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Abstract

We study the revenue maximizing allocation of m units among n symmetric agents

that have unit demand and convex preferences over the probability of receiving an

object. Such preferences are naturally induced by a game where the agents take costly

actions that affect their values before participating in the mechanism. Both the uni-

form m + 1 price auction and the discriminatory pay-your-bid auction with reserve

prices constitute symmetric revenue maximizing mechanisms. Contrasting the case

with linear preferences, the optimal reserve price reacts to both demand and supply,

i.e., it depends both on the number of objects m and on number of agents n. The main

tool in our analysis is an integral inequality involving majorization, super-modularity

and convexity due to Fan and Lorentz (1954).

1 Introduction

We derive the revenue maximizing symmetric mechanism in a multi-unit auction framework

where the agents’ utility functions are convex in the physical allocation. Such non-linear

preferences naturally arise as a reduced form representation of the agents’ behavior when

these agents (endowed with standard expected utility preferences) undertake, prior to the

auction, costly actions that are unobservable to the designer, and that influence their val-

uations at the subsequent auction. All other features are standard and correspond to the
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Xianwen Shi and Rakesh Vohra for helpful comments. Moldovanu acknowledges financial support the German
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alexg@huji.ac.il; Moldovanu: Department of Economics, University of Bonn, mold@uni-bonn.de; Strack:
Department of Economics, University of Califonia, Berkeley, pstrack@berkeley.edu.
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symmetric, private independent values model, e.g., we keep the usual quasi-linear assumption

with respect to the monetary transfers.

Because of the ex-ante investments, the agents’ valuations become endogenous to the

mechanism. Hence, in contrast to the standard environment where the mechanism affects

individual utilities directly via the physical allocation and the transfers, here a mechanism

also provides incentives for individual investments, and thus indirectly affects the distribution

of valuations. Therefore, a seller interested in maximizing expected revenue must take

these incentives into account: he can provide stronger ex-ante incentives by increasing the

probability of allocating an object, but is constrained by the limited supply and by the usual

monopolistic supply reduction incentives. The revenue maximizing mechanism must finely

balance these conflicting forces.

While expected utility preferences over allocations are always linear in the probability

of allocation, temporal convex preferences induced by actions that are taken prior to the

resolution of uncertainty have been studied by, among others, Kreps and Porteus [1979] and

Machina [1984].1 Single-Object auctions with general non-expected utility preferences have

been studied by Karni and Safra [1989] and by Neilson [1984]. These authors studied the

effect of risky prizes and agents that are not risk neutral over transfers. These features, that

are not present in our own model (we maintain the assumption of quasi-linear preferences),

are also behind some of their results, e.g., non-revenue equivalence among standard auction

formats.2

Our main results characterize the revenue maximizing allocation within the class of sym-

metric mechanisms, and show how it can be implemented via standard auction formats. Our

new optimization approach throws a new light also on the classical results obtained in the

linear case, masterfully analyzed by Myerson [1981] and Riley and Samuelson [1981] - that

setting is a special case of our present framework.

The main technical difficulty is due to the non-linearity of the ex-ante valuations in the

allocation: the revenue maximization exercise cannot be performed “realization by realiza-

tion”, and the direct subject of maximization becomes the expected probability of getting an

object - the “reduced form auction” in the language of Maskin and Riley [1984], Matthews

1Most of the following literature has been confined to one-person decision problems. Independently of
such representations, non-linear, a-temporal preferences in the allocation have been suggested as a realistic
representation of some human choices by Kahneman and Tversky [1979] in their famous Prospect Theory and
Quiggin [1982]. Consequences of multi-agent equilibrium behavior were first analyzed by Crawford [1990].
A recent contribution is Dillenberger and Raymond [2017].

2Karni and Safra focus on dynamic inconsistency in dynamic auction format. This phenomenon is due
to the non-expected utility assumption.
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[1984] and Border [1991]. Therefore, besides the standard monotonicity constraint stemming

from the incentive compatibility requirement, the most complex constraint in our setting

is thus the resource constraint arising from the characterization of reduced form auctions.

Roughly put, it characterizes all expected probability assignments (conditional on an agent’s

type, i.e. marginals) that can be obtained from a probability assignment that determines

who gets what for each realization of types.

In order to incorporate the above constraint, we employ a novel optimization technique

that combines a recent characterization of reduced form, multi-unit auctions due to Che,

Kim and Mierendorff [2013] with insights gained from majorization theory (pioneered by

Hardy, Littlewood and Polya, 1929). Our main analytical tool is an elegant integral inequal-

ity due to Fan and Lorentz [1954]. Their result deals with the maximization of a family of

convex functionals over the (convex) set of integrable functions that form an orbit under

majorization. Fan and Lorentz identify convexity and super-modularity as sufficient (and

almost necessary) conditions for their functionals to achieve their maximum on a monotone

extreme point that coincides with the majorizing function of the respective orbit. In our

setting, the functional associates to each reduced form auction the expected revenue it gener-

ates, and the Fan-Lorentz conditions, convexity and super-modularity, must hold on a kind

of “virtual utility” function that accounts for the convex preferences.3 The optimization

exercise yields then an expected probability assignment where the units are allocated to the

agents with the highest types, conditional on these exceeding a critical cutoff.

We then explicitly derive the bidding equilibria of the uniform (m + 1)− price auction

and of the discriminatory pay-your-bid auction with a reserve price (where m is the number

of supplied units) and show that these auctions can implement the revenue maximizing

allocation. Because of the non-linearity in probability and because the endogenous valuations

that depend on the number of agents and objects, the equilibria of these auctions are non-

trivial, e.g., the equilibrium of the uniform price auction is not in dominant strategies.

We next offer comparative statics results with respect to the critical cutoff and to the

optimal reserve price. These results turn out to be very different from the classical ones

obtained in the standard framework. While in the linear setting the optimal reserve price

coincides with the optimal cutoff and is neither changed by the number of agents nor by the

number of units (i.e., they are not responsive to either demand or supply), here we find that

these objects are distinct and often display comparative statics in opposite directions:

1. Under the same general conditions used for the maximization exercise described above,

3In particular, this function need not be separable in the type and the probability of obtaining a unit.
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the optimal cutoff increases in the number of agents and decreases in the number of objects.

2. Under some additional sufficient conditions, the optimal reserve price decreases in the

number of agents and increases in the number of objects.

We also illustrate our results in a variety of settings that form special cases of our frame-

work, such as: auctions where the endogenous values are influenced either additively or

multiplicatively by costly actions, auctions with entry costs, crowd-sourcing contests, and

contests where money is burnt. In particular, we show that various sufficient conditions for

monotone comparative statics of the optimal reserve price can be applied in these cases.

Finally, we briefly discuss the case where the Fan-Lorentz super-modularity condition is

not satisfied: then the (convex) revenue functionals may attain their maximum on an extreme

point that need not be monotone, and hence need not satisfy incentive compatibility. In

those cases, we show how our focus on majorization yields a characterization of the “ironed”

extreme points that do satisfy monotonicity. Similarly to the classical result of Myerson

[1981], the optimal symmetric mechanism in the “non-regular” case is given by an auction

where intervals of types are pooled in order to ensure monotonicity of the allocation.

The paper is organized as follows: In Section 2 we describe the auction model and offer a

micro-foundation for the assumed non-linear preferences. In Section 3 we derive the revenue

maximization problem with a focus on the complex resource constraint. In Section 4 we

introduce several concepts and results from majorization theory. In Section 5 we derive the

revenue maximizing allocation in the “regular” case. In Section 6 we derive the equilibria

of standard auction formats in the present framework with endogenous valuations and show

how these implement the optimal allocation. In addition we show how the optimal reserve

price is affected by demand and supply. In Section 7 we display several applications to

specific economic settings where an auction is preceded by costly investments. Section 8

briefly looks at the cases where ironing becomes necessary. Section 9 concludes.

2 The Model

2.1 The Reduced-Form Preferences

There are m ≥ 1 identical and indivisible objects, and n ≥ m ex-ante symmetric bidders.

Each bidder i ∈ {1, . . . , n} = N has a type θi ∈ Θ = [θ, θ] ⊆ R+ that is her private

information, and demands at most one object. Types are distributed I.I.D. according to a

distribution F : Θ→ [0, 1], with positive density f > 0.
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Denote by pi = pi(θi) the interim probability with which agent i receives an object in a

given mechanism, conditional on being of type θi. The utility of agent i as a function of her

type θi, the probability pi and the transfer yi she makes is given by

h(pi, θi)− yi.

We assume that the function h : [0, 1] × Θ → R+ is increasing in both variables, super-

modular in (pi, θi) and convex in pi. These assumptions reflect that the agent’s utility from

receiving an object is non-negative and that higher types derive higher utility from the object.

Furthermore, we assume that receiving an object with probability zero yields a utility of zero,

independent of the type θi, i.e. for all θi ∈ Θ

h(0, θi) = 0.

These assumptions generalize (and include as a special case) the usual assumptions made

in the auction theory literature where h(pi, θi) = pi · θi. As expected utility is linear in

probabilities, the non-linear preferences we consider here include preferences which do not

admit an expected utility representation.

2.2 Mechanisms

A mechanism specifies a set of reports Ri for each agent i, and a mapping from reports to

an allocation and transfers:

x :
∏
i∈N

Ri → X = [0, 1]n

y :
∏
i∈N

Ri → Rn .

Given a mechanism (x, y) each agent i picks an optimal report ri. Agent i’s optimization

problem given her type θi is thus given by

max
ri∈Ri

h(Er−i
[xi (ri, r−i) | θi] , θi)− E [yi(ri, r−i) | θi] .

We restrict attention to symmetric mechanisms that are invariant to any permutation of

the agents’ names and where every agent uses the same reporting strategy.
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2.3 A Micro-Foundation: Reduction to Non-Linear Preferences

We offer here a “micro-foundation” for the above preferences by considering a model where,

before participating in the mechanism, agents take costly actions that affect their values.

Consider again a setting with n agents as above, but where each agent i takes an action

ai ∈ A, where A ⊂ R is a compact set. The taken action is also private information to the

agent (and therefore unobservable to the principal).

Depending on her type θi, agent i has preferences over her own action ai ∈ A, her own

allocation xi ∈ [0, 1] and her own transfer yi. We assume that these preferences are standard

expected utility preferences that are quasi-linear in the transfer and separable in the cost

of an action c(ai) ≥ 0. The preference can be thus represented by a utility function of the

form:

xi v(ai, θi)− yi − c(ai) .

where the value for a unit of the good, v(ai, θi) ∈ R+, is assumed to be increasing in her

type θi and in her action ai, super-modular and non-negative.4 Furthermore, we assume that

there exists a costless action a0 ∈ A such that c(a0) = 0.5

2.3.1 Timing

In order to analyze how hidden actions influence the agents’ behavior, we need to specify

the timing of actions. The timing we consider is as follows (c.f. Figure 1):

1. Each agent privately observes her type;

2. The designer (i.e., seller in the auction interpretation) commits to a mechanism;

3. Each agent decides whether to participate in the mechanism and privately chooses an

action;

4. Each agent sends a message to the mechanism;

5. Depending on the sent messages, an allocation and transfers are realized.

4The assumption that the value is non-negative corresponds to free disposal.
5This is a normalization: we can always subtract mina∈A c(a) from the agent’s utility without changing

her preferences over actions, allocations, or transfers.
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Figure 1: Timing of the game.

2.3.2 Reduction to Convex Preferences

Given a mechanism (x, y), an agent i can condition her action on the report she plans to

send. Her reporting problem is equivalent to

max
ri∈Ri

({
max
ai∈A

E [xi(r) | θi] v(ai, θi)− c(ai)
}
− E [yi(r) | θi]

)
. (1)

We define pi(ri, θi) = E [xi(r) | θi] to be the interim probability with which agent i receives

an object in the mechanism and h : [0, 1] × Θ → R to be the utility agent i receives when

she takes the optimal action

h(pi, θi) = max
ai∈A

pi v(ai, θi)− c(ai) .6 (2)

Using these definitions, the reporting problem of agent i given in (1) becomes equivalent

to the reduced form problem where agent i has non-linear preferences over her allocation

probability pi

max
ri∈Ri

h(pi(ri, θi), θi)− E [yi(r) | θi] .

To show that this problem is indeed equivalent to the reduced problem introduced in Section

2.1 we need to verify that h as defined in (2) satisfies the assumptions of Section 2.1:

Lemma 1. h(pi, θi) is convex in pi, increasing in θi and pi, super-modular in (pi, θi) and

satisfies h(0, θi) = 0 for all θi ∈ Θ.

Proof. h is convex in p as it is the maximum over functions that are linear in p. It is increasing

in p and θ as p v(a, θ)−c(a) is increasing in p and θ. As by assumption there exists an action a

with c(a) = 0 and the cost is non-negative we have that h(0, θ) = maxa∈Ai
−c(a) = 0. Finally,

6We assume that such maximum always exists, which is satisfies for example if ∂2v
∂a2 ≤ 0 for all θi and

∂2c
∂a2 > 0.
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let a∗(pi, θi) be an optimal selection for the problem given in (2). As pi v(ai, θi) − c(ai) is

super-modular in (ai, θi) we can always pick an optimal selection a∗(pi, θi) which is non-

decreasing in θi (Theorem 4 in Milgrom and Shannon [1994]). By the Envelope Theorem we

have that h is absolutely continuous in p with (weak) derivative

∂

∂pi
h(pi, θi) = v(a∗(pi, θi), θi) . (3)

As a∗(pi, θi) is non-decreasing in θi and v is non-decreasing in ai and θi the marginal utility

associated with an increase in the probability of receiving the object ∂
∂pi
h is non-decreasing

in θi and thus h is super-modular in (pi, θi)

We have thus obtained the model we started with: since h is defined independently of

the agent’s action, the mechanism design problem where the agent chooses an action before

participating in the mechanism is equivalent to the mechanism design problem where each

agent has a convex valuation given by hi(pi, θi), but chooses no costly action.

3 The Revenue Maximization Problem

We restrict attention to direct mechanisms where each agent reports his type θi, and where

the mechanism specifies allocations and monetary transfers to all agents depending on the

reported types. As h(pi, θi) is super-modular, it is well-known that the incentive compati-

bility of a (symmetric) direct mechanism is equivalent to the standard monotonicity of the

equilibrium expected allocation7

p(θi) = pi(θi) = pi(θi, θi) := E[xi(θ1, ..., θn) | θi]

together with an envelope condition determining the expected interim transfer (see for exam-

ple Guesnerie and Laffont, [1984], Corollary 2.1). The envelope condition yields the following

standard revenue equivalence result:

Proposition 1 (Revenue Equivalence). The expected revenue in any symmetric, incentive

compatible mechanism where the participation constraint is binding for the lowest type (i.e.

the lowest type obtains zero utility) is given by

n

∫
Θ

H(p(θ), θ) f(θ) dθ , (4)

7As the mechanism is symmetric the definition of p is independent of the agent’s identity i .
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where the “virtual utility” H : [0, 1]× [θ, θ]→ R is defined by

H(p, θ) := h(p, θ)− ∂h(p, θ)

∂θ
× 1− F (θ)

f(θ)
. (5)

In order to simplify the notation, it will often be convenient to reformulate the problem

in terms of the quantile t = F (θ) associated with a type θ.8 For quantile t we define the

probability q(t) = p(F−1(t)) and the associated virtual utility

G(q, t) := H(q, F−1(t)) . (6)

As dt
dθ

= 1
f◦F−1(t)

, integration by substitution of (4) yields the following equivalent character-

ization of expected revenue.

Corollary 1. The expected revenue in any symmetric, incentive compatible mechanism where

the participation constraint is binding for the lowest type is given by

n

∫ 1

0

G(q(t), t)dt . (7)

Note, that the expression given in (7) equals (4) if types are uniformly distributed on

[0, 1]. Intuitively, Corollary 1 states that it is without loss of generality to restrict attention

to uniformly distributed types t ∼ U([0, 1]) as long as one allows for a general virtual

utility G. This transformation greatly simplifies the analysis since it implies that, in order

to characterize the optimal mechanism for arbitrarily distributed types, it is sufficient to

determine the set of feasible interim allocations for uniformly distributed types.

3.1 The Resource Constraint

The non-linearity of the individual expected revenue G in the allocation probability q does

not allow the use of a standard point-by-point maximization approach. Therefore, the crucial

constraint becomes the feasibility (or resource) constraint: what expected interim allocations

functions can be obtained (i.e. are marginals) of symmetric mechanisms? This question has

been initially addressed (in the framework of a single object auction) by Matthews [1984],

Maskin and Riley [1984], and Border [1991].9 The following, more recent result characterizes

8Since F has a strictly positive density, F−1 is well defined.
9These papers were written without connections to the earlier mathematical literature on the existence

of measures with given marginals, e.g. Lorenz [1949], Gale [1957], Ryser [1957] and Strassen [1965].

9



the set of feasible interim allocation rules for multi-unit auctions with one-dimensional types:

Proposition 2 (Che, Kim & Mierendorff [2013], Corollary 4). Consider an auction with

n bidders where m units are available. A symmetric, monotone interim allocation rule

q : [0, 1]→ [0, 1] is a reduced form of a feasible allocation rule where no agent obtains more

than k objects if and only if, for each t ∈ [0, 1] it holds that

n

∫ 1

t

q(s)ds ≤
n∑
i=0

min{i · k,m}
(
n

i

)
(1− t)i tn−i . (8)

In order to use the above result, we need an additional Lemma reformulating the Che,

Kim & Mierendorff characterization into an integral form that will be later related to the

concept of (weak) majorization:10

Lemma 2. It holds that

n∑
i=0

min{i,m}
(
n

i

)
tn−i(1− t)i = n

∫ 1

t

φm,n(t)dt

where φm,n(t) is the probability that at most m − 1 out of n − 1 agents have a type larger

than the type associated with the quantile t

φm,n(t) :=
m−1∑
i=0

(
n− 1

i

)
tn−1−i(1− t)i . (9)

The function φm,n is increasing in t and in m and decreasing in n. Furthermore,
∫ 1

0
φm,n(t)dt =

m
n

.

As a consequence of the characterization of implementable interim allocation rules given

in Proposition 2, Lemma 2 and Corollary 1, our revenue maximization problem is equivalent

to the following problem:

Proposition 3 (Characterization of Revenue Maximizing Mechanisms). A symmetric mech-

anism is revenue maximizing if and only if the induced interim probability of receiving an

10For a characterization of a single object reduced form auction in terms of second-order stochastic domi-
nance see Hart and Reny [2015].
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object q(t) solves

max
q

n

∫ 1

0

G(q(t), t)dt (10)

subject to:

q(t) ∈ [0, 1] for all t ∈ [0, 1] (11)

q non-decreasing (12)∫ 1

t

q(z)dz ≤
∫ 1

t

φm,n(z)dz for all t ∈ [0, 1] , (13)

where t = F−1(θ), G is defined in (6) and φm,n is defined in (9).

4 Majorization and the Fan-Lorentz Inequality

In order to deal with the resource constraint identified above in (13), we first recall several

concepts and results from the theory of majorization, pioneered by Hardy, Littlewood and

Polya [1929]. For non-decreasing q, q̄ ∈ L1(0, 1) we say that q̄ majorizes q, denoted by q ≺ q̄

if the following two conditions hold:∫ 1

t

q(v)dv ≤
∫ 1

t

q̄(v)dv for all t (14)∫ 1

0

q(t)dt =

∫ 1

0

q̄(t)dt.

We say that q̄ weakly majorizes q, denoted by q ≺w q̄ if the first condition above holds

(but not necessarily the second). If q ≺w q̄ it is easily seen that there exists q′ ≤ q̄ such that

q ≺ q′.

The above definitions can also be applied to any (possibly non-monotonic) functions

q, q̄ ∈ L1(0, 1) if q, q̄ in (14) are replaced by their non-decreasing re-arrangements. For such

arbitrary functions, it is well known that q ≺ q̄ if and only if q = T q̄ where T is a doubly

stochastic operator. The set

Ω(q̄) := {q : q ≺ q̄}

called the orbit of q̄, is weakly compact and convex. In particular, by Bauer’s Maximum

Principle (1958) a continuous, convex functional on Ω(q̄) attains its maximum on an extreme

point of Ω(q̄). Ryff (1967) has shown that q ∈ Ω(q̄) is an extreme point of this set if and
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only if q = q̄ ◦Ψ where Ψ is a measure preserving transformation of [0, 1] into itself.11

The next elegant result, due to Ky Fan and G.G. Lorentz [1954] identifies a very interest-

ing set of convex functionals such that all of them attain their maximum on Ω(q̄) precisely

at q = q̄ ◦ Id. Note, that the Identity is of course a monotonic transformation (in fact, this

is the only measure preserving transformation with this property).

Proposition 4 (Fan-Lorentz Theorem). Let L : [0, 1] × [0, 1] → R be a function such that

L(q, t) is convex in q and super-modular in (q, t). Let q, q̄ : [0, 1] → [0, 1] be two non-

decreasing functions such that q ≺ q̄. Then∫ 1

0

L(q(t), t)dt ≤
∫ 1

0

L(q̄(t), t)dt .

5 The Revenue Maximizing Mechanism

Due to Revenue Equivalence (Proposition 1) we can characterize the optimal direct mech-

anism in terms of the implied allocation. Proposition 3 shows that an allocation is feasible

if and only if it is weakly majorized by φm,n. To maximize over feasible allocations we will

use the Fan-Lorentz Theorem, and for this we need to introduce a regularity assumption

ensuring that their conditions are satisfied by our expected revenue functional:

Definition 1 (Convex-Supermodularity). We say that the environment is “convex super-

modular” (CSM) if the virtual utility H(p, θ) defined in (5) is convex in p and super-modular

in (p, θ).

It is instructive to consider the meaning of the above conditions in the standard model

with linear preferences (Myerson, [1981]) where

H(p, θ) = p

(
θ − 1− F (θ)

f(θ)

)
.

As H is linear in p, it is (weakly) convex in p. It is super-modular in (p, θ) if and only if the

standard virtual value

J(θ) = θ − 1− F (θ)

f(θ)

is non-decreasing. Thus, for the special case of linear preferences, our definition of a CSM

environment reduces to the definition of a “regular” environment given by Myerson [1981].

11This is analogous to the discrete case, where the above result is a corollary of the Birkoff-von Neumann
Theorem about the extremity of permutation matrices within the set of double stochastic matrices.
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In the Appendix we give sufficient conditions on the valuation function h(p, θ) and on the

distribution function F for the generalized virtual utility function H(p, θ) to satisfy CSM.

The treatment is similar to the one in Guesnerie and Laffont [1984] and Fudenberg and

Tirole [1991] (Chapter 7) who studied the one-person contracting setting with a valuation

function that is concave in the allocation.12

To simplify notation we denote by

ψm,n(θ) := φm,n(F (θ))

the interim probability with which an agent of type θ receives an object when m objects

are allocated efficiently among n agents. We now derive the optimal symmetric mechanism

using the Fan-Lorentz Theorem:

Theorem 1 (Revenue Maximizing Allocation). Suppose the environment is convex super-

modular. Then, the revenue maximizing mechanism allocates the m objects to the agents

with the highest types, conditional on these exceeding a threshold θ∗, where θ∗ is the unique

solution to 13

H(ψm,n(θ∗), θ∗) = 0.

Moreover, in the optimal mechanism the expected utility of the lowest type, θ is zero.

The intuition for the proof of Theorem 1 (see Appendix) is as follows. First, we argue

that in a CSM environment the virtual value G(q, t) expressed as a function of the quantile t

is convex and super-modular in (q, t). As G is convex in q, the functional q 7→
∫ 1

0
G(q(t), t)dt

is convex. By Bauer‘s maximum principle this functional must attain a maximum on an

extreme point of the set of monotone functions that satisfy the resource constraint given by

inequality (13). This constraint is equivalent to q being weakly majorized by the allocation

probability φm,n of being among the m highest types. We then show that this implies that

q is majorized by a function of the form t 7→ 1{t≥t∗} × φm,n(t). Hence, by the Fan-Lorentz

inequality, an interim probability of the form t 7→ 1{t≥t∗} × φm,n(t) maximizes revenue. The

optimality of the cutoff type θ∗ is proven by arguing that the expected revenue is quasi-

concave in the cutoff θ∗ and that H(ψm,n(θ∗), θ∗) = 0 is the relevant first-order condition.

To better understand the intuition behind the optimality of the above described allo-

cation, let us compare the micro-foundation scenario with the standard case analyzed by

12In the one person case they studied the resource constraint is not complex.
13If H(ψm,n(θ), θ) > 0 for any θ ∈

[
θ, θ̄
]

we set θ∗ = θ, while if H(ψm,n(θ), θ) < 0 for any θ ∈
[
θ, θ̄
]

set
θ∗ = θ̄.
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Myerson:

1. In the standard case, the seller is able to extract only the virtual value from every

buyer. Under the regularity assumption, the virtual value is monotone in type, and

hence the optimal mechanism allocates the units to the agents with the highest types,

conditional on their virtual value being non-negative.

2. In the present environment, the probability of getting a unit affects the investment

incentives, and hence indirectly influences the virtual value of every agent. As we shall

see in the applications below, the increase in virtual value (due to an increase in the

probability of obtaining an unit the object) is more substantial for an agent with a

higher type. This increase the advantage of allocating the units to agents with higher

types, conditional on their virtual values (which depend on the allocation probability)

being non-negative.

5.1 Comparative Statics

In this subsection we provide some comparative statics of the optimal cutoff type with

respect to the number of agents n and the number of objects m. In particular, our result

shows that, in sharp contrast to the standard (linear) auction setting, the optimal cutoff

type is influenced both by the number of agents and objects. Recall that

φm,n(t) =
m−1∑
i=0

(
n− 1

i

)
tn−1−i(1− t)i

is the probability that an agent of type θ = F−1(t) is among the m highest types of the n

agents. Recall also that, from the definition of ψm,n(θ) = φm,n(F (θ)) we know that ψm,n(θ) is

increasing in m and θ and decreasing in n - these three basic properties account for our main

result here showing that cutoff type θ∗ increases in the number of agents n and decreases in

the number of objects m.

Proposition 5 (Comparative Statics for the Cutoff Type). Assume that the environment

is convex super-modular (CSM). Then the optimal cutoff type θ∗ increases in the number of

agents n and decreases in the number of objects m.

To get an intuition for this result, consider the case where the non-linearity of h in

p stems from an investment decision made by the agents before participating in the auction,
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as described in the micro-foundation part (Section 2.3). An increase in the number of agents

decreases the individual chance of each agent to receive an object. This, in turn, reduces the

individual incentives to invest, the resulting values, and the revenue that can be obtained

from each type. In particular, the type with zero virtual utility - that determines the optimal

cutoff type θ∗ - must be larger than the analogous type when there are less bidders.14 In the

micro foundation agents with types below θ∗ choose the action with zero cost.

While the expected revenue increases with the number of objects, as more objects relax

the feasibility constraint, the monotonicity with respect to the number of agents is less

obvious. In Example 1 below we show that indeed this monotonicity is not guaranteed in

the present environment.

Weakly Convex Super-modular Environments

While the regularity of the standard virtual valuation J in the linear case is sufficient for an

auction with reserve price to be revenue maximizing, it is not necessary. To see this, consider

the case where J decreases for some types to which J assigns a negative virtual value. As

agents with those types are excluded through the reserve price anyhow, their virtual value

plays no role in determining the optimal allocation. In a similar way, we can relax the CSM

requirement in our setup - this will turn out to be useful for some of the applications treated

below.

Definition 2 (Weak Convex Supermodularity). We say that the environment is “weakly

convex super-modular” (wCSM) if the positive part of the virtual value max{H(p, θ), 0} is

convex in p and super-modular in (p, θ).

In the Appendix we argue that it is possible in our environment to exclude types with

negative virtual utility, leading to the following generalization of Theorem 1.

Corollary 2. Suppose the environment is weakly convex super-modular. Then, the

revenue maximizing allocation allocates m objects to the agents with the highest types, con-

ditional on these exceeding θ∗where θ∗ is given by

H(ψm,n(θ∗), θ∗) = 0.

Moreover, in the optimal mechanism the expected utility of the lowest type, θ is zero.

14An inverse effect is at work when the number of objects increases.
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6 Implementation via Auctions

In this section we analyze two widely used, standard auction formats that can be used in

our setting to implement the revenue maximizing allocation.

6.1 The Uniform Price Auction

We first look at the (m+1)− uniform price auction with a reserve price. The equilibrium we

describe below is not in dominant strategies! Moreover, in stark contrast to the linear

case where the bid is constant and equal to the value for a unit, here the equilibrium bid

responds both to demand (the number of bidders) and supply (the number of objects).

Proposition 6 (Equilibrium of the uniform price auction). Assume that the seller uses a

uniform (m + 1)−price auction with reserve price R, and define θ′m,n to be the type that

solves:
h
(
ψm,n(θ′m,n), θ′m,n

)
ψm,n(θ′)

= R (15)

1. The profile of bidding strategies

bi(θ) = bm,n(θ) =


∂h(ψm,n(θ),θ)

∂p
θ ≥ θ′m,n

0 θ < θ′m,n

constitutes a symmetric, pure strategy Nash equilibrium in the uniform price auction among

n bidders for m units.

2. The equilibrium bid bm,n(θ) increases in θ and in the number of objects m and decreases

in the number of bidders n.

Remark. Note that the equilibrium above displays a “jump” in the bidding function at

the reserve price: the type θ′m,n given in (15) submits a bid which exceeds the reserve price

R, or differently put, there exists an interval of types [θ1, θ2] such that ∂h(ψm,n(θ),θ)

∂p
> R for

θ ∈ [θ1, θ2], yet these types refrain from submitting bids above the reserve. This feature is

mainly due to the convexity of h which implies that

∂h (ψm,n(θ), θ)

∂p
≥ h (ψm,n(θ), θ)

ψm,n(θ)

For an intuition, recall that, in the “micro-foundation” scenario, the bid ∂h(ψm,n(θ),θ)

∂p
rep-

resents the post-investment value of the object to a bider with type θ (the investment is
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already sunk at this stage!). However, for a type with post-investment value just above the

reserve price, it is not profitable to invest and participate at the auction, since, in the best

scenario where his type is among the m highest, he will get zero utility from winning and

hence he looses the initial investment and thus has a negative utility.

Corollary 3 (Optimality of the Uniform Price Auction). The uniform price auction with

reserve price R∗ is a symmetric revenue maximizing mechanism where R∗ is given by

R∗ =
h (ψm,n(θ∗), θ∗)

ψm,n(θ∗)

and θ∗ solves

H(ψm,n(θ∗), θ∗) = 0.

Equilibrium and the Micro-foundation In the general, abstract model preferences are

non-standard. But, in our micro-foundation, agents choose an optimal action a∗ given by

a∗ (θ) =

arg maxai∈A ψm,n(θ) v(ai, θ)− c(ai) if θ ≥ θ∗

0 else
,

and then submit a bid equal to the post-investment value v(a∗ (θ) , θ) = ∂h(ψm,n(θ),θ)

∂p
whenever

this value exceeds the reserve price. This profile of strategies (actions+bids) constitutes a

standard Bayes-Nash equilibrium of this game.15

6.2 The Pay-Your-Bid Auction

In this section we show that the discriminatory Pay-Your-Bid Auction with a properly chosen

reserve price also implements the revenue maximizing allocation. We first explicitly derive

the equilibrium bidding strategies in our environment. Recall that in the discriminatory

Pay-Your-Bid Auction with reserve price m agents that submit the highest bids conditional

on these bids being above the reserve price get the objects and pay their bids. Other agents

pay nothing.

Proposition 7 (Equilibrium of the Discriminatory Auction). Assume that the seller uses a

15This profile is not in dominant strategies: conditional on the other bids, an agent knows whether he
wins or not and may prefer to change his investment decision.
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Pay-Your-Bid Auction with reserve price R, and define θ
′
m,n to be the type that solves:

h (ψm,n(θ′), θ′)

ψm,n(θ′)
= R.

The profile of bidding strategies

β(θ) =

R
ψm,n(θ′)
ψm,n(θ)

+ 1
ψm,n(θ′)

∫ θi
θ′
ψ′m,n(z)∂h(ψm,n(z),z)

∂p
dz θ ≥ θ′

0 θ < θ′

constitutes a symmetric pure strategy Nash equilibrium in the Pay-Your-Bid auction among

n bidders for m units.

Corollary 4 (Optimality of the Pay-Your-Bid Auction). The Pay-Your-Bid Auction with

reserve price R∗ is a symmetric revenue maximizing mechanism where the optimal reserve

price is given by

R∗ =
h (ψm,n(θ∗), θ∗)

ψm,n(θ∗)
,

and θ∗ solves

H(ψm,n(θ∗), θ∗) = 0.

6.3 Comparative Statics with respect to the Optimal Reserve Price

Note that both auction formats (Uniform price and discriminatory Pay-Your-Bid auctions)

apply the same optimal reserve price. Proposition 5 gives a clear-cut result regarding the

effect of the change in the number of objects and agents on the optimal cutoff type. It

is important to note that the above result and intuition do not carry over to the optimal

reserve price ! There are two opposite effects at work here: on the one hand, from Proposition

5 it follows that an increase in the number of agents increases the cutoff type θ∗; but, on the

other hand, it also decreases the probability of getting the object of the cutoff quantile type,

ψm,n(θ∗). Since h(p,θ)
p

is increasing in θ and increasing in p (due to convexity) the overall

effect of increase in the number of agent on the optimal reserve price is ambiguous. The next

proposition gives sufficient conditions for the second effect to dominate. Analogous effects

are also at work for the dependence on the number of objects m. In the Applications section

below we offer several illustrations.

Proposition 8 (Comparative Statics of the Optimal Reserve Price). Assume that the envi-

ronment is convex super-modular (CSM). Assume further that h is concave in θ and that F
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is convex with a differentiable density function. Then the optimal reserve price R∗ decreases

in the number of agents n and increases in the number of objects m.

The above result yields some empirically testable predictions about the changes in the

reserve price as a result of changes in demand (the number of bidders) or in supply (the

number of units). This should be compared to the standard “knife-edge” result obtained in

the linear case, whereby the reserve price is non-responsive to such changes: since in that case

optimal cutoff type and optimal reserve price coincide, this non-response is indeed suggested

by our results that display comparative statics in opposite directions for the general model

where these two objects do not coincide.

7 Illustrations

In this Section we offer several applications of the above main results to particular micro-

founded settings where investments affect values. These applications both extend and unify

previous observations that were obtained in the literature by “ad-hoc” methods.

7.1 Additively Separable Investments

Assume in our micro-foundation that the costly action a ∈ A ⊆ R+ additively increases the

agent’s value θ for a unit of the good16

v(a, θ) = a+ θ.

Note that we do not impose any restriction on the set of actions A, and allow it be either

finite or infinite. The linear separability implies that the non-linear utility h induced by the

environment where the agent takes an action is of the form

h(p, θ) = max
a∈A

p (a+ θ)− c(a) .

Take an arbitrary optimal selection a∗(p) ∈ arg maxa∈A p a− c(a). Then, h is given by

h(p, θ) = p θ + p a∗(p)− c(a∗(p)) = p θ + g(p) ,

16The two-agent, one object, additive case with a quadratic cost is treated in Zhang (2017). She also
studies asymmetric mechanisms in that framework (that are not covered here).
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where g(p) := p a∗(p)− c(a∗(p)). As h is convex and increasing in p, the function g is convex

and increasing. Furthermore, g(0) = 0 due to the existence of the costless action a = 0. By

plugging in (5) we obtain that the virtual utility H is given by

H(p, θ) = p J(θ) + g(p)

where J(θ) = θ− 1−F (θ)
f(θ)

is the standard virtual value (a la Myerson). As g is convex, it follows

immediately that H is convex in p. Furthermore, if J is increasing then H is super-modular,

and thus the environment is CSM (Definition 1). Hence, Theorem 1 and Proposition 5 imply

the following characterization of the optimal mechanism:

Corollary 5. Assume that the standard virtual value J(θ) = θ − 1−F (θ)
f(θ)

is increasing.

1. Then the environment with additively separable investments is convex super-modular,

and both the Uniform-Price and the Pay-Your-Bid auction with reserve price

R∗= 1− F (θ∗)

f(θ∗)

where θ∗ solves

θ∗ +
g(ψm,n(θ∗))

ψm,n(θ∗)
=

1− F (θ∗)

f(θ∗)

are symmetric, revenue maximizing mechanisms.

2. If the hazard rate f(θ)
1−F (θ)

is increasing, then the optimal reserve price decreases in the

number of objects and increases in the number of agents.

The second part of the corollary immediately follows from the above characterization of

the reserve price together with Proposition 5.

Next we show that the optimal revenue in the additively separable environment may

not be monotone in the number of agents. Intuitively, an increase in the number of agents

decreases the incentive to invest in the micro-foundation, and hence decreases the individual

revenues from any type. On the other hands, the number of agents increases, which increases

the total expected revenue. In the next example we show that the first effect may dominate,

and the expected revenue may decrease in the number of agents.

Example 1. Consider additively separable environments with quadratic costs and c(a) = a2

2β

for some β > 0. This implies that g(p) = βp2 and H(p, θ) = J(θ)p + βp2. Plotting the
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revenue in the optimal mechanism when values are uniformly distributed θ ∼ U([0, 1]) shows

that the revenue might be decreasing in the number of agents (c.f. Figure 2).
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Figure 2: Revenue for the additively separable environments with quadratic costs c(a) = a2

2β

and θ ∼ U([0, 1]) in the optimal mechanism for β = 2 (blue), β = 3 (red), β = 8 (black).

A similar calculation to the one of Example 1 shows that also in the auction without

reserve price the revenue need not to be monotone in the number of bidders. This implies that

the celebrated result by Bulow and Klemperer [1996] need not to hold in our environment.

That result states that, in the case without investments, the seller is always better off if he

attracts an additional bidder to the auction and sets a zero reserve price, compared to the

situation where he sets the optimal reserve price, but one less bidder participates. In our

framework with investments the seller might be worse of if an additional bidder participates,

and the result does not hold.

7.2 Multiplicative Separable Investments

In the micro-foundation we now assume that the action a ∈ A = R+ increases the agent’s

value multiplicatively17

v(a, θ) = a θ

and that the cost function is of the form

c(a) = b
al

l
where l ≥ 2 and b > 0.

17While formally the set of actions is not compact here this is inconsequential: this assumption is only
used to ensure that h is well defined, which we verify explicitly in this application.
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This implies that the induced non-linear valuation h is of the form

h(p, θ) = max
a∈A

p a θ − c(a) .

The first order condition yields that the optimal investment as a function of the agent’s type

θ and her probability of receiving the object is given by

a∗i (p, θ) =

(
θ p

b

) 1
l−1

.

Thus, the agent’s utility h is given by

h(p, θ) = p θ a∗(p, θ)− c(a∗(p, θ)) =
l − 1

l

(
plθl

b

) 1
l−1

.

It follows from plugging in (5) that the virtual utility H is given here by

H(p, θ) = h(p, θ)− ∂h(p, θ)

∂p
× 1− F (θ)

f(θ)

= p
l

l−1

(
θ

b

) 1
l−1
(
l − 1

l
θ − 1− F (θ)

f(θ)

)
.

Assume now that the function

K(θ) :=
l − 1

l
θ − 1− F (θ)

f (θ)

is increasing (a sufficient condition is the standard monotone hazard rate condition).18 Note

that

H(p, θ) = p
l

l−1

(
θ

b

) 1
l−1

K(θ)

and thus assuming Θ = [0, θ] we obtain that K(0) = − 1
f(0)

< 0 and that H(p, θ) ≥ 0 implies

that K(θ) ≥ 0. Hence, max{H(p, θ), 0} is convex in p and super-modular in (p, θ), i.e. the

environment is weakly convex super-modular (see Definition 2). Corollary 2 thus implies the

following characterization of the optimal mechanism:

Corollary 6. Assume that the function K(θ) = l−1
l
θ − 1−F (θ)

f(θ)
is increasing. Then, the

environment with multiplicative separable investments and monomial cost is weakly convex

18For example, assuming an uniform distribution of types, we get K(θ) = 2l−1
l θ − 1.
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super-modular.

1. Both the Uniform Price and the Pay-Your-Bid auctions with reserve price

R∗ =
l − 1

l

(
ψm,n (θ∗) (θ∗)l

b

) 1
l−1

where θ∗ solves K(θ∗) = 0 are symmetric revenue maximizing mechanisms.

2. The optimal reserve price is decreasing in the number of bidders n and increasing in

the number of objects m.

Remark: The second part of the above corollary easily follows because the critical cutoff

θ∗ is here independent of both n and m. The same observation and comparative statics results

apply to any valuation function that is multiplicatively separable h(p, θ) = a(p)b(θ) and that

yields a (weakly) convex super-modular environment.

We next show that contrary to the additively separable investment case, in the multiplica-

tive case with a single object, under relatively general assumptions, the expected revenue is

monotone increasing in the number of agents.

Lemma 3. Assume that m = 1. Assume further that K(θ) = l−1
l
θ− 1−F (θ)

f(θ)
is increasing and

that F is concave. Then, the expected revenue increases in the number of agents n.

7.3 Auctions with a Fixed Entry Cost19

This is also a multiplicative case, but there are only two actions: Enter (a = 1) and Stay

Out (a = 0). Values are given by v(ai, θi) = aiθi and c (ai) = cai where c > 0 is his entry

cost. For the utility h function we obtain here

h(p, θ) = max{pθ − c, 0}.

The marginal utility is given by

∂h(p, θ)

∂θ
=

0 if p θ < c

p if p θ > c

19Such auctions are studies by Menezes and Monteiro [2000] and by Celik and Ylankaya [2009]- the latter
authors also study asymmetric mechanisms
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and thus that the virtual utility is given by

H(p, θ) = h(p, θ)− ∂h(p, θ)

∂θ
× 1− F (θ)

f(θ)
=

0 if p θ < c

p×
(
θ − 1−F (θ)

f(θ)

)
− c if p θ > c

.

Assuming an increasing virtual value J(θ) = θ− 1−F (θ)
f(θ)

, note that pJ(θ)− c ≥ 0 implies that

pθ ≥ c and thus

max {0, H(p, θ)} = max

{
0, p×

(
θ − 1− F (θ)

f(θ)

)
− c
}

which is convex in p and super-modular in (p, θ) and the environment is weakly convex

super-modular. Thus Corollary 2 implies that the Uniform price and Pay-Your-Bid auction

are optimal:

Corollary 7. Assume that the hazard rate f(θ)
1−F (θ)

is increasing. Then, the environment with

entry cost is weakly convex super-modular and both the Uniform price and the Pay-Your-Bid

auctions with reserve price

R∗ =
1− F (θ∗)

f(θ∗)

where θ∗ solves

ψm,n (θ∗)

(
θ∗ − 1− F (θ∗)

f(θ∗)

)
= c

are symmetric revenue maximizing mechanisms. The optimal reserve price is decreasing in

the number of agents n and increasing in the number of objects m.

7.4 Optimal Crowd-Sourcing Contests

Our insights can be used to identify the optimal mechanisms in situations where the goal is

different from revenue maximization. For example, Chawla, Hartline and Sivan [2015] study

an auction for an indivisible object where the goal of the designer is to maximize the highest

bid (rather than the sum of bids as in the optimal auction a la Myerson). They show that,

when restricted to symmetric mechanisms, their maximization problem can be written as

n

∫
Θi

p(θ)N(θ)f(θ)dθ
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where the “virtual utility” N : [0, θ]→ R is defined by

N(θ) := θF (θ)n−1 − 1− F n(θ)

nf(θ)

Because of the linear, separable form in p, it is again clear that the Fan-Lorentz conditions

are satisfied if N is non-decreasing, and that the optimal mechanism is a standard auction

with a reserve price. Note that, the optimal cutoff N−1(0) is depending on the number of

bidders n. For example, taking the uniform distribution on [0, 1] yields

N(θ) = θn
(

1 +
1

n

)
− 1

n

and the optimal cutoff is

θ∗ =

(
1

n+ 1

)− 1
n

which is decreasing here in n.

8 Ironing

If the supermodularity condition which is necessary to apply the Fan-Lorentz theorem ∂H
∂θ∂p
≥

0 does not hold everywhere, we may get other extreme points as revenue maximizers, and

the monotonicity constraint may bind.20 In that case, we need to get a deeper insight into

the set of extreme points of the set

Ωmon(φ) =

{
p : p ≺w φ =

m−1∑
i=0

(
n− 1

i

)
tn−1−i(1− t)i ∧ p non-decreasing

}
.

The set of extreme points of Ωmon(φ) contains additional elements compared to the set

of extreme points of the orbit Ω(φ) that were characterized by Ryff (1967). Two general

observations can be made:

1. If p is an extreme point of Ωmon(φm,n) and p is not constant on a certain interval,

then p must coincide with φm,n on this interval (in particular, the allocation must be

efficient there). This is Lemma 4 below.

20For ironing in the single-agent case with a utility that is concave in the allocation, see Toikka [2011].
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2. Assume that p ∈ Ωmon(φm,n) equals a constant κ on an interval [t1, t2] while p(t) < κ

for t < t1 and p(t) > κ for t > t2 (recall that we consider only monotone p). By

majorization, we must have p(t2) < φm,n(t2). If p < φm,n on the entire interval [t1, t2],

then p cannot be an extreme point since the majorization condition is not tight on this

interval. Assume then that p(t3) = q(t3) for an interior point t3 ∈ (t1, t2).21 For p to

be an extreme point, the majorization constraint is binding:

∫ t3

t1

(κ− φm,n(t))dθ =

∫ t2

t3

(φm,n(t)− κ)dθ ⇔

κ =

∫ t2
t1
φm,n(t)dt

t2 − t1
.

In other words, the “ironed” value κ is completely determined by the interval where p is

constant and by the efficient allocation function φm,n.22

Lemma 4 (Ironing). Assume that the function p has a finite number of discontinuities on

interval
[
t, t
]
. If the function p is an extreme point of Ωmon(φm,n), and if it is continuous

and strictly increasing on an interval [t′, t′′], then p (t) = φm,n (t) for t ∈ [t′, t′′].

Remark: When comparing different extreme points, the seller essentially chooses be-

tween the efficient allocation and a constant probability of allocation over an interval of

types: by switching from the efficient allocation to a constant probability the seller de-

creases the probability of allocating an unit to the higher types and increases the probability

of allocation to the lower types. The super-modularity condition ∂2H
∂p∂θ
≥ 0 implies that the

marginal revenue ∂H
∂p

is an increasing function of agent’s type: in other words, it is more

beneficial to increase the winning probability of the higher than of the lower type. Therefore,

the optimal extreme point is the efficient allocation. The same intuition implies that, if H

is sub-modular ∂2H
∂p∂θ

< 0, the optimal mechanism reduces to an overall constant probability

of obtaining the object. The following example shows that such a situation might arise

naturally in the context of costly signalling:

Example 2 (Hartline and Roughgarden 2008). Consider a “money burning” environment

where costly signals are not beneficial to the mechanism designer: she seeks to maximize the

21If p is not continuous the argument needs to be slightly adjusted. A monotonic function is not continuous
at at most a countable set of points.

22Analogous results (without using majorization) were obtained in a one-object, discrete type setting by
Vohra (2011) and for step allocation functions by Manelli and Vincent (2010).
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utility from the allocation less the cost of individual signals. Assuming linear cost of signals

the designer’s expected utility is given by

nE
[
pi (θ)

1− F (θ)

f (θ)

]
.

Therefore, assuming a monotone hazard rate, we obtain ∂2H
∂p∂θ

< 0 , and the optimal mecha-

nism allocates all objects via a lottery (constant probability of obtaining the object). This is

indeed Corollary 2.11 in Hartline and Roughgarden [2008].

9 Conclusion

We have analyzed revenue maximization in a multi-unit auction framework where the agents’

utility functions are convex in the physical allocation. We have shown that such preferences

naturally arise as a reduced form in cases where the agents undertake, prior to the auction,

costly actions that affect their valuations. A revenue maximizing seller can provide stronger

ex-ante incentives by increasing the probability of allocating an object, but is constrained by

the limited supply and by the usual monopolistic supply reduction incentives: values become

here endogenous to the mechanism.

Our main results employed a novel combination of techniques, focused on a majorization

inequality. They identified the revenue maximizing allocation within the class of symmet-

ric mechanisms, and illustrated how it can be implemented via standard auction formats.

Finally, we displayed novel comparative statics pertaining to the optimal reserve price, and

illustrated our results in several specific environments with ex-ante investments.

10 Appendix

Proof of Proposition 1: Denote by p(θi) the interim probability with which agent i receives

an object when she is of type θi and by

u(θi, θ̃i) = h(p(θ̃i), θi)− E
[
y(θ̃i, θ−i)

]
the interim utility of agent i if she is of type θi and misrepresent her type as θ̃i. Recall that

we only consider symmetric mechanisms, and thus the functions p and u are independent of

the agents identity- we drop the agent’s subindex i for the remainder of the proof. Let U(θ)
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be the indirect utility of an agent of type θ who reports truthfully

U(θ) = max
θ̃

u(θ, θ̃).

As it is optimal to report truthfully in a direct mechanism, the envelope theorem yields that

∂U

∂θ
=
∂u

∂θ
=
∂h

∂θ
.

This implies that we can represent an agent’s interim utility as

U(θ) = U(θ) +

∫ θ

θ

∂h(p(v), v)

∂θ
dv =

∫ θ

θ

∂h(p(v), v)

∂θ
dv

where the last equality follows from the binding participation constraint.

The surplus of the designer (revenue) from each type is then given by

h(p(θ), θ)− U(θ) = h(p(θ), θ)−
∫ θ

θ

∂h(p(v), v)

∂θ
dv

and thus the objective becomes

max
p

∫ θ

θ

(
h(p(θ), θ)−

∫ θ

θ

∂h(p(v), v)

∂θ
dv

)
f(θ)dθ

Using integration by parts, we obtain:

∫ θ

θ

(∫ θ

θ

∂h(p(v), v)

∂θ
dv

)
f(θ)dθ =

∫ θ

θ

∂h(p(θ), θ)

∂θ
[1− F (θ)]dθ

so that the expected revenue from any agent is only a function of the interim probability p

with which an agent receives an object

∫ θ

θ

(
h(p(θ), θ)− ∂h(p(θ), θ)

∂θ
× 1− F (θ)

f(θ)

)
f(θ)dθ .

Multiplying by the number of agents n yields the result.
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Proof of Lemma 2:

∂

∂t

(
n∑
i=0

min{i,m}
(
n

i

)
tn−i(1− t)i

)

=
∂

∂t

(
m−

m−1∑
i=0

(m− i)
(
n

i

)
tn−i(1− t)i

)

= −
m−1∑
i=0

(m− i)
(
n

i

)[
(n− i)tn−i−1(1− t)i − itn−i(1− t)i−1

]
=

m−1∑
i=0

[
(m− i)

(
n

i

)
itn−i(1− t)i−1

]
−
[
(m− i)

(
n

i

)
(n− i)tn−i−1(1− t)i

]

=
m−1∑
i=0

[
(m− i− 1)

(
n

i+ 1

)
(i+ 1)tn−i−1(1− t)i

]
−
[
(m− i)

(
n

i

)
(n− i)tn−i−1(1− t)i

]

=
m−1∑
i=0

tn−i−1(1− t)i
[
(m− i− 1)

(
n

i+ 1

)
(i+ 1)− (m− i)

(
n

i

)
(n− i)

]

=
m−1∑
i=0

tn−i−1(1− t)i
[
(m− i− 1)

(
n

i

)
(n− i)− (m− i)

(
n

i

)
(n− i)

]

= −
m−1∑
i=0

tn−i−1(1− t)i
(
n

i

)
[n− i] = −n

m−1∑
i=0

tn−i−1(1− t)i
(
n− 1

i

)
= −nφ(t) .

Finally, we obtain that
∫ 1

0
φ(t)dt is given by

n

∫ 1

0

φ(t)dt =
n∑
i=0

min{i,m}
(
n

i

)
tn−i(1− t)i

∣∣∣
t=0

= m.

Lemma 5. G(0, t) = 0 for all t ∈ [0, 1]. Furthermore, if the environment is CSM then

G(q, t) , expressed as a function of the quantile, is convex in q and super-modular in (q, t).

Proof of Lemma 5: First, G(0, t) = H(0, F−1(t)) = h(0, F−1(t))− hθ(0, F−1(t))× 1−F (θ)
f(θ)

.

As h(0, θ) = 0 by assumption, it follows that hθ(0, θ) = 0 and thus G(0, t) = 0. In a CSM

environment G(q, t) = H(q, F−1(t)) is convex in q since H(p, θ) is convex in p. Similarly,

because H is super-modular, because F−1 is strictly increasing and because super-modularity

is preserved under strictly monotone transformations, we obtain that G is super-modular.

Proof of Theorem 1: As the number of agents and objects is fixed throughout the proof

and there is thus no risk of confusion we will drop the subindices and write φ for φm,n
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throughout the proof. Let q∗(t) be the interim probability with which an agent of type

θ = F−1(t) receives an object in an optimal symmetric mechanism. As no agent can receive

the object with an ex-ante probability greater than m/n in a symmetric mechanism, we have

that ∫ 1

0

q∗(t)dt ≤ m

n
=

∫ 1

0

φ(t)dt .

Consequently, there exists a quantile t∗ ∈ [0, 1] such that the ex-ante probability with which

an agent receives an object in the optimal mechanism equals the probability with which an

agent with a type higher than F−1(t∗) would receive an object under the interim allocation

probability φ ∫ 1

t∗
φ(t)dt =

∫ 1

0

q∗(t)dt .

Let θ∗ = F−1(t∗) be the type corresponding to the quantile t∗ and let q(t) be the interim

allocation probability that corresponds to the allocation rule that assigns a unit to an agent

if and only if her type is above θ∗ and at most m − 1 have a valuation higher than herself,

i.e.

q(t) = 1{t≥t∗}φ(t) .

In the next step we will argue that q majorizes q∗ , and thus the Fan-Lorentz Theorem

implies that q∗ = q. By Condition (13) of Proposition 3 we have that for all t ∈ [0, 1]∫ 1

t

q∗(z)dz ≤
∫ 1

t

φ(z)dz . (16)

By the definition of the critical quantile t∗ we obtain that∫ 1

t

q∗(z)dz ≤
∫ 1

0

q∗(z)dz =

∫ 1

t∗
φ(z)dz . (17)

Combining, (16) and (17) that for all t ∈ [0, 1]∫ 1

t

q∗(z)dz ≤ min

{∫ 1

t

φ(z)dz,

∫ 1

t∗
φ(z)dz

}
=

∫ 1

t

1t≥t̂φ(z)dz =

∫ 1

t

q(z)dz .

As
∫ 1

0
q(z)dz =

∫ 1

0
q∗(z)dz by the definitions of t∗ and q we obtain that q majorizes q∗.

Note that, as the environment is CSM, Lemma 5 implies that G satisfies the conditions of

30



Proposition 4. By the Fan-Lorentz Theorem (Proposition 4) we thus have that∫ 1

0

G(q∗(t), t)dt ≤
∫ 1

0

G(q(t), t)dt .

But, as q∗ is the revenue maximizing interim probability, the above equation must hold

with equality. Consequently, every mechanism which implements the interim probability

q(t) = 1{t≥t∗}φ(t) is revenue maximizing.

Finally, observe that, by Lemma 5, G(0, ·) = 0. Thus, the expected revenue as a function

of t∗ is given by

t∗ 7→
∫ 1

0

G
(
1{t≥t∗}φ(t), t

)
dt =

∫ 1

t∗
G (φ(t), t) dt . (18)

We show now that θ 7→ H(ψ(θ), θ) changes sign at most once, from negative to positive.

Assume that it crosses zero at θ∗ 6= θ, that is H(ψ(θ∗), θ∗) = 0. Then for any θ > θ∗ we have

H(ψ(θ), θ)−H(ψ(θ∗), θ∗)

= H(ψ(θ), θ)−H(ψ(θ), θ∗) +H(ψ(θ), θ∗)−H(ψ(θ∗), θ∗) ≥ 0

where the last inequality follows from (a) convexity of H which implies that

H(ψ(θ), θ∗)

ψ(θ)
≥ H(ψ(θ∗), θ∗)

ψ(θ∗)
= 0

and hence

H(ψ(θ), θ∗)−H(ψ(θ∗), θ∗) ≥ 0 .

and (b) supermodularity of H which implies that

H(ψ(θ), θ)−H(0, θ) ≥ H(ψ(θ), θ∗)−H(0, θ∗)⇐⇒

H(ψ(θ), θ)−H(ψ(θ), θ∗) ≥ H(0, θ)−H(0, θ∗) = 0.

Since θ 7→ H(ψ(θ), θ) changes sign at most once, from negative to positive, so does t 7→
G(φ(t), t) since F is a monotone transformation. Since t 7→ G(φ(t), t) changes its sign at

most once, from negative to positive, (18) this function is quasi-concave, and thus the optimal

quantile t∗ satisfies the first order condition G(φ(t∗), t∗) = 0. The result follows since

G(φ(t∗), t∗) = H(φ(t∗), F−1(t∗)) = H((φ ◦ F )(θ∗), θ∗) = H(ψm,n(θ∗), θ∗).
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Proof of Proposition 5: Let ψ, ψ′ : (0, 1) → (0,∞) be continuous functions with ψ(q) ≤
ψ′(q) for all q ∈ [0, 1]. Recall that θ 7→ H(ψ(θ), θ),and θ 7→ H(ψ′(θ), θ) change sign only

once23, from negative to positive, and define θ∗, θ∗∗ implicitly by

0 = H(ψ(θ∗), θ∗)

0 = H(ψ′ (θ∗∗)), θ∗∗) .

We have that

0 = H(ψ(θ∗), θ∗) =
H(ψ(θ∗), θ∗)

ψ(θ∗)
≤ H(ψ′(θ∗), θ∗)

ψ′(θ∗)
,

where the last inequality follows from the convexity of H , and from the fact that H(0, ·) = 0.

Last inequality implies that 0 ≤ H(ψ′(θ), θ) and, since θ 7→ H(ψ′(θ), θ) changes sign only

once, it follows that θ∗ ≥ θ∗∗. As φm,n decreases in n and increases in m point-wise, the

result follows from the above by setting ψ = φm,n ◦ F .

Proof of Corollary 2: By Proposition 1 the revenue in any symmetric incentive compatible

mechanism is given by

n

∫
Θ

H(p(θ), θ) f(θ) dθ .

Let H̃(p, θ) := max{H(p, θ), 0}. Trivially, an upper bound on the optimal revenue is thus

given by

max
p
n

∫
Θ

max{H(p(θ), θ), 0} f(θ) dθ = max
p
n

∫
Θ

H̃(p(θ), θ) f(θ) dθ . (19)

As this environment is CSM it follows from Theorem 1 that the revenue maximizing mecha-

nism allocates according ψ = φ ◦ F, conditional on being above a critical type θ∗ that is the

unique solution of H((φ ◦ F )(θ∗), θ∗) = 0. As H(0, θ) = 0 for all θ by Lemma 5 , we obtain

that this achieves the upper bound given in (19) and thus is an optimal mechanism.

Proof of Proposition 6: 1. Assume that all bidders other than i use a strictly increasing

strategy β (θ) . Since agent i’s utility is linear in money, her expected utility if she submits

23If H (ψ (θ) , θ) and H (ψ′ (θ) , θ) do not change sign, define θ∗ and θ∗∗ to be the relevant boundary of the
interval

[
θ, θ̄
]
.
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the bid β(θ̂) that is optimal for the type θ̂ is given by

h
(
ψm,n(θ̂), θi

)
−
∫ θ̂

θ

max {β (θj) ,R} fm:n−1 (θj) dθj (20)

where fm:n−1 is the density of the m−highest order statistic out of the n− 1 competitors of

i. Therefore, i chooses her bid b in order to maximize the value given in expression (20).

Taking the derivative of the last expression with respect to θ̂ , we obtain

∂h
(
ψm,n(θ̂), θi

)
∂p

∂ψm,n(θ̂)

∂θ
− fm:n−1(θ̂) max{β(θ̂),R} (21)

If β is a symmetric equilibrium strategy, then agent i with type θi prefers to bid b = β (θi).

The first order condition for any type θi who submits a bid greater than the reserve price R
is thus given by

∂h (ψm,n(θi), θi)

∂p

∂ψm,n(θi)

∂θ
− β (θi) fm:n−1 (θi) = 0

Noting that
∂ψm,n(θi)

∂θ
= fm:n−1 (θi)

we obtain the candidate equilibrium bid

β (θi) =
∂h (ψm,n(θi), θi)

∂p
.

Now set θ′ to be the solution to the equation

h (ψm,n(θ′), θ′)

ψm,n(θ∗)
= R .

We complete the equilibrium bidding strategy:

β(θi) =


∂h(ψm,n(θi),θi)

∂p
for all θi ∈ [θ′, θ]

0 for all θi ∈ [θ, θ′] .

We still need to verify that bidding β(θi) is optimal for an agent of type θi. First, observe

that the agent of type θ
′

has a utility of zero in equilibrium by the definition of the reserve

price. As any other type θi ∈ [θ′, θ] receives a weakly higher utility, no higher type wants

to deviate by bidding zero. To verify that the bid β(θi) is optimal we show that the agent’s

33



objective (20) is concave. Plugging the definition of β in the derivative of (20) we obtain

∂h
(
ψm,n(θ̂), θi

)
∂p

ψ′m,n(θ̂)− fm:n−1(θ̂) max{β(θ̂), R}

= ψ′m,n(θ̂)

∂h
(
ψm,n(θ̂), θi

)
∂p

−
∂h
(
ψm,n(θ̂), θ̂

)
∂p

 . (22)

As h is super-modular and as ψ′m,n is positive, the right-hand side of (22) changes its sign

once from positive to negative at θ̂ = θi. Consequently, the agent’s objective (20) is quasi-

concave and maximized by bidding truthfully θ̂ = θi. It is immediate that it can never be

optimal for the agent to make a bid higher than β(θ) since a bid of β(θ) would already ensure

that she wins the object and pays strictly less.

To verify that no type θi ∈ [θ, θ′] wants to deviate by making a non-zero bid observe that,

by deviating to any bid in [β(θ′), β(θ)], the agent would get a utility which is lower than the

utility the type θ
′

would get from making this bid. But, by construction the optimal bid of

the type θ
′

yields her a utility of zero, which implies that the utility from any bid greater

than zero must be less than zero for all lower types.

2. The proof of this part follows by the monotonicity and convexity of h in p and from

the observation that, by definition of ψm,n, the critical type θ′m,n associated to a fixed reserve

price R increases in the number of bidders n and decreases in the number of objects m.

Proof of Proposition 7: Agent i’s utility in a symmetric equilibrium where all but bidder

i use the bidding strategy β and i submits a bid b is given by

h
(
ψm,n(β−1 (b)), θi

)
− ψm,n(β−1 (b))b . (23)

Taking the derivative with respect to b yields that[
∂h (ψm,n(β−1 (b)), θi)

∂p
− b
]
∂ψ(β−1 (b))

∂θ

∂β−1 (b)

∂b
− ψm,n(β−1 (b)).

Plugging b = β(θ) (as it is optimal for agent i to make the equilibrium bid) yields[
∂h (ψm,n(θi), θi)

∂p
− β(θi)

]
∂ψ(θi)

∂θ

1

β′(θi)
− ψm,n(θi) = 0 .
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Rearranging for β′ yields the following differential equation:

β′(θi) =
ψ′m,n(θi)

ψm,n(θi)

[
∂h (ψm,n(θi), θi)

∂p
− β(θi)

]
. (24)

Since θi 7→
ψ′m,n(θi)

ψm,n(θi)
is continuous and since the left-hand-side of (24) is uniformly Lipschitz

in β, the ODE (24) admits a unique solution for every initial value. Set θ′ to be the solution

to the equation
h (ψm,n(θ′), θ′)

ψm,n(θ′)
= R .

If we set β(θ′) = R then the agent with type θ′ is, by construction, indifferent between

bidding R and bidding zero. For all higher types θ ∈ (θ′, θ] we extend the bidding function

by solving the ODE (24). Since (24) is linear, we obtain the explicit solution

β(θi) = Rψm,n(θ′)

ψm,n(θi)
+

1

ψm,n(θi)

∫ θi

θ′
ψ′m,n(z)

∂h (ψm,n(z), z)

∂p
dz

To verify, take the derivative to obtain

β′(θi) = −
ψ′m,n(θi)ψm,n(θ′)

(ψm,n(θi))
2 R−

ψ′m,n(θi)

(ψm,n(θi))
2

∫ θi

θ′
ψ′m,n(z)

∂h (ψm,n(z), z)

∂p
dz

+
ψ′m,n(θi)

ψm,n(θi)

∂h (ψm,n(θi), θi)

∂p

= −
ψ′m,n(θi)

ψm,n(θi)
β(θi) +

ψ′m,n(θi)

ψm,n(θi)

∂h (ψm,n(θi), θi)

∂p

=
ψ′m,n(θi)

ψm,n(θi)

[
∂h (ψm,n(θi), θi)

∂p
− β(θi)

]
.

We first need to show that the solution β of (24) is increasing for all θi ≥ θ′. Observe

that:

β′ ≥ 0⇔ R
ψ′m,n(θ′)

ψm,n(θi)
+

1

ψm,n(θi)

∫ θi

θ′
ψ′m,n(z)

∂h (ψm,n(z), z)

∂p
dz ≤ ∂h (ψm,n(θi), θi)

∂p

Plugging the expression for R, this becomes:

h (ψm,n(θ′), θ′)

ψm,n(θi)
+

1

ψm,n(θi)

∫ θi

θ′
ψ′m,n(z)

∂h (ψm,n(z), z)

∂p
dz ≤ ∂h (ψm,n(θi), θi)

∂p
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By super-modularity, we can bound the left hand side above:

h (ψm,n(θ′), θ′)

ψm,n(θi)
+

1

ψm,n(θi)

∫ θi

θ′
ψ′m,n(z)

∂h (ψm,n(z), z)

∂p
dz

≤ h (ψm,n(θ′), θ′)

ψm,n(θi)
+

∂h(ψm,n(θi),θi)

∂p

ψm,n(θi)
(ψm,n(θi)− ψm,n(θ′)

=
h (ψm,n(θ′), θ′)

ψm,n(θi)
+
∂h (ψm,n(θi), θi)

∂p
− ψm,n(θ′)

ψm,n(θi)

∂h (ψm,n(θi), θi)

∂p

Thus, we need to show that:

h (ψm,n(θ′), θ′)

ψm,n(θi)
+
∂h (ψm,n(θi), θi)

∂p
− ψm,n(θ′)

ψm,n(θ)

∂h (ψm,n(θi), θi)

∂p
≤ ∂h (ψm,n(θi), θi)

∂p
⇐⇒

1

ψm,n(θi)
[h (ψm,n(θ′), θ′)− ψm,n(θ′)

∂h (ψm,n(θi), θi)

∂p
] ≤ 0⇐⇒

h (ψm,n(θ′), θ′)

ψm,n(θ′)
≤ ∂h (ψm,n(θi), θi)

∂p

The last inequality holds by the convexity and super-modularity of h.

We need to verify that it is indeed optimal for the type θi to bid β(θi). We start by

considering types θi ∈ [θ′, θ]. By construction, the bid β(θi) satisfies the agent’s first order

condition. If the agent deviates by making the equilibrium bid that is optimal for type θ̂ ,

her utility equals

h
(
ψm,n(θ̂), θi

)
− ψm,n(θ̂)β(θ̂) . (25)

The derivative with respect to θ̂ is∂h
(
ψm,n(θ̂), θi

)
∂p

− β(θ̂)

ψ′m,n(θ̂)− ψm,n(θ̂)β′(θ̂)

=

∂h
(
ψm,n(θ̂), θ̂

)
∂p

− β(θ̂)

ψ′m,n(θ̂)

︸ ︷︷ ︸
ψm,n(θ̂)β′(θ̂)

−ψm,n(θ̂)β′(θ̂) +

∂h
(
ψm,n(θ̂), θi

)
∂p

−
∂h
(
ψm,n(θ̂), θ̂

)
∂p



=
∂h
(
ψm,n(θ̂), θ̂

)
∂p

−
∂h
(
ψm,n(θ̂), θ̂

)
∂p

. (26)

(at the last step we used the fact that β solves the ODE (24). As h is super-modular,
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expression (26) is increasing, and changes its sign from positive to negative at θi = θ̂. Thus,

the agent’s objective (25) is concave, and is maximized at θi = θ̂. An agent of type θi ∈ [θ′, θ]

thus prefers to make the bid β(θi) over any other bid in [β(θ′), β((θ)] = [R, β(θ)]. Clearly it

can never be optimal for the agent to make a bid higher than β(θ) as a bid of β(θ) would

already ensure that she wins and pays strictly less. It remains to verify that the agent does

not want to make a bid of zero: observe that the agent could deviate to bid R, which would

yield a utility higher than the equilibrium utility of the type θ′. It thus suffices to verify that

the equilibrium utility of the type θ′ is non-negative. This type’s equilibrium utility is given

by

h (ψm,n(θ′), θ′)− ψm,n(θ′)R ,

that, by the definition of the reserve price, equals zero. Finally, we verify that no type

θi ∈ [θ, θ′] wants to deviate by making a non-zero bid. To see this, note that by deviating to

any bid in [R, β(θ)] such a type would get a utility which is lower than the utility the type

θ′ gets from making this bid. But, by construction, the optimal bid of type θ
′

equals R and

yields her a utility of zero. This implies that the utility resulting from any bid greater zero

must be less than zero for all lower types.

Proof of Proposition 8: With some abuse, we shall treat here m and n as continuous

variables. Recall that the critical cutoff is given by

H (ψm,n (θ∗) , θ∗) = 0.

Therefore,

∂θ∗

∂n
= −

∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂n
(θ∗)

∂H
∂θ

(ψm,n (θ∗) , θ∗) + ∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂θ
(θ∗)

Also, we know that

R∗ =
h (ψm,n (θ∗) , θ∗)

ψm,n (θ∗)
.

which implies

∂R∗

∂n
=

[
∂h(ψm,n(θ∗),θ∗)

∂p

(
∂ψm,n(θ∗)

∂n
+ ∂ψm,n(θ∗)

∂θ
∂θ∗

∂n

)
+ ∂h(ψm,n(θ∗),θ∗)

∂θ
∂θ∗

∂n

]
ψm,n (θ∗)

(ψm,n (θ∗))2

−

(
∂ψm,n(θ∗)

∂n
+ ∂ψm,n(θ∗)

∂θ
∂θ∗

∂n

)
h (ψm,n (θ∗) , θ∗)

(ψm,n (θ∗))2 .
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The sign of the last derivative is just the sign of[
∂h (ψm,n (θ∗) , θ∗)

∂p

(
∂ψm,n (θ∗)

∂n
+
∂ψm,n (θ∗)

∂θ

∂θ∗

∂n

)
+
∂h (ψm,n (θ∗) , θ∗)

∂θ

∂θ∗

∂n

]
ψm,n (θ∗)

−
(
∂ψm,n (θ∗)

∂n
+
∂ψm,n (θ∗)

∂θ

∂θ∗

∂n

)
h (ψm,n (θ∗) , θ∗)

[
∂h (ψm,n (θ∗) , θ∗)

∂p

(
∂ψm,n (θ∗)

∂n
+
∂ψm,n (θ∗)

∂θ

∂θ∗

∂n

)
+
∂h (ψm,n (θ∗) , θ∗)

∂θ

∂θ∗

∂n

]
ψm,n (θ∗)

−
(
∂ψm,n (θ∗)

∂n
+
∂ψm,n (θ∗)

∂θ

∂θ∗

∂n

)
h (ψm,n (θ∗) , θ∗)

=

(
∂ψm,n (θ∗)

∂n
+
∂ψm,n (θ∗)

∂θ

∂θ∗

∂n

)[
∂h (ψm,n (θ∗) , θ∗)

∂p
ψm,n (θ∗)− h (ψm,n (θ∗) , θ∗)

]
+ψm,n (θ∗)

∂h (ψm,n (θ∗) , θ∗)

∂θ

∂θ∗

∂n
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Plugging the expression for ∂θ∗

∂n
into the last expression we get(

∂ψm,n (θ∗)

∂n
− ∂ψm,n (θ∗)

∂θ

∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂n
(θ∗)

∂H
∂θ

(ψm,n (θ∗) , θ∗) + ∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂θ
(θ∗)

)

×
[
∂h

∂p
(ψm,n (θ∗) , θ∗)ψm,n (θ∗)− h (ψm,n (θ∗) , θ∗)

]
−ψm,n (θ∗)

∂h

∂θ
(ψm,n (θ∗) , θ∗)

∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂n
(θ∗)

∂H
∂θ

(ψm,n (θ∗) , θ∗) + ∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂θ
(θ∗)

=
∂ψm,n (θ∗)

∂n

(
1−

∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂n
(θ∗)

∂H
∂θ

(ψm,n (θ∗) , θ∗) + ∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂θ
(θ∗)

)

×
[
∂h

∂p
(ψm,n (θ∗) , θ∗)ψm,n (θ∗)− h (ψm,n (θ∗) , θ∗)

]
−ψm,n (θ∗)

∂h

∂θ
(ψm,n (θ∗) , θ∗)

∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂n
(θ∗)

∂H
∂θ

(ψm,n (θ∗) , θ∗) + ∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂θ
(θ∗)

=
∂ψm,n

∂n
(θ∗) ∂H

∂θ
(ψm,n (θ∗) , θ∗)

∂H
∂θ

(ψm,n (θ∗) , θ∗) + ∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂θ
(θ∗)

×
[
∂h

∂p
(ψm,n (θ∗) , θ∗)ψm,n (θ∗)− h (ψm,n (θ∗) , θ∗)

]
−ψm,n (θ∗)

∂h

∂θ
(ψm,n (θ∗) , θ∗)

∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂n
(θ∗)

∂H
∂θ

(ψm,n (θ∗) , θ∗) + ∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂θ
(θ∗)

=
∂ψm,n

∂n
(θ∗)

∂H
∂θ

(ψm,n (θ∗) , θ∗) + ∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂θ
(θ∗)

×

[
∂H
∂θ

(ψm,n (θ∗) , θ∗)
(
∂h
∂p

(ψm,n (θ∗) , θ∗)ψm,n (θ∗)− h (ψm,n (θ∗) , θ∗)
)

−ψm,n (θ∗) ∂h
∂θ

(ψm,n (θ∗) , θ∗) ∂H
∂p

(ψm,n (θ∗) , θ∗)

]

Since H(0, θ) = 0 for any θ, we have that ∂H
∂θ

(0, θ) = 0 for any θ. Therefore ∂2H
∂p∂θ
≥ 0 implies

that ∂H
∂θ

(p, θ) ≥ 0. Recall that ψm,n(θ) is strictly decreasing in n and increasing in θ. Since

H is convex in p, and H(0, θ) = 0 we can conclude that

∂H

∂p
(ψm,n (θ∗) , θ∗) ≥ H (ψm,n (θ∗) , θ∗)

ψm,n(θ∗)
= 0
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where the last equality follows from

H (ψm,n (θ∗) , θ∗) = 0.

Therefore
∂ψm,n

∂n
(θ∗)

∂H
∂θ

(ψm,n (θ∗) , θ∗) + ∂H
∂p

(ψm,n (θ∗) , θ∗) ∂ψm,n

∂θ
(θ∗)

< 0.

Hence, we need to know the sign of

∂H

∂θ

(
∂h

∂p
ψm,n − h

)
− ψm,n

∂h

∂θ

∂H

∂p
.

Rearranging the above expression yields

∂H

∂θ

(
∂h

∂p
ψm,n − h

)
− ψm,n

∂h

∂θ

∂H

∂p
= ψm,n

[
∂H

∂θ

∂h

∂p
− ∂h

∂θ

∂H

∂p

]
− h∂H

∂θ
.

Recall that

H(p, θ) = h(p, θ)− ∂h(p, θ)

∂θ

1− F (θ)

f (θ)

Therefore,

∂H(p, θ)

∂θ
=

∂h(p, θ)

∂θ
− ∂2h(p, θ)

∂θ2

1− F (θ)

f (θ)
− ∂h(p, θ)

∂θ

∂

∂θ

1− F (θ)

f (θ)

∂H(p, θ)

∂p
=

∂h(p, θ)

∂p
− ∂2h(p, θ)

∂θ∂p

1− F (θ)

f (θ)
.
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Hence

∂H (ψm,n (θ∗) , θ∗)

∂θ

∂h (ψm,n (θ∗) , θ∗)

∂p
− ∂h (ψm,n (θ∗) , θ∗)

∂θ

∂H (ψm,n (θ∗) , θ∗)

∂p

=
∂h (ψm,n (θ∗) , θ∗)

∂θ

∂h (ψm,n (θ∗) , θ∗)

∂p
− ∂h (ψm,n (θ∗) , θ∗)

∂p

∂2h (ψm,n (θ∗) , θ∗)

∂θ2

1− F (θ∗)

f (θ∗)

−∂h (ψm,n (θ∗) , θ∗)

∂p

∂h (ψm,n (θ∗) , θ∗)

∂θ

∂

∂θ

1− F (θ∗)

f (θ∗)

−∂h (ψm,n (θ∗) , θ∗)

∂p

∂h (ψm,n (θ∗) , θ∗)

∂θ
+
∂h (ψm,n (θ∗) , θ∗)

∂θ

∂2h (ψm,n (θ∗) , θ∗)

∂θ∂p

1− F (θ∗)

f (θ∗)

= −∂h (ψm,n (θ∗) , θ∗)

∂p

∂2h (ψm,n (θ∗) , θ∗)

∂θ2

1− F (θ∗)

f (θ∗)

−∂h (ψm,n (θ∗) , θ∗)

∂p

∂h (ψm,n (θ∗) , θ∗)

∂θ

∂

∂θ

1− F (θ∗)

f (θ∗)

+
∂h (ψm,n (θ∗) , θ∗)

∂θ

∂2h (ψm,n (θ∗) , θ∗)

∂θ∂p

1− F (θ∗)

f (θ∗)
.

From the definition of the optimal reserve price we obtain that

h (ψm,n (θ∗) , θ∗) = hθ (ψm,n (θ∗) , θ∗)
1− F (θ∗)

f (θ∗)
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(since θ∗ solves H (ψm,n (θ∗) , θ∗) = 0). Therefore,

ψm,n (θ∗)

[
∂H (ψm,n (θ∗) , θ∗)

∂θ

∂h (ψm,n (θ∗) , θ∗)

∂p
− ∂h (ψm,n (θ∗) , θ∗)

∂θ

∂H (ψm,n (θ∗) , θ∗)

∂p

]
−h (ψm,n (θ∗) , θ∗)

∂H (ψm,n (θ∗) , θ∗)

∂θ

= ψm,n (θ∗)

[
−∂h(ψm,n(θ∗),θ∗)

∂p

∂2h(ψm,n(θ∗),θ∗)
∂θ2

1−F (θ∗)
f(θ∗)

− ∂h(ψm,n(θ∗),θ∗)
∂p

∂h(ψm,n(θ∗),θ∗)
∂θ

∂
∂θ

1−F (θ∗)
f(θ∗)

+∂h(ψm,n(θ∗),θ∗)
∂θ

∂2h(ψm,n(θ∗),θ∗)
∂θ∂p

1−F (θ∗)
f(θ∗)

]

−hθ (ψm,n (θ∗) , θ∗)
1− F (θ∗)

f (θ∗)

[
∂h (ψm,n (θ∗) , θ∗)

∂θ
− ∂2h (ψm,n (θ∗) , θ∗)

∂θ2

1− F (θ∗)

f (θ∗)

−∂h (ψm,n (θ∗) , θ∗)

∂θ

∂

∂θ

1− F (θ∗)

f (θ∗)

]

= − ∂

∂θ

1− F (θ∗)

f (θ∗)

[
ψm,n (θ∗)

∂h (ψm,n (θ∗) , θ∗)

∂p

∂h (ψm,n (θ∗) , θ∗)

∂θ

+

(
∂h (ψm,n (θ∗) , θ∗)

∂θ

)2
1− F (θ∗)

f (θ∗)

]

+
1− F (θ∗)

f (θ∗)

 −ψm,n (θ∗) ∂h(ψm,n(θ∗),θ∗)
∂p

∂2h(ψm,n(θ∗),θ∗)
∂θ2

+ ψm,n (θ∗) ∂h(ψm,n(θ∗),θ∗)
∂θ

∂2h(ψm,n(θ∗),θ∗)
∂θ∂p

−
(
∂h(ψm,n(θ∗),θ∗)

∂θ

)2

+ ∂h(ψm,n(θ∗),θ∗)
∂θ

∂2h(ψm,n(θ∗),θ∗)
∂θ2

1−F (θ∗)
f(θ∗)


The assumptions ∂2h

∂θ2
≤ 0, and ∂

∂θ
(1−F

f
) ≤ −1 guarantee that the above expression is

positive. Since

∂

∂θ
(
1− F (θ∗)

f (θ∗)
) =
− (f (θ∗))2 − f ′ (θ∗)F (θ∗)

(f (θ∗))2 = −1− f ′ (θ∗)F (θ∗)

(f (θ∗))2 ,

we obtain that f ′ (θ∗) ≥ 0 is sufficient for ∂R∗

∂n
< 0. The proof that ∂R∗

∂m
> 0 is similar, the

only difference being that ψm,n(θ) is increasing in m.

Proof of Lemma 3: Recall that the expected revenue is given by

R = n

∫ 1

θ∗
(p)

l
l−1

(
θ

b

) 1
l−1

K(θ)f (θ) dθ

where l−1
l
θ∗ − 1−F (θ∗)

f(θ∗)
= 0 and p = F n−1 (θ).
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The derivative of the expected revenue with respect to n is

∫ 1

θ∗
F

(n−1)l
l−1 (θ)

(
θ

b

) 1
l−1

K(θ)f (θ) dθ + n

∫ 1

θ∗
F

(n−1)l
l−1 (θ)

l

l − 1
lnF (θ)

(
θ

b

) 1
l−1

K(θ)f (θ) dθ

=

∫ 1

θ∗
K(θ)

(
θ

b

) 1
l−1

F
(n−1)l
l−1 (θ)

[
1 + n

l

l − 1
lnF (θ)

]
f (θ) dθ

This derivative can be written as:

∫ 1

θ∗
K(θ)

1

F
1

l−1 (θ)

(
θ

b

) 1
l−1

F
(n−1)l
l−1 (θ)

[
1 + n

l

l − 1
lnF (θ)

]
F

1
l−1 (θ) f (θ) dθ

Because 1+n l
l−1

lnF (θ) changes sign only once as a function of θ , from negative to positive,

and by the concavity of F and monotonicity of K, the function K(θ)
(

θ
F (θ)

) 1
l−1

is positive

and increasing. Thus, it is sufficient to show that24

∫ 1

θ∗
F

(n−1)l
l−1 (θ)

[
1 + n

l

l − 1
lnF (θ)

]
F

1
l−1 (θ) f (θ) dθ ≥ 0.

Define a distribution S (θ) = F
l

l−1 (θ) and let s (θ) = l
l−1
F

1
l−1 (θ) be its density. Using the

new notation we have∫ 1

θ∗
Sn−1 (θ) [1 + n lnS (θ)] s (θ) dθ

=

∫ 1

θ∗
Sn−1 (θ) s (θ) dθ +

∫ 1

θ∗
Sn−1 (θ)n lnS (θ) s (θ) dθ =

=

∫ 1

θ∗
Sn−1 (θ) s (θ) dθ + Sn (θ) lnS (θ) |1θ=θ∗ −

∫ 1

θ∗
Sn (θ)

s (θ)

S (θ)
dθ

= −Sn (θ∗) lnS (θ∗) > 0 .

Proof of Lemma 4. Assume, by contradiction, that the statement is not correct. Hence

there exists an interval [t′, t′′] such that the extreme point p is continuous and strictly in-

24Assume k(·) changes sign once at x∗ ∈ [a, b] from negative to positive and assume that d(·) is positive

increasing on the interval [a, b]. Then
∫ b

a
k(t)dt ≥ 0 implies

∫ b

a

k(t)d(t)dt =

∫ x

a

k(t)d(t)dt+

∫ b

x

k(t)d(t)dt ≥ d(x)

∫ x

a

k(t)dt+ d(x)

∫ b

x

k(t)dt = d(x)

∫ b

a

k(t)dt ≥ 0
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creasing on this interval, but p (t) 6= φm,n (t).

We shall exhibit a function u (t) 6= 0 such that both functions p + u and p − u are

non-decreasing and satisfy

p+ u ≺ φm,n and p− u ≺ φm,n

contradicting the hypothesis that p is extreme.

By possibly choosing a subset of [t′, t′′] , we can assume without loss of generality that

either p (t) < φm,n (t) for t ∈ [t′, t′′] or p (t) > φm,n (t) for t ∈ [t′, t′′], and we focus here on the

first possibility (the latter is completely analogous).

Choose t1, t2, t3 such that t′ < t1 < t2 < t3 < t′′. Denote by δ1 = mint∈[t1,t2] p
′ (t) (if

the derivative does not exist we take the minimum between the left and right derivatives

that always exist since p is monotonic), and similarly denote δ2 = mint∈[t2,t3] p
′ (t). By

assumptions, δ1 > 0 and δ2 > 0. We define u as follows:

u (t) =



δ1 (t− t1) if t ∈ [t1, t1 + ε1]

δ1ε1 − δ1 (t− t1 − ε1) if t ∈ [t1 + ε1, t1 + 2ε1]

−δ2 (t− t3 + 2ε2) if t ∈ [t3 − 2ε2, t3 − ε2]

−δ2ε2 + δ2 (t− t3 + ε2) if t ∈ [t3 − ε2, t3]

0 otherwise

where ε1 and ε2 are chosen such that

(1) ε1 ≤ t2 − t1, ε2 ≤ t3 − t2,

(2) δ1ε1 − δ2ε2 = 0

(3) p (t)− δ2ε2 < φm,n (t) , t ∈ [t2, t3] .

The second condition guarantees that
∫
u (t) dt = δ1ε1 − δ2ε2 = 0. Notice that, by

construction, both p+u and p−u are monotone. Moreover by construction p+u ≺ φm,n (t),

while condition (3) guarantees that p− u ≺ φm,n (t) .
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u

0

11

22

t1 t1+Ɛ1 t1+2Ɛ1 t2 t3-2Ɛ2 t3-Ɛ2 t3 t

Figure 3: function u

10.1 Sufficient conditions for applying the FL Theorem

When does our ”virtual utility” function H((p, θ)

H(p, θ) = h(p, θ)− hθ(p, θ)×
1− F (θ)

f(θ)

satisfies the conditions in the Fan-Lorentz Theorem, i.e. when is the environment convex

super-modular ? We have

∂2H

(∂p)2
=

∂2h

(∂p)2
− ∂3h

∂θ(∂p)2
(
1− F (θ)

f(θ)
)

Since ∂2h
(∂p)2

≥ 0 by assumption and because1−F (θ)
f(θ)

≥ 0, a sufficient condition for ∂2H
(∂p)2

≥ 0 is
∂3h

∂θ(∂p)2
≤ 0.

We also have
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∂2H

∂θ∂p
=

∂2h

∂θ∂p
− ∂2h

∂θ∂p

d

dθ
(
1− F (θ)

f(θ)
)− ∂3h

(∂θ)2∂p
(
1− F (θ)

f(θ)
) =

∂2h

∂θ∂p
(1− d

dθ
(
1− F (θ)

f(θ)
))− ∂3h

(∂θ)2∂p
(
1− F (θ)

f(θ)
)

A sufficient conditions for ∂2H
∂θ∂p
≥ 0 is an increasing hazard rate, i.e. d

dθ
( f(θ)

1−F (θ)
) ≥ 0 and

∂3h
(∂θ)2∂p

≤ 0.To conclude sufficient conditions are :

1.
∂3h

∂θ(∂p)2
≤ 0,

∂3h

(∂θ)2∂p
≤ 0

2. IFR

These conditions can be further decomposed into standard sufficient conditions on the func-

tions v and c appearing in the micro-foundation.

The above derivations can be compared to the classical treatment, e.g., see Fudenberg

and Tirole [1991] (Section 7.3.2). They only consider a single agent and hence need not

consider the resource constraint that is our main concern here. Their sufficient conditions

are:

FT1.
∂3h

∂θ(∂p)2
≥ 0,

∂3h

(∂θ)2∂p
≤ 0

FT2. IFR

The difference to our conditions is due to their assumption that the valuation is concave

in the allocation. Thus, they initially assume ∂3h
(∂p)2

≤ 0, and having ∂3h
∂θ(∂p)2

≥ 0 ensures that

their welfare function is concave so that the First Order Approach can be employed.

References

[1958] Bauer, H. (1958): “Minimalstellen von Funktionen und Extremalpunkte I” Archiv

der Mathematik 9, 389-393.

[1991] Border, K. (1991): “Implementation of Reduced Form Auctions: A Geometric Ap-

proach,” Econometrica 59(4), 1175-1187.

46



[1996] Bulow, J. and Klemperer P. (1996): “Auctions vs Negotiations,” The American Eco-

nomic Review 86(1), 180-194.

[2013] Che, Y.K., Kim, J. and Mierendorff, K. (2013): “Generalized Reduced Form Auctions:

A Network-Flow Approach,” Econometrica 81(6), 2487–2520.

[2009] Celik, G and Yilankaya, O. (2009): “Optimal Auctions with Simultaneous andbCostly

Participation”, B.E. Journal of Theoretical Economics (Advances) 9(1), Article 24.

[2015] Chawla, S., Hartline, J and Sivan, B. (2015): “Optimal Crowdsourcing Contests,”

Games and Economic Behavior, forthcoming.

[1990] Crawford, V. (1990): “Equilibrium without Independence,” Journal of Economic

Theory 50, 127-154.

[2017] Dillenberger, D. and Raymond, C. (2017) :“Mixture Aversion and the Consensus

Effect,”, discussion paper, University of Pennsylvania.

[1957] Gale, D. (1957) “A Theorem on Flows in Networks,” Pacific Journal of Mathematics,

7, 1073-1082.

[2013] Gershkov, A., Goeree J., Kushnir, A., Moldovanu, B. and Shi, X. (2013): “On

the Equivalence of Bayesian and Dominant Strategy Implementation,” Econometrica

81(1), 197-220.

[1984] Guesnerie, R. and Laffont J.-J. (1984): “A Complete Solution to a Class of Principal-

Agent Problems with an Application to the Control of a Self-Managed Firm,” Journal

of Public Economics 25, 329-369.

[1954] Fan, K. and Lorentz, G.G. (1954): “An Integral Inequality,” The American Mathe-

matical Monthly 61(9), 626-631

[1991] Fudenberg, D. and Tirole, J. (1991): Game Theory, Cambridge: MIT Press.

[1929] Hardy, G. H., Littlewood J. E., and Polya G. (1929): “Some simple inequalities

satisfied by convex functions,” Messenger Math 58, 145-152.

[2015] Hart, S. and Reny, P (2015): “Implementation of reduced form mechanisms: a simple

approach and a new characterization,” Economic Theory Bulletin 3(1), 1-8.

47



[2008] Hartline, J. and Roughgarden, T. (2008): “Optimal Mechanism Design and Money

Burning,” Proceedings of the Fortieth Annual ACM Symposium on Theory of Com-

puting, 75-84.

[1979] Kahneman, D. and Tversky, A. (1979): “Prospect Theory: An Analysis of Decision

Under Risk,” Econometrica 47(2), 263–291.

[1989] Karni, E. and Safra, Z. (1986): “Dynamic Consistency, Revelations in Auctions and

the Structure of Preferences,” Review of Economic Studies 56,421-434.

[1979] Kreps, D. and Porteus, E. (1979): “Temporal von Neumann-Morgenstern and Induced

Preferences,” Journal of Economic Theory 20, 8l-109.

[1949] Lorentz, G.G. (1949): “A Problem of Plane Measure,” American Journal of Mathe-

matics 71, 417-426.

[1984] Machina, M. (1984): “Temporal Risk and the Nature of Induced Preferences,” Jour-

nal of Economic Theory 33, 199-231.

[2010] Manelli, A. and Vincent, D. (2010): “Bayesian and Dominant Strategy Implementa-

tion in the Independent, Private Values Model,” Econometrica 78(6), 1905-1939.

[1984] Maskin, E. S. and Riley, J. (1984), “Optimal Auctions with Risk-Averse Buyers,”

Econometrica 52, 1473–1518.

[1984] Matthews, S. A. (1984), “On the Implementability of Reduced Form Auctions,”

Econometrica 52, 1519–1522.

[2000] Menezes, F. and Monteiro, P. (2000): “Auctions with endogenous participation,”

Review of Economic Design 5, 71-89.

[1994] Milgrom, P. and Shannon C. (1994) “Monotone comparative statics,” Econometrica,

157–180.

[1981] Myerson, R.B. (1981) “Optimal Auction Design,” Mathematics of Operations Re-

search, 6(1), 58–73.

[1984] Neilson, W. (1994) “Second Price Auctions without Expected Utility,” Journal of

Economic Theory 62, 136-151

48



[1982] Quiggin, J. (1982), “A theory of anticipated utility,” Journal of Economic Behavior

& Organization, 3(4), 323-343.

[1981] Riley, J. and Samuelson, W. (1981), “Optimal Auctions,” American Economic Re-

view, 71(3), 381-392.

[1967] Ryff, J.V. (1967): “ Extreme Points of Some Convex Subsets of L1(0, 1),” Proceedings

of the American Mathematical Society 18(6), 1026-1034.

[1957] Ryser, H. J. (1957) “Combinatorial Properties of Matrices of Zeros and Ones,” Cana-

dian Journal of Mathematics 9, 371-377.

[1965] Strassen, V. (1965): “The Existence of Probability Measures with Given Marginals,”

Mathematical Statistics 36, 423-439.

[2011] Vohra, R.V. (2011): Mechanism Design: A Linear Porgramming Approach, Cam-

bridge: Cambridge University Press

[2011] Toikka, J. (2011) : “Ironing Without Control,” Journal of EconomicTheory 146(6),

2510–2526.

[2017] Zhang, M. (2017): “Auctions vs. Negotiations: Optimal Selling Mechanism with

Endogenous Bidder Values,” discussion paper, University of Technology, Sydney.

49


