 is dominating X1 for every λ   1
1.194

. Note, however, that this is not

sufficient for showing that X2 is a dominant strategy. The reason is that the utility

function of Firm 1 (see Eq. (1)), as well as that of Firm 2, are not linear. That is,

U1pα1X1 � p1� α1qX2, σ2q is typically not equal to α1U1pX1, σ2q � p1� α1qU1pX2, σ2q.

This implies that although X2 is dominant over X1, the action X2 is not necessarily

dominant over all other mixtures between the two. The lack of linearity (let alone the

lack of continuity) might also impede the existence of an equilibrium . In our example,

one can verify that an equilibrium does not exist9 when 1
1.194

  λ   1.

This example illustrates the problem in case there are two firms and two pure

actions, and a specific winner-takes-all reward scheme. The model presented in the

following section concerns a more general case. In order to maintain simplicity we

assume that firms care only about the volume of their allocations (related to the

second summand of the RHS of Eq. (1)) and not about the actual performance (the

LHS of Eq. (1)) of the fund they manage. That is, λ � 0.

3 The model

There are k investment firms in the market. Let A � tX1, . . . , Xnu be a set of random

variables with a finite expectation. This is the set of possible investment options

available to every firm. The yield of the i-th investment10 is represented by the random

variable Xi. The elements composing A will be referred to later as assets or pure

strategy.

A diversified strategy σi of player i is a mixture of random variables inA. Formally,11

σi �
°n
j�1 σ

j
iXj, where σji ¥ 0 and

°n
j�1 σ

j
i � 1. The set of diversified strategies is

denoted by Q. For instance, a firm taking a pure action Xj invests all its managed

funds in the j-th asset, where as in case it chooses to use the diversified strategy

9A simple computation shows that pX2, X2q is no longer an equilibrium, because a deviation to X1

is profitable. All other profiles are not equilibria by the same reasoning given in the proof of Lemma
1.

10Any investment in a financial asset, such as a bond, a stock, or an option, as well as any other
sort of investment, such as in real estate or in a commodity.

11We sometimes denote a diversified strategy σi as a distribution pσ1
i , . . . , σ

n
i q over the set of pure

actions A. Nevertheless, the formal definition states that σi is the new random variable
°n

j�1 σ
j
iXj ,

which is a convex combination of pure strategies given the weights pσ1
i , . . . , σ

n
i q.
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σi �
°n
j�1 σ

j
iXj, it invests a proportion σji of its managed funds in the j-th asset.12

Initially, the investor, or the decision maker (DM), has some funds invested through

the k firms. For simplicity and without loss of generality, we assume that the funds

are equally divided between the firms and each firm gets a normalized initial amount

of 1.

The DM is willing to reallocate her funds among the investment firms based on

their performance. For this purpose we introduce the notion of a reward scheme. Let

ri be the measurement of Firm i’s performance. That is, ri denotes the realization

of player i’s diversified strategy σi. Note that the DM is not familiar with the assets

included in A. She does not know their distributions, nor their expected payoffs, and

can only observe the performances pr1, . . . , rkq of the firms at the end of a single time

period.

Definition 1. A reward scheme is a function f : Rk Ñ r0, 1sk such that for every

r P Rk,

ķ

i�1

fiprq � 1. (2)

In words, given a vector pr1, . . . , rkq of the firms’ performances, a proportion fipr1, . . . , rkq

of the available funds is to be allocated to Firm i.

The DM publicly commits to a reward scheme f . This, in turn, defines a k-player

game, called an investment game and denoted Gf , as follows. Firm i (referred to also

as Player i) chooses a strategy σi P Q. Player i’s payoff depends not only on its own

strategy, but on all other players’ strategies as well. When σ � pσ1, . . . , σkq P Q
k is

the profile of strategies used by the players, the expected payoff of Player i is

E rfi pσqs .

In words, the payoff of Firm i is the expected proportion of the funds it is going to

manage. This game is symmetric in all respects: all the players are homogeneous in

their utility function and have the same set of strategies.

Definition 2. A profile of strategies σ P Qk is a Nash equilibrium in the investment

game Gf if

E rfi pσi, σ�iqs ¥ E rfi pσ
1
i, σ�iqs ,

12In game theory, a diversified strategy is commonly perceived as a pure strategy.
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for every Player i and for every strategy σ1i P Q.

In the situation under consideration, the DM is actually a mechanism designer. She

announces a reward scheme and thereby defines an investment game. The investment

firms are the players in this game. They wish to maximize their expected payoffs. The

goal of the DM, on the other hand, is to design a game Gf in a way that in any Nash

equilibrium σ � pσ1, ..., σkq, the strategy of Firm i maximizes the expected return of

the DM:

E rσis � max
XjPA

E rXjs .

Remark 1. In Subsection 4.2, we introduce a utility function U : RÑ R for the DM.

Given a utility function U , the goal of the DM is to maximize E
�
U
�°k

i�1 σi

	�
. In the

current set-up, we assume that the DM is risk-neutral, e.g., Upxq � x for all x P R.

Hence,

E

�
U

�
ķ

i�1

σi

��
� E

�
ķ

i�1

σi

�
.

By linearity, the RHS term E
�°k

i�1 σi

�
is maximized if and only if E rσis � maxXjPAE rXjs

for every Firm i.

Remark 2. In general, the DM consumes the net profit and then redistributes the

funds according to a reward scheme f . The actual goal of the DM is, therefore, to

maximize the expected net profit and not the expected value
°k
i�1 σi. Since the two are

equal, up to a constant, we use the latter for the maximization problem. Alternatively,

one could change the set of assets A such that
°k
i�1 σi represents the net profit of the

DM.

3.1 Optimal Reward Schemes

Incentivizing investment firms through a reward scheme bears some similarities with

the principal-agent problem. The DM can be thought of as a principal who is interested

in motivating her agents (e.g., the investments firms) to produce optimal expected

earnings. The DM cannot monitor the investment strategies used by the firms; she can

observe only the investment results (performance). Based on those results alone, she

wants to create incentives for the firms so that the latter will serve best her interests.

The example given in Section 2 shows that intuitive methods, such as winner-takes-all,

12



might be counterproductive: they might generate a sub-optimal result for the DM.

In the following section we show how to properly design a reward scheme and induce

productive incentives.

Let O � A be the set of optimal assets:

O � tXj P A; E rXjs ¥ E rX`s for every X` P Au. (3)

Thus, there exists an ε ¡ 0 such that for every Xj P O and X` R O,

ErXjs ¡ ErX`s � ε. (4)

Definition 3. A reward scheme f is optimal, if

(i) an equilibrium exists in Gf ; and

(ii) in every equilibrium σ � pσ1, ..., σkq and for every i,

E rσis � max
XjPA

E rXjs . (5)

In words, f is optimal if in every equilibrium σ in Gf the diversified actions of all

the players produce the maximal expected value; these diversified actions are weighted

averages of pure actions from O.

Remark 3. Due to Eq. (2), for every reward scheme f and every profile of strategies

σ it holds that,

E

�
ķ

i�1

fipσq

�
� 1.

Therefore, the investment game Gf is a fixed-sum game in the sense that the sum of the

expected payoffs of all the players is 1. For every reward scheme f and for every game

Gf we can subtract 1{k from each player’s utility function and obtain a symmetric

zero-sum k-player game.

3.2 Interpreting the reward scheme

Though the concept of incentive schemes in the problem of delegated portfolio man-

agement is well-studied, the idea of a reward scheme that sustains the conditions given

in Definition 1, is relatively novel. These conditions go to the very core of our model,

and therefore need to be explained thoroughly.
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Most previous works considered mainly incentive plans that are simple monetary

rewards. These plans do not necessarily sustain the budget constraint given by Equa-

tion (2). However, we think that our reward-scheme model captures an important

property of the portfolio management market.

As most investment firms get a certain percentage of the portfolio they manage, the

ability of the DM to negotiate their incentives is limited. An optimal reward scheme

keeps the firms in accordance with the best interests of the DM, by taking advantage

of her elementary ability to redistribute the funds.

One could also give a different interpretation for a reward scheme. Consider a

scenario where the DM has a fixed sum of money to be used for bonus purposes. The

reward scheme, in this case, is a results-based bonus plan. This exemplifies another

important aspect of the reward scheme - it is bounded. A reward scheme is applicable

for any fixed sum, and the DM need not commit to unbounded rewards.

In addition, the implementation of a reward scheme is trivial. The DM needs but

to observe the actual performances pr1, . . . , rkq of the firms at the end of a single time

period. Furthermore, we do not require any exogenous benchmark portfolio, as do most

previous works. This simplicity allows a complete layman (in terms of investment) to

employ such an incentives-coordinating mechanism.

4 Main results

In this section we prove the central results of this paper. The first shows that for

every finite set of random variables A, there exists an optimal reward scheme f . The

second result states that for every non-trivial (i.e., non-constant) reward scheme f ,

there exists a set A such that f is not optimal.

The combination of these results is significant. On the positive side, in any non-

deterministic market the DM can design rules that ensure that her interests are accom-

plished by the players. On the negative side however, when the market is dynamic-

meaning that the market is constantly changing in terms of possible actions and assets’

yields are constantly growing- and when the DM cannot keep track of these changes,

then no single reward scheme can produce optimal results (in any possible market).

That is, any non-trivial reward scheme can lead to suboptimal results. More formally,

the only reward scheme that induces also equilibria in which players act according to

the DM’s preferences, is a reward scheme which, paradoxically, is independent of the
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players’ actions.

4.1 A fixed set of actions

The first theorem we prove is constructive. For every set of actions A, we specify an

optimal reward scheme f . The optimal reward scheme f that we propose is linear in

terms of the differences between the players’ earnings.

4.1.1 Bounded random variables

We start with the case of bounded random variables. Assume that there exists an

M P R such that Prp|Xi| ¤ Mq � 1 for every asset Xi P A. When such an M exists,

we say that A is uniformly bounded.

Define the Linear Reward Scheme f as,

fiprq �
1

k
�

#°
j ��ipri�rjq

2kpk�1qM
, if @i, |ri| ¤M,

0, if Di s.t. M   |ri|.

One can verify that f is well-defined, since for every r P Rk, the equality
°
i fiprq � 1

holds and fprq P r0, 1sk.

The Linear Reward Scheme f can be rewritten as

fiprq �
1

k
�

1

2Mk

�
ri �

1

k � 1

¸
j�i

rj

�
1t@i, |ri|¤Mu.

This presentation provides an important economic insight on the optimal reward

scheme f : this reward scheme distributes to all players, before the results are consid-

ered, the same basic share 1{k. When the results are considered, every player gains

or loses relatively to the basic share, a portion that depends on the difference between

his result and the average result of the other players.

In other words, the performance of every player is assessed relatively to the other

players’ average performance, and not to some exogenous benchmark portfolio (which

is the case in most previous studies). This is one crucial aspect of the Linear Reward

Scheme. It generates a competition that, in return, generates a specific benchmark for

each player, which is the average performance of his competitors. In reality, one can

implement the Linear Reward Scheme just by employing an estimated large M (e.g.,

as the maximal result obtained in previous years).
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Theorem 1. For every uniformly-bounded set of assets A, the Linear Reward Scheme

is optimal.

Remark 4. For the sake of simplicity, and without loss of generality, we assume in

the proof of Theorem 1 that O � tX1u. That is,

ErX1s ¡ ErXis, (6)

for every 2 ¤ i ¤ n. This implies that a reward scheme f is optimal if and only if

pX1, . . . , X1q is a unique equilibrium in Gf .

Proof. We prove that for every Player i, for every profile of diversified actions

pσ1, σ2, . . . , σkq P Q
k of players 1, . . . , k respectively, and for every strategy σi � X1 of

Player i, the inequality

E rfi pσ1, . . . , σi�1, X1, σi�1, . . . , σkqs ¡ E rfi pσ1, . . . , σkqs ,

holds.

Without loss of generality, assume that i � 1. Therefore

E rf1 pσ1, σ2, . . . , σkqs � E

�°k
j�1pσ1 � σjq

2kpk � 1qM
�

1

k

�

� E

�
pk � 1qσ1 �

°k
j�2 σj

2kpk � 1qM
�

1

k

�

  E

�
pk � 1qX1 �

°k
j�2 σj

2kpk � 1qM
�

1

k

�

� E

�°k
j�2 pX1 � σjq

2kpk � 1qM
�

1

k

�

� E rf1 pX1, σ2, . . . , σkqs ,

where the first and the last equalities follow from the definition of f , and the inequality

follows from the fact that σ1 � X1 and Erσ1s � E
�°n

i�1 σ
j
1Xj

�
  ErX1s.

Remark 5. The uniqueness of the equilibrium pX1, . . . , X1q is not surprising. It follows

directly from the linearity of fiprq in ri. This linearity implies that X1 is a dominant

strategy for every player. Therefore, the proof of Theorem 1 actually shows that the

Linear Reward Scheme f induces a Dominance-Solvable investment game, and that

the unique Nash equilibrium is in fact a dominant-strategy equilibrium.
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4.1.2 The self-induced benchmark

The result of Theorem (1) is consistent with the well-known fact that, under risk-

neutrality and no effort costs, paying a share of the output induces the first-best

choice. In this sense, the optimality of any linear reward scheme might seem obvious.

However, our Linear Reward Scheme has another important and novel property we

wish to discuss: a self-induced benchmark.

Admati and Pfleiderer (1997) presents the problem of using exogenous benchmarks

in various scenarios. The main problem that arises is that the benchmark is not

calibrated to the effort, and sometimes the risk, that the players incur. The same

problem is met in Holmstrom and Milgrom (1987) and Sappington (1991). In fact,

in most frameworks it is well-established that the linear scheme is only a second-best

solution, as it leads to an underinvestment in effort and information, when needed.

The scheme we propose relates to these issues by generating a competition between

the firms. The Linear Reward Scheme defines a competition in which every player is

measured in comparison to the other players, who are also evaluated in the same way.

Therefore, the effort and risk invested by one player are taken with respect to those

invested bu the other players.

In case most firms exert some effort to increase their share, a marginal player is

motivated, due to the competition-based benchmark, to act in the same way. The

competition also solves the problem of risk-sharing, as the strategy of every player is

correlated with its benchmark, via the equilibrium of the investment game.

We believe that this approach can solve the second-best problem presented in Ad-

mati and Pfleiderer (1997), where is it proven that the best use of information is

achieved when the benchmark is optimal. Though we leave the model of costly efforts

to future research, the problem of optimality under risk and uncertainty is discussed

in Section 4.2.

4.1.3 The motivating example — revisited

Before we generalize the Linear Reward Scheme f to unbounded random variables, we

show how it affects the example presented in Section 2.

Recall that there are two players (k � 2), and two pure actions X1 and X2. For

the sake of simplicity, fix M � 2 and note that Xi  M for every i � 1, 2. The utility
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function of Player 1, given the profile of actions pσ1, σ2q, is

U1pσ1, σ2q � λEpσ1q � p1 � λqEpf1pσ1, σ2qq

� λEpσ1q � p1 � λq

�
1

2
�

Epσ1 � σ2q

8

�

�
p1 � λqp4 � Epσ2qq � p1 � 7λqEpσ1q

8
.

This utility increases with Epσ1q, rendering X1 a dominant strategy, and pX1, X1q the

unique Nash equilibrium.

4.1.4 Unbounded random variables

Theorem 1 proves that the linear reward scheme is optimal when A is uniformly

bounded. However, the same reward scheme cannot be applied to unbounded ran-

dom variables. Theorem 2 presents a modified linear reward scheme for a general set

of assets, namely for the case where A is not uniformly bounded, and states that it is

optimal.

In the unbounded case the assumption that X1 is a unique optimal action (see

Ineq. (6)) limits generality. We therefore analyse the general case: O may contain

several optimal pure actions rather than a unique optimal pure action.

Let Q1 � tq P Q : qi � 0, @Xi P Ou be the set of diversified actions in Q where all

the sub-optimal pure actions are taken with probability 0, and let Q2 � tq P Q : qi �

0, @Xi R Ou be the set of diversified actions in Q where all the optimal pure actions

in O are assigned probability 0. The following lemma enables us to define f . Recall ε

from Ineq. (4).

Lemma 2. There exists an M ¡ 0 such that for every pX, q, αq P Q1 �Q2 � r0, 1s and

every m ¥M ,

E
�
|X � q|1t|p1�αqX�αq|¡mu

�
 
ε

2
.

The proof is given in the Appendix.

We use the M given in Lemma 2 to define a new reward scheme f , similar to

the Linear Reward Scheme used in Theorem 1. First, define the real-valued function

φ : RÑ R as

φpxq �

$'&
'%
�M, if x   �M,

x, if �M ¤ x ¤M,

M, if x ¡M.
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For every player i and every vector r � pr1, . . . , rkq P Rk, define the Truncated

Reward Scheme f such that

fiprq �
1

k
�

°k
j�1 rφpriq � φprjqs

2kpk � 1qM

�
1

k
�

1

2Mk

�
φpriq �

1

k � 1

¸
j�i

φprjq

�
.

One can verify that f is well-defined, since

0 ¤
1

k
�

1

2Mk

�
φpriq �

1

k � 1

¸
j�i

φprjq

�
¤

2

k
ô �

1

k
¤

1

2Mk

�
φpriq �

1

k � 1

¸
j�i

φprjq

�
¤

1

k

ô �2M ¤ φpriq �
1

k � 1

¸
j�i

φprjq ¤ 2M

ô

�����φpriq � 1

k � 1

¸
j�i

φprjq

����� ¤ 2M,

and the last inequality holds for every ri, rj P R.

The next theorem concludes subsection 4.1. It states that an optimal reward scheme

exists also when the set A is not uniformly bounded.

Theorem 2. For every set of pure actions A, the Truncated Reward Scheme f is

optimal.

The proof is given in the Appendix.

In this subsection we presented the simple case of optimal reward schemes, in which

the players are concerned only with the share they obtain from the managed funds.

Using the terminology of the example in Section 2, we actually assumed that λ � 0 for

every player. It is important to emphasize, though, that our results could be extended

beyond this restriction. One can take λ ¡ 0 and show that the previously-defined

reward schemes are still considered optimal. The intuition is clear: once λ is greater

than 0, every player has an additional incentive to choose an optimal asset rather than

a sub-optimal one. Therefore, the reward schemes that were previously considered

optimal remain so also when players are concerned with their actual performance and

not only with their share.
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4.1.5 Uniqueness

Theorems 1 and 2 prove that our proposed linear reward schemes are optimal. These

theorems suggest that a sufficient condition for an optimal reward scheme is linearity.

The next question we wish to address is whether this is also a necessary condition. The

following theorem proves that linearity is indeed crucial for optimality. Specifically, if

one wants a reward scheme f to generate an investment game Gf with a dominant-

strategy optimal equilibrium (i.e., an equilibrium that sustains Eq. (5)), then fiprq

must be linear in ri.

Theorem 3. Fix M ¡ 0 and assume that for every subset A of strictly-bounded actions

(i.e., Prp|Xi| ¡Mq � 1 for every action Xi), the investment game Gf has a dominant-

strategy optimal equilibrium. Then, fiprq is linear in ri for every r�i.

The proof is given in the Appendix.

4.2 An expected utility maximizer DM

Though Theorems 1 and 2 apply for a wide range of assets, the risk-neutrality set-up is

quite restrictive in the context of financial markets. Clearly, it is very difficult to make

sense of financial markets as they are by assuming investors are risk-neutral. For this

reason, we now extend the previous theorems for cases where the DM is an expected

utility maximizer with some non-linear utility function.

Assume that the DM has a general utility function U : R Ñ R. Her main goal, as

mentioned in Remark 1 and explained in Definition 4, is to maximize E
�
U
�°k

i�1 σi

	�
where σ � pσ1, . . . , σkq is a Nash equilibrium in the induced investment game Gf .

Definition 4. A reward scheme f is U-optimal, if

(i) an equilibrium exists in Gf ; and

(ii) in every equilibrium σ � pσ1, ..., σkq,

E

�
U

�
ķ

i�1

σi

��
� max

qPQ
E rUpkqqs . (7)

In words, f is U -optimal if in every equilibrium σ in Gf , the combined portfolio
°k
i�1 σi

produce the maximal expected utility for the DM.13

13The factor k in the RHS of Eq. (7) follows from the initial amount of 1 given to each firm.
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Note that we do not restrict our attention solely to risk-averse or to risk-loving

decision making. Nevertheless, we do need to draw two assumptions over the utility

function U .

The first assumption is that the utility function is bounded by some large constant

M . Specifically, a utility function U is bounded if there exists an M ¡ 0 such that

|Upxq| ¤M for every x P R.

The second assumption relates to the number of optimal diversified actions w.r.t.

U . Formally, a utility function U is uniquely maximized if there exists a diversified

action q� P Q such that

ErUpkq�qs ¡ ErUpkqqs, @q P Qztq�u.

In words, we say that U is uniquely maximized in case the maximal expected utility in

the RHS of Eq. (7) is obtained by a unique diversified action.

In the following theorem, we define the General Reward Scheme, and along with

these two assumptions, we extend the previous results of Theorems 1 and 2.

Theorem 4. For every set of actions A such that U is bounded and uniquely maxi-

mized, the following General Reward Scheme f is U-optimal:

fiprq �
1

k
�

1

2Mk

�
Upkriq �

1

k � 1

¸
j�i

Upkrjq

�
1t@i, |Upkriq|¤Mu.

The proof is given in the Appendix, and follows the same steps as the proof of

Theorem 1.

The economic interpretation of the General Reward Scheme is therefore clear. The

DM uses his own utility function in order to produce an incentive scheme that is linear

with respect to U . The performance of each player is first assessed via the DM’s utility

function, and later compared to the utility-based performance of the other players.

Remark 6. The requirement that every equilibrium is optimal in Definitions (3) and

(4) is quite restrictive, especially in the context of delegated portfolio management.

Another possibility is to define optimality by the existence of an optimal equilibrium,

in the sense of Equations (5) and (7). This alternation is given in Definition (5) that

follows. Note that under this weaker assumption the uniquely-maximized condition in

Theorem (4) is redundant.
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Remark 7. Under the weaker definition, given in the previous remark, and without

the uniquely-maximized condition, the result of Theorem 4 still holds, even when the

players are not risk-neutral, but using a constant absolute risk aversion (CARA) utility

function. Specifically, since we do not restrict ourselves to normal distributions, assume

that player i tries to maximize ErXs� γ
2
VarrXs when X is player i’s payoff and assume

that the DM has a bounded utility function U . In this case, the optimal equilibrium

given in the proof of Theorem (4) still holds. The proof is straightforward since a

deviation of one player can only increase his variance,14 without increasing the expected

value. This extends previously-known results based only on a risk-averse DM with a

CARA utility function and a CARA utility maximizing players (under the assumption

of normal distributions).

4.3 A universal reward scheme

Theorems 1, 2, and 4 show that for a given set of actions, one can design an optimal

reward scheme. The next question that we address is whether or not there exists a

reward scheme that is optimal15 for every set of actions A.

Definition 5. A reward scheme f is said to be universal if for every set of actions

A � tX1, . . . , Xnu, the induced investment game Gf has an equilibrium pσ1, ..., σkq

where E rσis � maxXjPAE rXjs for every i � 1, . . . , k.

In words, f is a universal reward scheme if for every finite set of actions there

exists an equilibrium that sustains the optimality condition given in Eq. (5). When

comparing a universal reward scheme and an optimal reward scheme, one should notice

two differences. A reward scheme is optimal if every equilibrium is optimal, whereas a

reward scheme is universal if an optimal equilibrium exists. Secondly, a reward scheme

f is universal if for every set of actions A the induced investment game Gf has an

optimal equilibrium. An optimal reward scheme, on the other hand, relates only to a

specific set of actions.

The following theorem states that a non-constant universal reward scheme does not

exist.

14The variance is minimal since the strategy of every player and his benchmark are correlated, as
explained in Subsection 4.1.2

15In this subsection we consider a risk-neutral DM.
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Theorem 5. In the case of two players, there is no non-constant universal reward

scheme.

The proof is given in the Appendix.

A generalization of Theorem 5 to any number of players k ¥ 3 is not trivial though.

For example, take any non-constant reward scheme f : Rk Ñ Rk such that fiprq � 1{k

for every r P Rk that has at least two identical coordinates. In this case, for every

action Xj, the profile of strategies pXj, . . . , Xjq is an equilibrium, because a unilateral

deviation would still leave at least two identical coordinates of at least two other players,

in which case the share would be determined as 1{k. In other words, any deviation of

a single player will not bear any influence on the payoffs. On the other hand, requiring

that all equilibria satisfy Eq. (5) will not hold when f is constant, because in this case

all profiles are equilibria. Therefore, when the number of players is three or more, we

must introduce a stronger requirement .

Definition 6. A reward scheme f is said to be strongly universal if for every set

A � tX1, . . . , Xnu, every optimal profile of strategies (i.e., satisfying Eq. (5)) in Gf

constitutes necessarily an equilibrium.

Note that if a Nash equilibrium exists, then any strongly universal reward scheme

is a universal reward scheme.

Theorem 6. If f is a strongly universal reward scheme, then every profile of strategies

is an equilibrium.

The proof is given in the Appendix.

5 Concluding remarks

5.1 Varying portfolio preferences

The results presented in this paper have two complementary aspects: practical and

theoretical. On the practical level, we provide a specific description of a reward scheme

that guarantees that agents are motivated to act according to the DM’s interests. On

the theoretical side, we show that an always-optimal reward scheme simply does not

exist.
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This work focuses on an investor who naturally tries to maximize her expected

utility. Although this assumption is common in the literature, one can still follow

the line of Holmstrom and Milgrom (1991) and assume that the DM simultaneously

incorporates into her utility function different aspects of the managed profile, such

as expected return and some measurement of riskiness. One can assume in general

that the investor has a preference relation over the set of possible portfolios, and thus

try to find a reward scheme that induces an optimal equilibrium (with respect to this

preference relation). We leave this problem for future research.

5.2 A dynamic model

The model we consider in this paper in static. One can naturally extend this model

to a dynamic one, where the firms take into account the future volume of the funds

they manage. At any stage the DM redistributes available funds (including her yearly

earnings and her already-allocated funds) according to the firms’ previous performance,

ans following a reward scheme she has conceived. In return, each firm receives a fixed

percentage of the entire volume it manages. As a result, each firm wants to excel at the

present period in order to receive more funds to manage in the future. In other words,

the firms are primarily concerned with getting as greater a portion of the available

funds as possible.

In more formal terms, the stage-payoff of a firm resembles the utility function

discussed in Section 3 — it takes into account only the volume of the funds allocated

for it to manage. In regard to the example in Section 2, the stage-payoff of a firm in

a dynamic setting may resemble that in Eq. (1) with λ � 0. This implies that the

actual performance of a firm is important only as long as it affects the volume of the

funds allocated for that firm to manage. However, a more general model could take

into consideration a situation where the firms balance between making the cake bigger

and at the same time, getting a larger slice of it in the future. To a certain extent, this

latter model resembles the one in Huck et al. (2012), where workers consider both the

common prosperity and their own personal good.

5.3 Non-homogeneous firms

In this paper we analysed a model in which the assets available (i.e., set A) are common

to all players. This is quite a natural assumption. The model, however, can accom-
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modate for a more general scenario, where actions sets are firm specific. The results

above can be easily stated in these terms as well.

What about the case where firms may have private information or different levels

of expertise? A dynamic Bayesian model with asymmetric reward schemes is left for a

future investigation.

5.4 Multiple decision makers

Chevalier and Ellison (1997) study how the inflow of investments and the actions of

investment firms relate to one another. In general, it is clear that the behaviour of

additional investors can distort incentives generated by a single DM. These effects are

significant and have been demonstrated in many empirical studies. We leave the prob-

lem of multiple investors and the implications of these issues on regulatory decisions

for future research.
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6 Appendix

Lemma 2. There exists an M ¡ 0 such that for every pX, q, αq P Q1 �Q2 � r0, 1s and

every m ¥M ,

E
�
|X � q|1t|p1�αqX�αq|¡mu

�
 
ε

2
.

Proof. By the optimality of the actions in Q1 and the sub-optimality of the actions

in Q2, we know that ErX � qs ¡ ε for every X P Q1 and every q P Q2. In addition,

for every α P r0, 1s, one can choose a sufficiently large MX,q,α ¡ 0 such that for every

m ¥MX,q,α,

E
�
|X � q|1t|p1�αqX�αq|¡mu

�
 
ε

2
. (8)

This follows from the fact that for every pX, q, αq P Q1 � Q2 � r0, 1s, the set of

random variables t|X�q|q1t|p1�αqX�αq|¡muumPN is a sequence of real-valued measurable

functions that are weakly dominated by an integrable function |X � q|. That is,

|X � q|1t|p1�αqX�αq|¡mu ¤ |X � q|

for every m P N. The sequence converges pointwise to 0 as m Ñ 8. Hence, by the

dominated convergence theorem,

E
�
|X � q|1t|p1�αqX�αq�Y |¡mu

�
Ñ 0 as mÑ 8.

Since Ineq. (8) is strict, there exists an open set BX,q,α � Q2�R containing pX, q, αq,

such that this inequality holds for every pX 1, q1, α1q P BX,q,α and every m ¥MX,q,α.

The collection of open sets tBX,q,αupX,q,αqPQ1�Q2�r0,1s is an open cover of the compact

set Q1 � Q2 � r0, 1s, hence a finite subcover B exists. Fix a positive number M �

maxBX,q,αPBMX,q,α and note that (8) holds for every pX, q, αq P Q1 � Q2 � r0, 1s and

every m ¥M .

Theorem 2. For every set of pure actions A, the Truncated Reward Scheme f is

optimal.

Proof. Fix a a strategy σ1 P QzQ1 and σ2, . . . , sk P Q. There exist X P Q1 and

q P Q2 such that σ1 � p1�αqX�αq, where α ¡ 0. Without loss of generality, we relate

only to Player 1 and prove that Erf1pX, σ2, . . . , skqs ¡ Erf1pσ1, σ2, . . . , skqs. In words,

for every profile of strategies σ � pσ1, . . . , σkq, Player 1 can increase his expected payoff

by passing to a diversified action that includes only optimal actions.
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By the linearity of the sum in f1, it suffices to prove that

ErφpXqqs ¡ Erφpp1 � αqX � αqqs, (9)

and every diversified action σ1 R Q1, that includes sub-optimal actions q, is dominated

by some diversified action X P Q1.

Assume to the contrary that (9) does not hold, i.e. that

ErφpXqs ¤ Erφpp1 � αqX � αqqs. (10)

Consider the real-valued function ψpxq � x � φpxq, and note that φpxq � x � ψpxq.

Then, Ineq. (10) is recast as

ErX � ψpXqs ¤ Erp1 � αqX � αq � ψpp1 � αqX � αqqs

or, equivalently,

ErXs � Erp1 � αqX � αqs ¤ ErψpXqs � Erψpp1 � αqX � αqqs. (11)

Since X is a convex combination of optimal actions and q is a convex combination of

sub-optimal actions, it follows from (3) that

ErXs � Erp1 � αqX � αqs � ErX � p1 � αqX � αqs

� αErX � qs

¡ αε.

Combining the last inequality with Ineq. (11) we obtain

ErψpXq � ψpX � αpX � qqqs � ErψpXqs � Erψpp1 � αqX � αqqs

¥ ErXs � Erp1 � αqX � αqs

¡ αε.

Denote γ � ψpXq � ψpX � αpX � qqq. We contradict the last inequality by showing

that Erγs   αε.

Consider the intervals I1 � p�8,�Mq, I2 � r�M,M s, and I3 � pM,8q. One can

write ψ explicitly as

ψpxq �

$'&
'%
x�M, if x P I1,

0, if x P I2,

x�M, if x P I3.
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Note that ψpxq   0 iff x P I1 and ψpxq ¡ 0 iff x P I3.

Overall, there are 9 cases we need to consider where X P Ii and X �αpX � qq P Ij,

for every i, j � 1, 2, 3 (denote these events by Aij):

Event A11. If i � j � 1, then

γ � X �M � rX � αpX � qq �M s � αpX � qq.

Event A33. If i � j � 3, then

γ � X �M � rX � αpX � qq �M s � αpX � qq.

Event A22. If i � j � 2, then γ � 0 � 0 � 0.

Event A12. If i � 1 and j � 2, then γ � X �M   0. The inequality γ   0 also holds

in events A23 and A13.

Event A32. If i � 3 and j � 2, then X � αpX � qq   M , or equivalently, X �M  

αpX � qq. This means that γ � ψpXq � X �M   αpX � qq.

Event A31. If i � 3 and j � 1, then

γ � X �M � pX � αpX � qq �Mq

� αpX � qq � 2M

  αpX � qq.

Event A21. If i � 2 and j � 1, then �M   X  M , which implies that �X�M   0.

Thus,

γ � 0 � pX � αpX � qq �Mq

� �X �M � αpX � qq

  αpX � qq.

This covers all nine possible cases. To conclude, we showed that in Ai1 when

i � 1, 2, and in A3j when j � 1, 2, 3, the inequality γ   αpX � qq holds, and in all

other events γ   0. Note that
�3
j�1A3j � tX ¡Mu � t|X| ¡Mu and

A11 Y A21 � tX ¤M, X � αpX � qq   �Mu

� tX ¤M, p1 � αqX � αq   �Mu

� t|p1 � αqX � αq| ¡Mu.
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Therefore,

Erγs �
3̧

i,j�1

E
�
γ1Aij

�

 
2̧

i�1

E prαpX � qqs1Ai1q �
3̧

j�1

E
�
rαpX � qqs1A3j

�
� αErpX � qq1tX¡Mus � αE

�
pX � qq1tX¤M, X�αpX�qq �Mu

�
¤ αEr|X � q|1tX¡Mus � αE

�
|X � q|1tX¤M, X�αpX�qq �Mu

�
(12)

¤ αEr|X � q|1t|X|¡Mus � αE
�
|X � q|1t|p1�αqX�αq|¡Mu

�
(13)

  α
ε

2
� α

ε

2
� αε. (14)

Here, Ineq. (12) follows from the abosulte values, Ineq. (13) follows from increasing

the subset over which the expected values are taken, and Ineq. (14) follows from (8).

A contradiction.

We proved that for every player, every optimal strategy (pure or diversified) X P

Q1 dominates every sub-optimal strategy σ1 � p1 � αqX � αq P QzQ1. Hence, by

eliminating sub-optimal strategies, the players will play only optimal strategies.

Let ∆Q1 be the probability simplex over the respective pure actions in Q1. That

is, every diversified optimal action of a player i could be represented by a probability

vector in ∆Q1 . By the fixed point theorem on a convex compact set ∆Q1 , we know

that an equilibrium exists, and the result follows.

Theorem 3. Fix M ¡ 0 and assume that for every subset A of strictly-bounded actions

(i.e., Prp|Xi| ¡Mq � 1 for every action Xi), the investment game Gf has a dominant-

strategy optimal equilibrium. Then, fiprq is linear in ri for every r�i.

Proof. Without loss of generality, fix i � 1 and take r�i � pr2, . . . , rkq P p�M,Mqk�1

such that ri ¥ ri�1 for every 2 ¤ i ¤ k � 1. Define gptq � f1pt, r�iq. We need to prove

that gptq is linear.

Fix r1 ¡ r2 and consider �M   y   x   M and λ P p0, 1q such that r1 �

λx� p1 � λqy. We start by proving that gpλx� p1 � λqyq � λgpxq � p1 � λqgpyq.

Define the constant random variables Xj � rj for every 1 ¤ j ¤ k. Take ε ¡ 0 such

that λ� ε   1 and define Z� such that

Z� �

#
x, w.p. λ� ε,

y, w.p. 1 � λ� ε.
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Clearly, ErZ�s ¡ ErXjs for every 1 ¤ j ¤ k. Let A� � tX1, X2, . . . , Xk, Z�u be a

set of strictly-bounded actions. Since an optimal dominant-strategy equilibrium exists,

it follows that Z� is a dominant strategy of player 1. Thus,

gpλx� p1 � λqyq � f1pλx� p1 � λqy, r�iq

� Erf1pX1, X2, . . . , Xkqs

¤ Erf1pZ�, X2, . . . , Xkqs

� pλ� εqf1px, r�iq � p1 � λ� εqf1py, r�iq

� pλ� εqgpxq � p1 � λ� εqgpyq.

Taking the limit when ε tends to 0, gives the inequality gpλx � p1 � λqyq ¤ λgpxq �

p1 � λqgpyq.

Now, take ε ¡ 0 such that λ� ε ¡ 0 and define Z� such that

Z� �

#
x, w.p. λ� ε,

y, w.p. 1 � λ� ε.

Let A� � tX1, X2, . . . , Xk, Z�u be a set of strictly-bounded actions, and similarly to

the previous reasoning, we get that X1 is a dominant strategy, as ErX1s � r1 ¡ ErZ�s.

Therefore,

gpλx� p1 � λqyq � f1pλx� p1 � λqy, r�iq

� Erf1pX1, X2, . . . , Xkqs

¥ Erf1pZ�, X2, . . . , Xkqs

� pλ� εqf1px, r�iq � p1 � λ� εqf1py, r�iq

� pλ� εqgpxq � p1 � λ� εqgpyq.

Taking the limit where εÑ 0, it follows that gpλx� p1 � λqyq ¥ λgpxq � p1 � λqgpyq.

To conclude, we proved that gpλx�p1�λqyq � λgpxq�p1�λqgpyq for the specific case

where λx � p1 � λqy � r1 ¥ r2. Nevertheless, this result holds for every y   r1   x,

and a straightforward examination shows that

gpyq � gpr1q

y � r1

�
gpxq � gpr1q

x� r1

�
gpyq � gpxq

y � x
,

which implies linearity, as required.
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Theorem 4. For every set of actions A such that U is bounded and uniquely maxi-

mized, the following General Reward Scheme f is U-optimal:

fiprq �
1

k
�

1

2Mk

�
Upkriq �

1

k � 1

¸
j�i

Upkrjq

�
1t@i, |Upkriq|¤Mu.

Proof. Let q� P Q be the unique diversified action such that ErUpkq�qs ¡ ErUpkqqs

for every q P Qztq�u. We prove that for every Player i, for every profile of diversified

actions pσ1, σ2, . . . , σkq P Qk of players 1, . . . , k respectively, and for every strategy

σi � q� of Player i, the inequality

E rfi pσ1, . . . , σi�1, q
�, σi�1, . . . , σkqs ¡ E rfi pσ1, . . . , σkqs ,

holds.

Similarly to the proof of Theorem 1, assume w.l.o.g. that i � 1 and

E rf1 pq
�, σ2, . . . , σkqs � E

�
1

k
�

1

2Mk

�
Upkq�q �

1

k � 1

ķ

j�2

Upkσjq

��

�
1

k
�

1

2Mk

�
E rUpkq�qs �

1

k � 1

ķ

j�2

E rUpkσjqs

�

¡
1

k
�

1

2Mk

�
E rUpkσ1qs �

1

k � 1

ķ

j�2

E rUpkσjqs

�

� E

�
1

k
�

1

2Mk

�
Upkσ1q �

1

k � 1

ķ

j�2

Upkσjq

��

� E rf1 pσ1, σ2, . . . , σkqs .

The inequality implies that q� is a strictly dominant strategy for every player i. Thus,

pq�, . . . , q�q P Qk is a dominant-strategy equilibrium. Since all the players use the same

diversified action q� in the unique equilibrium σ, Eq. (7) is satisfied and the result

follows.

Theorem 5. In the case of two players, there is no non-constant universal reward

scheme.
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Proof. Let x   y   z. We first prove that f1py, yq ¥ f1px, yq. Assume to the

contrary that f1py, yq   f1px, yq. Let A � tX1, X2u be a set of two actions X1 and X2

with a joint probability distribution

X1zX2 x y

x 0 0
y 1 0

Note that ErX1s ¡ ErX2s. However,

Erf1pX2, X1qs � f1px, yq ¡ f1py, yq � Erf1pX1, X1qs,

implying that pX1, X1q is not an equilibrium in Gf , since Player 1 can benefit from

deviating to X2. Thus,

f1py, yq ¥ f1px, yq. (15)

For similar reasons,

f2py, yq ¥ f2py, xq. (16)

Next we prove that f1px, xq ¥ f1py, xq. Let p be a number in p0, 1q and let A �

tX1, X2u be a set of two actions X1 and X2 with a joint probability distribution,

X1zX2 x y

x 0 p
z 1 � p 0

A direct computation shows that

Erf1pX1, X1qs � Erf1pX2, X1qs � ppf1px, xq � f1py, xqq � p1 � pq pf1pz, zq � f1px, zqq.

Recall that f1pz, zq � f1px, zq is bounded. If f1px, xq   f1py, xq, then there is p smaller

than, but sufficiently close to 1, such that for every z, Erf1pX1, X1qs�Erf1pX2, X1qs  

0. In other words,

Erf1pX1, X1qs   Erf1pX2, X1qs. (17)

Now one can choose z to be sufficiently large, so that ErX1s ¡ ErX2s. Inequality

(17) implies that pX1, X1q is not an equilibrium in Gf , since Player 1 can benefit from

deviating to X2. Hence,

f1px, xq ¥ f1py, xq. (18)
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A similar argument shows that

f2px, xq ¥ f2px, yq. (19)

We now sum up inequalities (15), (16), (18), and (19) to obtain, f1py, yq�f2py, yq�

f1px, xq � f2px, xq ¥ f1px, yq � f2py, xq � f1py, xq � f2px, yq. Due to Eq. (2), equality

holds. Thus, (15), (16), (18), and (19) are actually equalities. Therefore,

f1px, xq � f1px, yq � f1py, xq � f1py, yq,

and the proof is complete.

Theorem 6. If f is a strongly universal reward scheme, then every profile of strategies

is an equilibrium.

Proof. Let f be a strongly universal reward scheme. Clearly, Theorem 5 implies

that the result holds for the case of k � 2. Fix k ¥ 3. We prove the theorem by showing

that for every player i and for every vector of outcomes r P Rk, the ith coordinate fiprq

of the reward scheme is non-decreasing and non-increasing in ri.

Assume to the contrary that there exists a player i, a vector of outcomes r P Rk,

and wi P R, such that fipwi, r�iq ¡ fipri, r�iq where wi   ri. Define the random

variable X such that PrpX � xq ¡ 0 if x � rj when 1 ¤ j ¤ k. Assume that

PrpX � riq ¡ PrpX � rjq for every j � i. In addition, define a set of i.i.d. random

variables Xj � X where 1 ¤ j ¤ k. Define the vector-valued random variable pW,X�iq

by

PrppW,X�iq � xq � PrppXi, X�iq � xq, @x � r,

and

PrppW,X�iq � pwi, r�iqq � PrppXi, X�iq � rq.

Clearly, pW,X�iq and W are well defined. A direct computation shows that ErW s  

ErXs. However, the vector pXi, X�iq is not an equilibrium, as Player i can deviate to W

and increase his payoff, since fipwi, r�iq ¡ fipri, r�iq. Hence, fip�, r�iq is non-decreasing

for every i and every r�i.

Now assume to the contrary that fipri, r�iq is strictly increasing in ri. That is,

there exists a player i, a vector of outcomes r P Rk, and yi P R, such that fipyi, r�iq ¡

fipri, r�iq where yi ¡ ri.
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Let z̄, z P R be two real numbers such that z̄ ¡ rj ¡ z for every 1 ¤ j ¤ k and let p

be a number in p0, 1q. Define the random variable Y such that, w.p. p, it follows that

PrpY � rjq ¡ 0 for every 1 ¤ j ¤ k. Assume that PrpY � riq ¡ PrpY � rjq for every

j � i. In addition, w.p. 1 � p, the random variable Y equals z̄. Define a set of i.i.d.

random variables Yj � Y where 1 ¤ j ¤ k. Define the vector-valued random variable

pZ, Y�iq by

PrppZ, Y�iq � yq � PrppYi, Y�iq � yq @y � r, yj � z̄ @j,

PrppZ, Y�iq � pyi, r�iqq � PrppYi, Y�iq � rq,

and if there exists a coordinate j of y P Rk such that yj � z̄, then

PrppZ, Y�iq � pz, y�iqq � PrppYi, Y�iq � yq.

Clearly, pZ, Y�iq and Z are well defined. Note that

ErfipZ, Y�iqs � E
�
fipYi, Y�iq1tY�i�r,Yj�z̄ @ju

�
� fipyi, r�iqPrppYi, Y�iq � rq

�
¸
yPRk:
Dj,yj�z̄

fipz, y�iqPrppYi, Y�iq � yq

¡ E
�
fipYi, Y�iq1tYj�z̄ @ju

�
�

¸
yPRk:
Dj,yj�z̄

fipz, y�iqPrppYi, Y�iq � yq (20)

� E rfipYi, Y�iqs �
¸
yPRk:
Dj,yj�z̄

pfipz, y�iq � fipyqqPrppYi, Y�iq � yq, (21)

where Ineq. (20) follows from the assumption that fipyi, r�iq ¡ fipri, r�iq. The sum in

Eq. (21) is bounded, therefore we can choose a p sufficiently close to 1 (but still smaller

than 1), such that ErfipZ, Y�iqs ¡ E rfipYi, Y�iqs for every z̄. Taking a sufficiently large

z̄ and a sufficiently low z guarantees that ErY s ¡ ErZs.

In conclusion, the vector pYi, Y�iq is not an equilibrium, as Player i can deviate to Z

and increase his payoff. A contradiction. Hence, fip�, r�iq is non-increasing for every i

and every r�i. The combination of the two results proves that fi is independent of the

ith coordinate. This implies that the expected payoff of every player i is independent

of the player’s actions and that every profile of actions is an equilibrium.
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