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Abstract

In this paper we further extend the role of jumps in asset prices to liquidity. The

positive relation between volatility and liquidity costs has been well documented in the

literature. We show that when decomposing total volatility into its jump-driven and

di¤usion-driven variance components, the former has a substantially stronger in�uence

on illiquidity. These �ndings identify the exact source of volatility a¤ecting illiquid-

ity. Moreover, it emphasizes how investors demand higher compensation for bearing

discontinuous jump risk compared to continuous di¤usive risk.

1 Introduction

The relationship between asset liquidity and return risk has been studied extensively both

theoretically and empirically. Market microstructure theories predict that higher return

volatility increases liquidity costs, see for example the pioneering works of Stoll (1978a) and

Copeland and Galai (1983). These theoretical works were further supported by a line of

empirical studies that con�rmed the predicted impact on liquidity costs, among them Stoll

(1978b, 2000), Amihud and Mendelson (1989), Pastor and Stambaugh (2003), and Bao and

Pan (2013). For a more extensive review see additional references therein.

However, treating the return risk as a uniform measure with a homogeneous impact on

liquidity overlooks the more subtle structure that often comprises total volatility. More
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realistic developments in the asset pricing literature treat the return process as a jump-

di¤usion process, that is, as a combination of a continuous Brownian motion component and

a discontinuous jump component. This approach dictates that the total return variance is an

aggregate outcome of two separate sources of risk which have very di¤erent characteristics.

While risk patterns generated by a discontinuous jump process create infrequent, large,

isolated "surprise" price changes, a continuous di¤usion process generates smooth and more

expected small changes. The overall volatility is merely the integration of these two sources

of risk.

Given this framework, one question that arises is whether the two types of risks impact

liquidity in the same way or, alternatively, the structure of risk matters for liquidity in

addition to raw levels of risk. Put di¤erently, does one unit of jump-based variance have a

di¤erent impact on liquidity than an equivalent unit of variance that is di¤usion-based?

The fundamental role that liquidity plays in �nancial markets emphasizes the importance of

the decomposition of total volatility into its underlying components. Improving the smooth

functioning of exchanges, implementing e¢ cient regulatory policies, and adopting suitable

investment management strategies, all depend on the ability to identify the correct form of

risk and accurate factors that in�uence liquidity. A better understanding of these determi-

nants would allow for addressing these issues more e¤ectively.

For example, targeting the reduction of jump volatility as opposed to di¤usive volatility

would require the implementation of a di¤erent set of regulatory policies. While jumps

are mostly attributed to new information that dramatically a¤ects prices, di¤usive variance

may be attributed to noise traders. Therefore, if it is primarily the jump-driven volatility

component that a¤ects illiquidity, implementing accounting policies that encourage more

continuous information disclosure may be recommended in order to increase liquidity, rather

than policies targeting noise trading activities, such as restricting short-selling or lending se-

curities. Similarly, if jumps increase illiquidity by in�uencing investor con�dence in �nancial

markets, adopting policies that are relevant for reducing di¤usive risk alone will not su¢ ce.

From a theoretical perspective there are several reasons why jump risk could have a more

dominant e¤ect on liquidity. First, the central role of jumps might already be an implied

property of the traditional approaches for modeling liquidity costs. The market microstruc-

ture literature recognized two main channels that a¤ect bid-ask spreads and the price impact

cost of liquidity. Inventory risk approaches, pioneered by Stoll (1978a), Amihud and Mendel-

son (1980), and Ho and Stoll (1981, 1983), emphasized the risk of fundamental price changes

to market-makers�stock inventories, which they must maintain to provide immediacy in the
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market. Bid-ask spreads are therefore set to compensate for bearing those risks. Alterna-

tively, the asymmetric information approach, starting with Glosten and Milgrom (1985) and

Kyle (1985), emphasized market-makers�inevitable losses caused by trading with informed

traders. Under this approach bid and ask quotes are strategically set so that these losses are

o¤set by gains on trades with noise traders.

Jumps in prices are relevant for both reasonings. On the one hand jumps represent large price

changes and therefore increase inventory risk. On the other hand, jumps are typically driven

by new information and thus increase the risk of larger losses to market-makers trading with

investors who privately hold this information. Hence, it is reasonable to expect that under

both approaches market-makers would primarily protect themselves against this class of risk

and demand higher compensation for bearing it compared to di¤usive risk.

Second, jumps impose a more restrictive set of risk management tools and stopping rules

compared to di¤usive price changes. Market-makers can control their potential losses, up-

date their inventory portfolios, and adopt "stop-loss" rules in a more �exible and gradual

manner in a di¤usive environment compared to a trading environment that exhibits infre-

quent dramatic price changes. See Longsta¤ (1995, 2014) who models a similar aspect for

evaluating the cost of illiquidity.

Last, in order to reduce risk market-makers often hedge their inventories with correlated

instruments, such as options and other correlated stocks or ETFs. Therefore it is mainly

the non-hedgeable portion of their inventory and trading activity that should drive market-

makers�compensation in the form of bid-ask spreads, as the remaining portion can be o¤set

by various risk management techniques. For more on this see Benston and Hagerman (1974),

Ho and Stoll (1983), Froot and Stein (1998), and Naik and Yadav (2003a, 2003b). Jump risk,

as a discontinuous price change, cannot be hedged away as dynamic replicating strategies

become infeasible under incomplete markets. Therefore, as the non-hedgeable portion of

total volatility, it is the jump-driven component that market-makers would primarily view

as costliest.1

For these reasons it is reasonable to expect that not only absolute levels of volatility matter

for determining bid-ask spreads, and consequently a¤ecting liquidity costs, but also the

particular structure of that volatility should matter.

These theoretical motivations are also complemented by several empirical studies that demon-

strated how in other dimensions of asset pricing jump risk plays a more dominant role than
1For a similar e¤ect in the context of option pricing see for example Garleanu et al. (2009), Jameson and

Wilhelm (1992), Gromb and Vayanos (2002), and Chen et al. (2014).
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di¤usive risk. For example, jump risk has a larger impact on equity risk premia (Pan, 2002,

and Bollerslev and Todorov, 2011), on variance swaps risk premia (Ait-Sahalia et al., 2015,

and Todorov, 2010), and on return predictability (Bollerslev et at., 2015). Here we extend

the discussion to the realm of liquidity and explore whether various types of risk structures,

particularly jump risk, matter for liquidity beyond pure levels of risk.

Notwithstanding, the relation between jump-driven variance and illiquidity might also be

attributed to e¤ects taking place in the other direction, from illiquidity to jumps. Thin

trading implies infrequent transactions with large price impacts per trade, making any con-

nection between jumps and illiquidity trivial. These two-directional e¤ects between jumps

and illiquidity prevent simply treating the correlation as an e¤ect from jumps to liquidity

and demand a method to discriminate between the two causal directions before deriving

meaningful conclusions. We explicitly address this issue later.

In our analysis we �t a log-normal jump-di¤usion process to all stocks listed on the NYSE

and NASDAQ between 2002-2012, we estimate the parameters of the jump and di¤usive

processes, measure total return variance, and disentangle the respective contribution of the

jump and di¤usion processes to the overall variance. Then, using Fama-MacBeth portfolio

and regression analyses we test for the potential impact each class of volatility has on a

number of measures for stock liquidity, particularly bid-ask spreads and Amihud (2002)

illiquidity measure.

To preview our results we �nd that the relation between volatility and illiquidity is almost

exclusively driven by the jump component. The jump-driven volatility component has a

substantially stronger e¤ect and a more statistically signi�cant one. Moreover, its economic

signi�cance dwarfs that of the di¤usive volatility. An increase of one standard deviation in

the jump-driven volatility component increases bid-ask spreads by approximately 50 basis

points, while changes to the di¤usive volatility component have negligible economic e¤ects.

Finally, we account for the direction of causality by using additional extended return fre-

quencies. As we elaborate later, price changes over longer horizons eliminate local intraday

price impacts as they are more a¤ected by fundamentals rather than liquidity providers (see

Bao, Pan, and Wang, 2011). This way we isolate and con�rm a signi�cant causal e¤ect from

jumps to illiquidity. Our �ndings suggest that approximately half the correlation is explained

by the e¤ect jumps have on liquidity, while the other half is explained by short-lived e¤ects

from illiquidity to jumps.

The remainder of this paper is organized as follows. In the next section we describe our

methodology and empirical approach followed by our data sources and descriptive statistics.
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Sections 5 and 6 describe our results, using portfolio analyses and Fama-MacBeth regressions,

respectively. Section 7 discusses the direction causality and Section 8 concludes.

2 Methodology

Our econometric methodology is a two stage process. In the �rst stage we �t a log-normal

jump-di¤usion process to stock returns, and obtain the parameters that characterize the

separate sources of risk. Then, based on these parameters, we test for the relations between

liquidity and the jump-driven and di¤usive -driven volatilities. We dedicate a sub-section to

describe each stage.

2.1 Model Description and Calibration

Following Merton (1976) we assume a continuous trading market for a stock with price St at

time t, in which there are three sources of uncertainty: a standard Brownian motion Wt, an

independent Poisson process of jump events Nt with intensity �, and random jump size Zt
which is distributed lognormally with mean � and variance 2. The stock return dynamics

are described by the following stochastic di¤erential equation

dSt
St

= (�� � � �) dt+ � � dWt + dJt (1)

where � and � are constants, � � E (Zt � 1) is the expected relative jump of St, and Jt �
(Zt � 1) � Nt denotes the compound Poisson process. Since the Brownian motion and the
Poisson process of jump events are independent, the total return variance can be decomposed

into

V � V ar
�
St
S0

�
= V ar (�Wt) + V ar (Jt) (2)

which is the sum of the di¤usion-related variance and the jump-related variance. We denote

V d � V ar (�Wt)

V j � V ar (Jt)

as the respective variances. Furthermore, following Merton (1976) and Navas (2003) these

variances can be expressed in terms of the respective basic process parameters as

V d = �2t (3)

V j = �
�
�2 + 2

�
t

which allow for easily calculating these values.
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In our estimation process we follow Ait-Sahalia (2002) and apply Maximum Likelihood (ML)

methods to historical time-series data on stock returns to calibrate the model and obtain a

vector of parameter estimates �ti =
�
�ti; �

t
i; �

t
i; �

t
i; 

t
i

�
for each stock i estimated over period

t. Based on �ti we can then calculate V
d;t
i and V j;ti , that is, the respective components of the

di¤usive and jump variances out of the total variance.2

2.2 Empirical Analysis

Our empirical approach for testing the relation between liquidity and the two variance com-

ponents is divided into two stages. In the �rst stage we carry out informal tests based on

stock portfolios sorted on levels of variance. In the next stage we carry out Fama-MacBeth

regressions to formally test those relations.

2.2.1 Sorted Portfolios

In the �rst stage, for each year t we sorted all stocks in our sample on their total level of

daily return variance, V it . For each year we formed �ve equally weighted portfolios, where the

�rst quintile portfolio contains stocks with the lowest variance for a given year and the �fth

quintile contains stocks with the highest. Then for each ranking k = 1; :::; 5 we calculated

the corresponding average value of our measures for liquidity across all stocks i and years

t+1. We denote these averages by Liqk. Based on prior empirical studies we expect to �nd

a positive relation between Liqk and total variance ranking k.

In the next stage, for each year t we further sorted each of the �ve portfolios by their

jump-driven variance portion V j to form additional �ve equally weighted sub-portfolios per

portfolio rank k. The �rst quintile sub-portfolio contains stocks with the lowest V j and the

�fth quintile sub-portfolio contains stocks with the highest V j. This way we created for

each year t and portfolio rank k �ve sub-groups of stocks ranked from 1-5 sorted on V j. We

denote these sub-portfolios by n = 1; :::; 5.

We repeated the same procedure for the di¤usive variance component V d to obtain equivalent

�ve additional sub-portfolio rankings sorted on the di¤usive variance component, per year t

and total variance rank k.

These sub-portfolios allow for exploring the relative impact the two di¤erent variance classes

have on liquidity while controlling for total levels of variance. When going up the rankings in

the jump-driven variance (n) while controlling for total levels of variance (k), we necessarily

2For a detailed description of our estimation procedure see Appendix.
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increase its relative share at the expense of the di¤usive share. The opposite holds true

when going up the rankings in the di¤usion-driven portfolios. If indeed jump variance has a

di¤erent impact on liquidity than di¤usive variance, we expect to see two results. First, that

changing the relative shares of variance-types does matter for liquidity, despite the fact that

total levels of variance are held �xed. Second, that changes in levels of each variance-type

have di¤erent e¤ects on liquidity. We elaborate on the speci�c methods of analysis later

when we present our results.

2.2.2 Fama-MacBeth Regressions

In addition to portfolio analyses we also ran Fama-MacBeth regressions to formally test for

di¤erent in�uences each type of variance has on liquidity costs. We �rst con�rm that indeed

total volatility has a positive e¤ect on our measures for illiquidity in our sample, as previous

studies have argued. Therefore, we ran the following cross-section regression year-by-year

Liqi;t+1 = �0 + �1;tVi;t +
JX
j=1

�1+j;tControl
j
i;t + "i;t (4)

The explanatory variables include total variance Vi;t, J control variables Control
j
i;t for j =

1; :::; J , and a random noise "i;t, all measured for stock i in year t. This cross section

regression is estimated year-by-year, and then time-series averages are calculated for all

coe¢ cients, following the Fama-MacBeth method. Therefore this procedure yields a vector

of estimates � =
�
�0; :::; �1+J

�
that characterizes the variables�e¤ect on liquidity.

Control variables include the log of market-capitalization and average turnover rate for stock

i in year t. Stoll (1978a,b) and Jameson and Wilhelm (1992) and others showed that bid-

ask spreads depend on expected holding duration, as more trading activity decreases the

duration of risk exposure. Therefore, we expect to �nd a negative relation between turnover

and illiquidity.

The dependent variable Liqi;t+1 is our measure for liquidity costs for stock i in the following

year t + 1. As measures for liquidity costs we used annual averages of bid-ask spreads (in

percent), and Amihud (2002) annual illiquidity measures, for each stock i in year t. We

calculated Amihud (2002) illiquidity measure in the following way

Ai;t =
1

Di;t

Di;tP
n=1

jri;nj
Dvoli;n

where Ai;t is the Amihud measure for stock i calculated over year t; ri;n and Dvoli;n are daily

return and daily dollar trading volume for stock i on day n; Di;t is the number of days with

available ratio in year t.
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In the next step, we explicitly included in the model the decomposition of total variance into

its jump and di¤usion driven components. Therefore the new speci�cation is,

Liqi;t+1 = �0 + �1;tV
d
i;t + �2;tV

j
i;t +

JX
j=1

�2+j;tControl
j
i;t + "i;t (5)

where the explanatory variables V di;t and V
j
i;t, the di¤usive and jump driven variance com-

ponents, respectively, replace the total variance Vi;t in Equation (4). Both V di;t and V
j
i;t are

obtained from the ML estimation. All other variables in the new speci�cation remained

unchanged.

We used another speci�cation to demonstrate the e¤ects of jump and di¤usive driven volatil-

ities while controlling for total levels of variance. That is, we used the following models,

Liqi;t+1 = �0 + �1;tVi;t + �2;tV
d
i;t +

JX
j=1

�2+j;tControl
j
i;t + "i;t (6)

Liqi;t+1 = �0 + �1;tVi;t + �2;tV
j
i;t +

JX
j=1

�2+j;tControl
j
i;t + "i;t (7)

These speci�cations demonstrate the e¤ect of substituting one unit of jump-driven variance

with an equivalent unit of di¤usion-driven variance while controlling for total levels of volatil-

ity. If the di¤usive variance has a weaker impact on illiquidity, then increasing its share at

the expense of jump variance would have a negative e¤ect on illiquidity. In this case we

would expect a negative coe¢ cient for the di¤usive variance V di;t in Equation (6). For the

same reasoning, we would expect a positive e¤ect on illiquidity when increasing the jump

variance share at the expense of the di¤usive variance share. That is, a positive coe¢ cient

for the jump variance V ji;t in Equation (7).

3 Data

We downloaded from CRSP daily stock prices, volume, shares outstanding and market-

capitalization for all stocks listed on the NYSE and NASDAQ between 2002-2012. For these

stocks and years we also downloaded TAQ historical data for bid-ask quotes and calculated

their average annual percentage spreads. Average annual turnover rates were calculated

using volume and shares outstanding data for each stock.

In our �nal sample we eliminated all �rm-years that had less than 245 observations per year,

and whose bid-ask spreads (percent) were larger than 50% or negative. We also eliminated
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securities that did not have data on market capitalization for year t in the CRSP database,

this excludes non-stock securities listed on exchanges. Overall we ended up with 9,088

di¤erent stocks between 2002-2012, and 61,299 stock-year observations.

4 Descriptive Statistics

We calibrated the return process model speci�ed in Equation (1) for daily returns and ob-

tained for each stock i and year t a vector of parameters �ti =
�
�ti; �

t
i; �

t
i; �

t
i; 

t
i

�
that charac-

terizes the jump-di¤usion return process. In order to gauge the consistency of our calibration

to the realized historical data we compared our model-implied daily return variance (V ti as

speci�ed in Equation (2)) with the realized daily return variance, measured over the cor-

responding year t. We denoted the realized variance by eV ti . For more than 90% of our

sample the ratio
eV ti
V ti
fell between 0.8 and 1.2, implying that there was a good �t between our

predicted variance and the actual variance, i.e., no more than 20% deviation.

Finalizing our sample we eliminated all estimates with extreme values, that is, the highest

and lowest 1% of the vector �ti and for the illiquidity measure Ai;t. We also eliminated all

observations that did not satisfy the condition
eV ti
V ti
2 [0:8; 1:2]. After applying these additional

�ltering our �nal sample contained 55,558 stock-years observations.

Tables 1-2 report descriptive statistics for the vector of parameters �ti. Table 1 reports overall

average and quantile values for the parameter estimates. Stocks experience on average 49

jumps per year (�), and range from no jumps to 241 jumps per year. The average expected

jump size (�) is 1%, but with a large standard deviation of 4% across all stocks and years.

Table 2 provides a more detailed breakdown of average values per year. A clear di¤erence in

patterns exists between crisis and non-crisis years. The number of jumps (�) is particularly

high for crisis years (2002 and 2008-2009) where it reached levels of 60-70 jumps a year, on

average. For non-crisis years � is around half this magnitude, in the range of 30-40 jumps

per year on average. The di¤usive standard deviation (�) is also somewhat higher during

crisis years and reached levels of over 30%, compared to around 20% during regular times.

Similarly, the di¤usive trend (�) had negative values for years 2007, 2008 and 2011. Average

jump sizes are consistently between 0% -2% across all years.

Finally, Table 3 reports overall average and quintile values for our main variables of interest:

total volatility, jump and di¤usive volatility, and average bid-ask spreads. Average total

return volatility across all years and stocks is around 29%. Average values for the di¤usive

and jump components are of the same order of magnitude, 18% and 20%, respectively,
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and their medians are around 17%. Their similar orders of magnitude are also maintained

throughout their quintile distribution. Finally, average bid-ask spreads are around 1.8%

across our sample, with a standard deviation of 2.5%. The median bid-ask spread is around

85 basis points.

5 Sorted Portfolios - Results

5.1 Total Volatility and Liquidity

We start by addressing the basic case of the relation between total volatility and liquidity

costs. Table 4 presents average values for portfolios sorted on total variance. We reported

average total standard deviations per portfolio rank k = 1; :::; 5 along with the respective

averages for our liquidity measures Liqk per portfolio, as de�ned in Section 2.2.1. Liquidity

is measured by both bid-ask spreads and Amihud (2002) illiquidity measure.

As seen, both measures increase with total variance ranking. The lowest ranked portfolio

has an average standard-deviation of 1.2% and exhibits an average bid-ask spread of 1.3%;

the highest ranked portfolio has an average standard deviation of 5.2% and exhibits an

average bid-ask spread of 2.9%. Similarly the respective average Amihud (2002) measures

are 0.085 and 1.180. The di¤erences between high and low portfolio means are 1.6% for bid-

ask spreads, and 1.095 for the Amihud measure. Formal t-tests for the di¤erence in means

con�rm that these di¤erences are highly statistically signi�cant, with t-statistics of 42 and

26 for the respective illiquidity measures.

These �ndings are consistent with prior studies which found a positive relation between

volatility and illiquidity costs, see for example Stoll (1978b, 2000) and Pastor and Stambaugh

(2003).

5.2 Volatility Components and Liquidity

In the next step, we addressed our main goal of decomposing total volatility into its jump and

di¤usive components and explore their individual impacts on illiquidity. We did so by further

sorting each of the �ve portfolios of total volatility on the jump-driven variance component.

This way we formed n = 1; ::; 5 additional sub-portfolios per total variance portfolio, see

Section 2.2.1 for details. This allows for exploring the impact of the jump driven variance

while controlling for total level of variance.

To control for total level of variance we used two methods. In the �rst method we tested

the e¤ect of the jump-driven variance component for each of the �ve total-variance portfolio
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ranking separately. Therefore, for each of the jump-driven volatility ranks n, we calculated

average values of liquidity costs Liqk across all years for each total-volatility level k separately.

That is, we constructed �ve-by-�ve portfolios that allow for exploring the impact of �ve jump-

variance levels on illiquidity while holding the �ve total variance rankings �xed. We repeated

an equivalent analysis for sorting on the di¤usion driven variance component and its impact

on Liqk. We report these results in Tables 5 and 6 for bid-ask spreads and Amihud (2002)

illiquidity measure, respectively. Panels A and B of each table are dedicated to the jump

and di¤usive variances, respectively.

As seen in Table 5 Panel A, average bid-ask spreads increase as the total share of the jump-

driven variance increases at the expense of the di¤usion-variance share. This holds true

for all levels of total-variance portfolios. For example, focusing on the lowest total-variance

portfolio: the bid-ask spread for the lowest jump portfolio is 1.15% compared to 1.46% for

the highest. Similarly, for the fourth total variance portfolio: the bid-ask spread for the

lowest jump portfolio is 1.25% compared to 2.54% for the highest. The di¤erences in means

between high and low portfolios range from .31% to 2.54%. Formal t-tests for these di¤erence

reject the null that the corresponding average bid-ask spreads are identical within a given

total variance portfolio, with t-statistics ranging from 5 to 21.

The opposite results were obtained when sorting on the di¤usion-driven variance component.

As seen in Table 5 Panel B, overall bid-ask spreads decrease with the relative share of the

di¤usion-based variance component for each portfolio level of total volatility. Formal t-

tests for the di¤erence in means between high and low portfolios reject the null that the

corresponding average bid-ask spreads are identical within a given total variance portfolio,

with t-statistics ranging from -2.88 to -19.11, con�rming the negative relation.

Our results remained qualitatively the same when using the Amihud (2002) illiquidity mea-

sure instead of bid-ask spreads, as reported in Table 6 Panels A and B.

In the second method we did not hold total volatility levels �xed at rank k. Instead, for each

jump-volatility rank n we calculated average values of the liquidity measures Liq across all

years and across all total variance portfolios. This way, we controlled for total volatility by

averaging across all total volatility ranks k = 1; :::; 5. We repeated an equivalent analysis for

the di¤usion driven variance component.

Average bid-ask spreads for each portfolio level are reported Table 7 Panel A. As seen,

illiquidity increases with the share of the jump-driven variance component, and decreases for

the di¤usive component. Bid-ask spreads increase from 1.24% for the lowest jump portfolio
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to 2.41% for the highest portfolio. On the other hand, bid-ask spreads decrease from 2.5% for

the lowest di¤usive portfolio to 1.36% for the highest one. The di¤erence in means between

the high and low portfolios are 1.17% and -1.14% for the jump and di¤usive portfolios,

respectively. Formal t-tests for these di¤erence reject the null that the corresponding average

bid-ask spreads are identical, with t-statistics ranging of 31 and -29, respectively. All results

remained qualitatively the same using the Amihud (2002) illiquidity measure, as reported in

Panel B.

In summary, both methods lead to the same conclusion. Illiquidity increases when the jump

volatility component constitutes a larger share of total volatility. The opposite holds true

when the di¤usive volatility component constitutes a larger share.

5.3 Marginal Impact of Volatility Components

In contrast to the previous tests, we also addressed the marginal e¤ect of jump volatility while

controlling for total levels of di¤usive volatility, and vice versa. That is, instead of increasing

the share of one volatility component at the expense of the other, this time we tested for the

e¤ects of increasing total levels of volatility by adding jump volatility or di¤usive volatility,

and compared their marginal e¤ects.

We did so by sorting �rst on the di¤usive component and forming �ve portfolio levels. We

then further sorted each di¤usive portfolio on the jump volatility component and formed

�ve additional sub-portfolios. Following the second method mentioned above, for each jump

portfolio level we took averages of bid-ask spreads across all �ve di¤usive portfolios to control

for levels of di¤usive volatility.

We repeated an equivalent analysis for adding di¤usive driven volatility while controlling for

total levels of the jump volatility. Table 7 Panel A reports our results for bid-ask spreads,

and Panel B for Amihud (2002) illiquidity measure.

As seen in Table 7 Panel A, when controlling for di¤usive volatility, bid-ask spreads increase

with levels of jump volatility. The di¤erence in means between the high and low jump

portfolios is 1.95%, and highly signi�cant. On the other hand, when controlling for jump-

volatility, bid-ask spreads slightly decrease with levels of di¤usive volatility. The di¤erence

in means between the high and low di¤usive portfolios is -0.65%, and highly signi�cant.

These �ndings imply two important phenomena. First, adding jump volatility to total

volatility increases bid-ask spreads, whereas adding di¤usive volatility slightly decreases
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bid-ask spreads. Second, jump volatility has a much larger impact on bid-ask spreads in

absolute terms compared to di¤usive volatility.

Similar results were obtained for the Amihud (2002) illiquidity measure, as reported in Panel

B. Additionally, we repeated the same analysis using the �rst method mentioned above. That

is, we tested the e¤ect of increasing the jump volatility level for each di¤usive portfolio level

separately, and vice versa. All our results remained qualitatively unaltered. See Tables 8 and

9 for these results, for bid-ask spreads and Amihud (2002) illiquidity measure, respectively.

5.4 Other Control Variables

Finally, we further re�ned our analysis by controlling for additional three variables: market

capitalization, volume of trade, and turnover. For each of these variables for each year we

sorted all stocks into �ve di¤erent portfolios, from low to high. Then, for each portfolio

level we repeated our second method of double sorting on total variance and jump-driven

variance and then averaging across all years and all total volatility ranks k. This process

was carried out for each of the �ve control variable portfolios. Therefore, for each control

variable we have a �ve-by-�ve portfolio ranking sorted on control variable level and jump-

driven volatility level. Table 7 reports the results in Panel A, B, and C for each of the three

control variables.

As seen in all three panels, the general pattern is maintained: higher jump-driven portfolios

always exhibit higher average bid-ask spreads, per control variable portfolio. This holds true

for all �ve portfolio rankings for all three variables. Moreover, formal t-tests for the di¤erence

between high and low jump-portfolios all reject the null hypothesis that the corresponding

average bid-ask spreads are identical, per control variable portfolio. t-statistics are highly

signi�cant and range from 2.62-10.69.

In summary, our results indicate two phenomena: the structure of volatility matters for bid-

ask spreads beyond raw levels of volatility. Moreover, the jump-driven variance component

has a stronger impact on liquidity compared to the di¤usion component. This result was

obtained for when substituting jump volatility with di¤usive volatility (i.e., holding total

volatility �xed), and for when adding jump volatility to di¤usive volatility (i.e., increasing

total volatility). Last, these results remained robust after controlling for other variables

relevant to determining liquidity costs. In the next section we formally test these �nding.
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6 Fama-MacBeth Regressions - Results

In the �rst step we replicated the results from previous studies to con�rm that indeed total

variance has a positive impact on illiquidity in our sample. Table 11 reports Fama-MacBeth

regression results based on the model speci�ed in Equation (4) using bid-ask spreads and

Amihud (2002) illiquidity measure as the dependent variable in Panels A and B, respectively.

As reported in Panel A, total variance indeed has a positive and signi�cant impact on bid-ask

spreads, with a coe¢ cient estimate of 2.98 and t-statistic of 7.5. A similar result is obtained

when using the Amihud (2002) illiquidity measure as the dependent variable, as reported in

Panel B. In both cases, the turnover coe¢ cient is negative, as expected, consistent with prior

studies that argue that higher trading activity decreases illiquidity. Market capitalization

also has a negative and statistically signi�cant e¤ect on both illiquidity measures as expected,

since larger �rms tend to have lower trading costs.

In the next step, we decomposed total volatility into its jump and di¤usive driven com-

ponents. Table 12 reports Fama-MacBeth regression results for the regression speci�ed in

Equation (5) which explicitly models separate e¤ects for each component. Panel A reports

the results using bid-ask spreads. As expected, both variance components have a positive ef-

fect on bid-ask spreads. However, the size of the jump-driven variance coe¢ cient dwarfs that

of the di¤usion-driven variance coe¢ cient, 5.15 compared to 0.02, respectively, indicating a

substantially stronger e¤ect. Similarly, the jump component coe¢ cient has substantially

higher statistical signi�cance, with a t-statistic of 8.30 compared to 0.04 for the di¤usion

component coe¢ cient. Finally, turnover and size maintain a very similar e¤ect compared

to those obtained in Table 11. The Fama-MacBeth average R
2
is 50% indicating a strong

explanatory power for our model.

Interestingly, the coe¢ cient for total variance reported in Table 11 falls between the values

of the di¤usive and jump driven coe¢ cients reported in Table 12, indicating that the total

e¤ect of the variance is indeed an aggregate outcome of a combined dominant jump and

marginal di¤usive e¤ect.

Panel B reports the results for the Amihud (2002) illiquidity measure, which remained qual-

itatively the same. Under this speci�cation, the coe¢ cient for the jump-driven variance is

approximately four times larger that of the di¤usion-driven variance, 387 compared to 98,

respectively. Again, the jump component coe¢ cient has substantially higher statistical sig-

ni�cance, with a t-statistic of 7.64 compared to 3.85 for the di¤usion component coe¢ cient.
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Last, the jump and di¤usive coe¢ cients are again higher and lower, respectively, than the

e¤ect that total variance has on the Amihud (2002) illiquidity measure, as reported in Table

11. This indicates that the e¤ect of total variance is an aggregate outcome of these two

separate components.

We used two additional models to demonstrate the e¤ect of increasing the share of one

volatility component at the expense of the other, while holding total levels of volatility �xed.

These models are speci�ed in Equations (6) and (7), and their results are reported in Table

13 Panels A and B, respectively.

Overall these results further support the dominance of the jump component. As seen in

Panel A, when holding total variance �xed the di¤usive variance has a negative coe¢ cient.

Moreover increasing the di¤usive volatility share of total variance (i.e., at the expense of

jump volatility) almost entirely o¤sets the e¤ect of total variance, as indicated by their

coe¢ cient values of -5.13 and 5.15, respectively. This implies that out of total volatility it is

only the jump volatility share that a¤ects illiquidity, consistent with our previous results.

The same result was obtained for Equation (7), as reported in Panel B. Jump variance share

has a positive and signi�cant coe¢ cient, while the total variance coe¢ cient is marginal and

non-signi�cant. This implies that only the jump volatility share out of total volatility a¤ects

illiquidity, consistent with our previous results.

In summary, these results con�rm the �ndings previously obtained in the portfolio analysis.

The structure of volatility matters for the cost of illiquidity beyond raw levels of volatility,

as jump and di¤usive variance coe¢ cients have distinct e¤ects on illiquidity. Moreover, the

jump-driven variance component has a dominant and almost exclusive e¤ect on illiquidity.

7 Direction of Causality

As mentioned in the introduction, it may be argued that the correlations we found between

the jump-driven component and our measures for liquidity do not capture causal e¤ects

from jumps to illiquidity but rather in the other direction, from illiquidity to jumps. By

de�nition, illiquid assets are subject to greater jump risk: thin trading means infrequent

transactions where each transaction is more likely to generate large price impacts. Put

di¤erently, "technical jumps" can be generated through prices that bounce between bid and

ask quotes for wide bid-ask spreads. This makes the connection between jumps and illiquidity

trivial.
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However, the impact of thin trading or intraday price bounces becomes negligible as we

lower the frequency of price-quotes. Price changes over longer horizons are more a¤ected by

fundamentals and new information than by liquidity providers (see Bao, Pan, and Wang,

2011). Therefore, in order to control for the direction of causality we ran our regressions

again, this time increasing the return frequency from daily to weekly and biweekly return-

frequencies.

In order to carry out these additional regressions we re-calibrated our price-process model

in Equation (1) this time using weekly and biweekly return frequencies. For each return

frequency we obtained a new set of parameters �ti =
�
�ti; �

t
i; �

t
i; �

t
i; 

t
i

�
, and it was then used

in the regression model speci�ed Equation (5). All other variables in the regression model

remained unchanged.3

Table 14 reports Fama-MacBeth regression results for weekly and biweekly return frequencies

in Panel A and Panel B, respectively, where the dependent variable is annual average of bid-

ask spreads. The results in both cases did not change qualitatively compared to the original

estimates obtained for daily return frequencies. As reported in Panel A, the di¤usive variance

coe¢ cient is negative and non-signi�cant, compared to a positive and highly signi�cant jump

variance coe¢ cient. The size of the di¤usive coe¢ cient is -0.83 compared to 2.16 for the jump

coe¢ cient, with t-statistics of -1.59 and 5.99, respectively.

The same pattern is maintained for biweekly returns as reported in Panel B. The di¤usive

coe¢ cient is -1.2 compared to 1.58 for the jump coe¢ cient. This time both coe¢ cients

are statistically signi�cant, but the t-statistic for the jump coe¢ cient is still larger, 4.82

compared to -3.26, respectively.

These results imply that the jump-driven volatility has a larger and more signi�cant e¤ect

on illiquidity even for lower return frequencies, supporting the existence of a causal e¤ect in

the direction from jumps to illiquidity.

3Similar to our estimation of daily returns, we compared the analytical model-implied daily return variance

(V ti as speci�ed in Equation (2)) with the realized daily return variance, measured over the corresponding

year t. For approximately 90% of our sample the ratio V t
ieV t
i

fell between 0.8 and 1.2, implying that there

was a good �t between our predicted variance and the actual variance for the weekly and biweekly return

frequencies as well. That is, no more than 20% deviation.

Finalizing our sample we eliminated all �rm-year observations that had less than 245 quotes a year or

that had at least three trading weeks with less than 4 quotes a week. All other elimination criteria remained

identical to those of daily returns: we eliminated all estimates with extreme values and all observations that

did not satisfy the condition V t
ieV t
i

2 [0:8; 1:2]. See Sections 3 and 4 for more details.
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We repeated all regressions using the Amihud (2002) illiquidity measure as the dependent

variable. As presented in Table 15, all �ndings remained qualitatively the same for this

speci�cation as well. For both weekly and biweekly return frequencies, the di¤usive coe¢ cient

is non-signi�cant and much smaller in magnitude compared to a large and signi�cant jump

coe¢ cient.

When comparing the estimates for daily, weekly and biweekly return frequencies an interest-

ing pattern can be detected. The coe¢ cients for the jump volatility component decrease in

size from the daily through the weekly and biweekly return frequencies. The jump-variance

coe¢ cients decreased from 5.15 to 2.16 and 1.58, respectively. The coe¢ cients for the di¤u-

sive volatility remain marginal and non-signi�cant on the whole (see Tables 12 and 14).

A similar pattern is detected when comparing average values for the parameter estimates

�ti =
�
�ti; �

t
i; �

t
i; �

t
i; 

t
i

�
obtained from the ML procedure for the three return frequencies, as

reported in Table 16. Average estimates for all three frequencies remain stable for all three

return frequencies, with the exception of �. The average number of jumps � declines as fre-

quency declines: from 49 to 9 and 5 jumps per year on average for daily, weekly, and biweekly

return frequencies, respectively. Moreover, notice that the weekly and biweekly coe¢ cients

and �s are quite close to each other in magnitude compared to their daily frequency values.

The gradual decline in coe¢ cients and number of jumps and their stabilization may be

attributed to the declining impact bid-ask spreads have on the variance. As mentioned

before, the positive correlation between jumps and bid-ask spreads may arise through two

channels: from jumps to illiquidity and from illiquidity to jumps. However, as we argued

before, the latter impact disappears in longer trading horizons as local illiquidity and price-

bounces play a more negligible role over longer time horizons.

Hence, for low frequencies, such as weekly and biweekly horizons, the remaining correlation

represents a cleaner impact that the variance has on illiquidity. This implies that the majority

of the impact that thin trading has on the jump component disappears already at the weekly

frequency and stabilizes thereafter. Based on the ratio of coe¢ cients�size, it can be evaluated

that between half to two-thirds of the correlation between jumps and bid-ask spreads is the

impact illiquidity has on jumps due to thin trading, while the remaining half to one-third

is the impact that "true" jumps have on illiquidity. The latter impact survives in longer

horizons while the former disappears.
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Table 1

Descriptive Statistics

Average and Quantile Parameter Values - Overall

Parameter Mean S.D. Min :25 Mdn :75 Max N

� 0.14 0.44 -1.29 -0.07 0.14 0.35 1.99 55,558

� 0.29 0.15 0.00 0.17 0.27 0.38 0.93 55,558

� 49.31 47.76 0.00 9.35 35.65 77.57 241.72 55,558

� 0.01 0.04 -0.18 0.00 0.00 0.03 0.17 55,558

 0.06 0.06 0.00 0.02 0.04 0.08 0.42 55,558

Table 2

Average Annual Values of Parameters

Year � � � �  N

2002 0.02 0.34 60.52 0.01 0.06 5,418

2003 0.48 0.28 46.07 0.02 0.06 5,389

2004 0.21 0.27 41.60 0.02 0.06 5,470

2005 0.09 0.25 37.53 0.02 0.06 5,379

2006 0.17 0.25 36.69 0.02 0.06 5,389

2007 -0.01 0.26 49.20 0.01 0.05 5,311

2008 -0.29 0.38 72.28 0.00 0.07 4,789

2009 0.49 0.38 67.00 0.01 0.06 4,604

2010 0.24 0.30 44.63 0.02 0.05 4,702

2011 -0.01 0.30 56.39 0.00 0.05 4,684

2012 0.17 0.26 33.36 0.02 0.06 4,459
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Table 3

Summary Statistics:

Bid-Ask Spreads & Standard-Deviations of Daily Returns

Mean S.D. Min :25 Mdn :75 Max

Return Std - Total .0292 .0168 .0050 .0169 .0255 .0376 .1129

Return Std - Di¤usion .0186 .0100 0 .0111 .0170 .0243 .0591

Return Std - Jump .0203 .0159 0 .0090 .0173 .0286 .1067

Bid-Ask Spread .0187 .0252 .0003 .0030 .0085 .0235 .2525

Table 4

Average Bid-Ask Spreads and Standard Deviations:

for portfolios sorted on Total Variance

Low V ar 2 3 4 High V ar High-Low t-stat

Avg Standard Deviation .012 .020 .027 .035 .052

Avg Bid-Ask Spread .013 .011 .013 .017 .029 .016 42.49

Avg Amihud Measure .085 .234 .333 .458 1.180 1.095 26.30
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Table 5

Average Bid-Ask Spreads for Sorted Portfolios:

Sorted by Total-Variance, Jump-Variance, and Di¤usion Variance

Per Total-Variance Portfolio

Portfolio Low V ar 2 3 4 High V ar

Panel A: Jump-Var Ranking

Low Jump .0115 .0094 .0090 .0125 .0203

2 .0149 .0085 .0099 .0130 .0238

3 .0125 .0098 .0109 .0158 .0296

4 .0132 .0124 .0155 .0203 .0347

High Jump .0146 .0194 .0222 .0254 .0454

High-Low .0031 .0100 .0132 .0129 .0251

t-stat 5.43 14.50 18.01 15.27 21.09

Panel B: Di¤usive-Var Ranking

Low Di¤usive .0184 .0203 .0227 .0273 .0377

2 .0171 .0110 .0148 .0189 .0267

3 .0134 .0096 .0108 .0147 .0254

4 .0094 .0094 .0098 .0137 .0265

High Di¤usive .0081 .0091 .0094 .0124 .0340

High-Low -.0103 -.0104 -.0133 -.0149 -.0037

t-stat -19.11 -16.46 -18.24 -17.52 -2.88
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Table 6

Average Amihud (2002) Illiquidity Measure for Sorted Portfolios:

Sorted by Total-Variance, Jump-Variance, and Di¤usion Variance

Per Total-Variance Portfolio

Portfolio Low V ar 2 3 4 High V ar

Panel A: Jump-Var Ranking

Low Jump .06 .16 .23 .36 .59

2 .02 .11 .20 .23 .70

3 .04 .20 .17 .28 .88

4 .09 .22 .33 .57 1.45

High Jump .18 .47 .72 .85 2.65

High-Low .12 .31 .49 .49 2.06

t-stat 5.28 6.64 6.05 4.54 11.23

Panel B: Di¤usive-Var Ranking

Low Di¤usive .13 .50 .78 1.00 1.59

2 .08 .15 .27 .43 .81

3 .05 .14 .17 .29 .82

4 .05 .15 .20 .24 1.01

High Di¤usive .09 .21 .25 .35 1.74

High-Low -.04 -.29 -.53 -.65 -.15

t-stat -1.28 -5.76 -6.22 -5.83 0.85
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Table 7

Variance Components Across Control Variables

Control for: Rank by: Low 2 3 4 High High-Low t-stat

Panel A: Avg Bid-Ask Spreads

Total Var Jump Var .0124 .0138 .0154 .0186 .0241 .0117 31.45

Total Var Di¤usive Var .0250 .0174 .0145 .0134 .0136 -.0114 -29.37

Di¤usive Var Jump Var .0110 .0117 .0136 .0187 .0305 .0195 50.31

Jump Var Di¤usive Var .0228 .0165 .0140 .0138 .0165 -.0063 -15.99

Panel B: Avg Amihud Illiquidity Measure

Total Var Jump-Var .2731 .2583 .3053 .5020 .8737 .6006 14.31

Total Var Di¤usive-Var .7845 .3396 .2860 .3156 .4718 -.3127 -7.13

Jump Var Di¤usive Var .1791 .1967 .2364 .4329 1.2383 1.059 22.79

Di¤usive Var Jump Var .6167 .3263 .3091 .3619 .5779 -.0388 -0.90
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Table 8

Average Bid-Ask Spreads for Sorted Portfolios:

Sorted by Jump-Variance and Di¤usion Variance

Portfolio Low 2 3 4 High

Panel A: Di¤usion Sorted on Jumps

Low Di¤usive .0166 .0169 .0204 .0253 .0364

2 .0141 .0106 .0133 .0190 .0270

3 .0086 .0088 .0113 .0166 .0262

4 .0092 .0089 .0102 .0139 .0294

High Di¤usive .0093 .0102 .0139 .0184 .0361

High-Low -.0073 -.0067 -.0065 -.0068 -.0003

t-stat -13.10 -10.95 -8.42 -7.76 -0.20

Panel B: Jumps Sorted on Di¤usion

Low Jump .0162 .0085 .0097 .0090 .0115

2 .0149 .0090 .0090 .0099 .0160

3 .0147 .0103 .0103 .0125 .0208

4 .0183 .0157 .0151 .0169 .0284

High Jump .0339 .0266 .0261 .0285 .0393

High-Low .0176 .0181 .0164 .0194 .0278

t-stat 18.94 22.90 20.86 24.80 27.57
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Table 9

Average Amihud (2002) Illiquidity Measure for Sorted Portfolios:

Sorted by Jump-Variance and Di¤usion Variance

Portfolio Low 2 3 4 High

Panel A: Di¤usion Sorted on Jumps

Low Di¤usive .0277 .1579 .4682 .8719 1.6753

2 .0403 .1266 .2712 .5236 .7290

3 .0704 .1096 .1706 .3615 .9000

4 .1552 .2046 .1914 .2460 1.1258

High Di¤usive .2491 .2680 .4166 .4621 1.8031

High-Low .2213 .1101 -.0515 -.4098 .1277

t-stat 5.61 2.18 -0.76 -4.68 0.66

Panel B: Jumps Sorted on Di¤usion

Low Jump .0327 .0589 .1757 .2234 .3976

2 .0396 .1014 .1779 .2272 .4443

3 .1245 .1353 .1708 .2010 .5790

4 .3781 .3313 .2358 .3840 .8826

High Jump 1.5867 .9435 .8002 .8500 2.2166

High-Low 1.5540 .8845 .6245 .6266 1.8190

t-stat 13.90 9.66 9.81 7.63 11.57
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Table 10

Average Bid-Ask Spreads for Sorted Portfolios:

Sorted on Total-Variance and Jump-Variance

by Control Variables

Low Jump 2 3 4 High Jump High-Low t-stat

Panel A: Market Capitalization

Low Cap .0479 .0466 .0491 .0520 .0550 .0071 5.91

2 .0203 .0205 .0216 .0220 .0236 .0033 5.27

3 .0098 .0099 .0101 .0099 .0107 .0009 2.64

4 .0048 .0047 .0048 .0051 .0055 .0007 3.19

High Cap .0024 .0023 .0024 .0023 .0025 .0001 1.08

Panel B: Volume

Low Vol .0497 .0469 .0494 .0525 .0559 .0062 5.28

2 .0187 .0195 .0208 .0213 .0224 .0037 6.90

3 .0087 .0093 .0096 .0102 .0107 .0020 6.94

4 .0043 .0042 .0042 .0044 .0050 .0007 3.79

High Vol .0020 .0020 .0021 .0021 .0023 .0003 3.22

Panel C: Turnover

Low Turnover .0354 .0384 .0389 .0424 .0479 .0125 10.73

2 .0174 .0201 .0213 .0227 .0248 .0074 10.08

3 .0083 .0103 .0107 .0126 .0151 .0068 13.19

4 .0050 .0058 .0059 .0071 .0088 .0038 10.76

High Turnover .0040 .0044 .0044 .0052 .0066 .0026 8.26
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Table 11

Fama-MacBeth Regression Results

Total Variance

Variable Coe¢ cient FMB-SE t-stat p-value

Panel A: Bid-Ask Spreads

Total Var 3.4452 .5723 6.02 .000

Turnover -0.0015 .0003 -5.50 .000

ln(size) -0.0076 .0006 -11.93 .000

Constant 0.1145 .0088 12.90 .000

Average-R
2

50%

Observations 44,171

Panel B: Amihud Illiquidity Measure

Total Var 288.87 34.41 8.39 .000

Turnover -0.07 0.01 -6.64 .000

ln(size) -0.29 0.03 -9.31 .000

Constant 4.02 0.43 9.32 .000

Average-R
2

14%

Observations 44,171
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Table 12

Fama-MacBeth Regression Results

Jump and Di¤usive Components

Variable Coe¢ cient FMB-SE t-stat p-value

Panel A: Bid-Ask Spreads

Di¤usive-var 0.0225 .6039 0.04 .971

Jump-var 5.1547 .6213 8.30 .000

Turnover -0.0015 .0003 -5.44 .000

ln(size) -0.0075 .0006 -11.55 .000

Constant 0.1136 .0090 12.57 .000

Average-R
2

50%

Observations 44,171

Panel B: Amihud Illiquidity Measure

Di¤usive-var 98.12 25.51 3.85 .004

Jump-var 387.74 50.75 7.64 .000

Turnover -0.07 0.01 -6.57 .000

ln(size) -0.28 0.03 -9.44 .000

Constant 3.96 0.42 9.41 .000

Average-R
2

14%

Observations 44,171
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Table 13

Fama-MacBeth Regression Results

Variance Components and Total Var

Dependent Variable: Annual Average Bid-Ask Spreads

Variable Coe¢ cient FMB-SE t-stat p-value

Panel A: Di¤usive Var

Total-var 5.1547 .6213 8.30 .000

Di¤usive-var -5.1321 .4420 -11.61 .000

Turnover -0.0015 .0003 -5.44 .000

ln(size) -0.0075 .0006 -11.55 .000

Constant 0.1136 .0090 12.57 .000

Average-R
2

50%

Observations 44,171

Panel B: Jump Var

Total-var 0.0225 .6039 0.04 .971

Jump-var 5.1321 .4420 11.61 .000

Turnover -0.0015 .0003 -5.44 .000

ln(size) -0.0075 .0006 -11.55 .000

Constant 0.1136 .0090 12.57 .000

Average-R
2

50%

Observations 44,171
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Table 14

Fama-MacBeth Regression Results

Dependent Variable: Annual Average Bid-Ask Spreads

(for Weekly & Biweekly Returns)

Variable Coe¢ cient FMB-SE t-stat p-value

Panel A - Based on Weekly Returns

Di¤usive-var -0.8347 .5245 -1.59 0.146

Jump-var 2.1615 .3607 5.99 0.000

Turnover -0.0013 .0003 -4.80 0.001

ln(size) -0.0080 .0008 -9.31 0.000

Constant 0.1217 .0123 9.87 0.000

Average-R
2

49%

Observations 39,209

Panel B - Based on Biweekly Returns

Di¤usive-var -1.2302 .3768 -3.26 .010

Jump-var 1.5803 .3280 4.82 .001

Turnover -0.0014 .0004 -3.87 .004

ln(size) -0.0083 .0010 -7.92 .000

Constant 0.1270 .0154 8.25 .000

Average-R
2

49%

Observations 23,616
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Table 15

Fama-MacBeth Regression Results

Dependent Variable: Amihud Illiquidity Measure

(for Weekly & Biweekly Returns)

Variable Coe¢ cient FMB-SE t-stat p-value

Panel A - Based on Weekly Returns

Di¤usive-var -3.44 30.428 -0.11 .91

Jump-var 31.05 14.468 2.15 .06

Turnover -0.03 .005 -5.44 .00

Market-cap -0.21 .039 -5.35 .00

Constant 3.00 .567 5.30 .00

Average-R
2

13%

Observations 39,209

Panel B - Based on Biweekly Returns

Di¤usive-var -9.58 32.754 -0.29 .77

Jump-var 77.41 20.071 3.86 .00

Turnover -0.03 .005 -7.09 .00

Market-cap -0.27 .022 -12.26 .00

Constant 3.92 .321 12.19 .00

Average-R
2

16%

Observations 23,616
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Table 16

Average Parameter Estimates

by Return Frequency

Frequency � � � �  Obs.

Daily 0.143 0.295 49.317 0.014 0.059 55,558

Weekly 0.123 0.272 9.524 0.025 0.089 52,141

Biweekly 0.128 0.235 5.445 0.026 0.087 40,208
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Appendix: Model and Estimation Method

Following Merton (1976), let St denote a stock price at time t on a �ltered probability space

(
; F; (Ft) ; P ), which is assumed to satisfy the following stochastic di¤erential equation

dSt
St

= (�� � � E (Z � 1)) dt+ �dWt + (Z � 1) dNt,

where � and �2 denote the instantaneous mean and variance of the stock return in the

absence of jumps, and Wt is a Wiener process. Furthermore, Nt is a Poisson process with

intensity � > 0, and Z is the log-normal jump amplitude with lnZ v N(�; 2) such that

E(Z � 1) = exp(�+ 
2

2
)� 1.

We postulate that Wt; Nt and Zt are mutually independent. The parameter vector � is

� = (�; �2; �; �; 2)
0, where � and 2 represent the mean and variance of the jump size of

stock returns.

Following Ait-Sahalia (2002), under these assumptions the transition density f� lnS of lnSt
can be expressed by

f� lnS(x; �) = (1� � ��t) � f�lnSj�Nt=0(xj�Nt = 0; �) + � ��t � f� lnSj�Nt=1(xj�Nt = 1; �),

where f� lnSj�Nt=0 and f� lnSj�Nt=1 represent the transition densities of lnSt conditioning on

�Nt = 0 and �Nt = 1 jumps between two sampling points, respectively, and �t > 0 denotes

the time distance between sampling points. Since

P (�Nt = 0) = 1� � ��t+ o(�t)
P (�Nt = 1) = � ��t+ o(�t)
P (�Nt > 0) = o(�t)

additional jumps between two sampling points are neglected. Closed form expressions for

the conditional densities are given by

f� lnSj�N=k(xj�Nt = k; �) =
1p

2 � � � v(k)
� exp

�
�(x�m(k))

2

2 � v(k)

�
where

m(k) =
�
�� �2=2� � � E(Z � 1)

�
��t+ k � a

v(k) = �2 ��t+ k � 2
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with k 2 f0; 1g. Based on a sample of n stock returns � ln s1; :::;� ln sn the resulting

likelihood estimate b� of � is computed numerically as
�̂ = argmax

�

 
nX
i=1

ln f� lnS(� ln si; �)

!
:
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