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Abstract

We develop an elasticity index of a strategic game. The index

measures the robustness of the set of rational outcomes of a game.

The elasticity index of a game is the maximal ratio between the change

of the rational outcomes and the size of an infinitesimal perturbation.

The perturbation is on the players’ knowledge of the game.

The elasticity of a strategic game is a nonnegative number. A small

elasticity is indicative of the robustness of the rational outcomes (for

example, if there is only one player the elasticity is 0), and a large

elasticity is indicative of non-robustness. For example, the elasticity

of the (normalized) n-stage finitely repeated prisoner’s dilemma is at

least exponential in n, as is the elasticity of the n-stage centipede

game and the n-ranged traveler’s dilemma.

The concept of elasticity enables us to look from a different per-

spective at Neyman’s (1999) repeated games when the number of rep-

etitions is not commonly known, and Aumann’s (1992) demonstration

of the effect of irrationality perturbations.

∗Department of Economics, Bar-Ilan University, Israel (http://giladbavly.weebly.com).

This work is part of the author’s Ph.D. thesis, done under the supervision of Professor

Abraham Neyman. I am deeply grateful to Prof. Neyman for his kind and illuminating

guidance. The research was supported in part by Israel Science Foundation grants 1123/06

and 1596/10.

1

http://giladbavly.weebly.com


1 Introduction

“One can expect agreement between philosophers sooner than

between clocks”

Claudius the God: and His Wife Messalina, Robert Graves

This paper concerns the effect that a (small) change in the players’ knowledge

about the game has on the rational outcomes of that game. That is, looking

at a complete information game as representing an ideal situation, where the

game data is common knowledge among the players, we ask, to what extent

is the set of equilibria of this game sensitive to changes in that knowledge.

We propose an index, which we call elasticity, that measures this sensitiv-

ity for every game. The elasticity of a game is defined by the maximal ratio

between the change of the equilibrium payoffs and the size of a perturbation

of the players’ knowledge. We show that it has some desirable properties:

it is always finite for a finite game, and it is determined by the behavior of

small perturbations (indeed, we could have alternatively defined elasticity

using infinitesimal perturbations).

The elasticity measure can be thought of as the elasticity of a set of

outcomes, or “solutions.” Specifically, our definition may be regarded as

the elasticity of the correlated equilibrium payoffs of the game. Correlated

equilibria represent situations in which the game data are common knowl-

edge, and players may have differential information (possibly correlated) only

about payoff-irrelevant events. Therefore, correlated equilibria are the natu-

ral benchmark here.

The elasticity is always nonnegative, and a small elasticity is indicative of

the robustness of the set of correlated equilibria. An extreme case is a decision

problem (namely a one-player game), and indeed the elasticity in this case

is 0. As for two-player zero-sum games, if we only allowed perturbations

that are themselves zero-sum, then the elasticity would have been 0. As

we defined it, the perturbations need not be zero-sum, and the elasticity of

zero-sum games is bounded by 2.
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Conversely, a large elasticity is indicative of non-robustness. In games

such as the repeated prisoner’s dilemma, the centipede game, and the trav-

eler’s dilemma, where the equilibria may be considered non-intuitive or “para-

doxical,” elasticity is indeed large.1

In Section 2 we present Bayesian games, which are used to model uncer-

tainty about the game. Note that in allowing for all Bayesian games, the

class of uncertainties is quite general. Section 3 concerns some basic proper-

ties of the resulting perturbations of games. Section 4 contains the definition

and properties of the elasticity index.

In Section 5, the work of Neyman (1999) on repeated games, where the

number of repetitions is not commonly known, is viewed from the perspec-

tive of elasticity. We explain how uncertainties of the kind considered there,

namely uncertainties about the length of the game, can be transformed and

embedded into our uncertainties. This allows us to derive the following corol-

lary from his results: the elasticity of the (normalized) finitely repeated pris-

oner’s dilemma grows very rapidly (at least exponentially) as the number of

repetitions grows.

Section 6 views Aumann (1992), again from the perspective of elasticity.

Aumann demonstrates the strong effect that perturbations of rationality may

have. We follow this up by defining a parallel notion of elasticity, this time

with respect to perturbation of rationality rather than knowledge of the game.

It turns out that although conceptually the two parallel notions may be

considered quite different, they are essentially equivalent.

2 Uncertainties

Fix a game form (N,A), where N = {1, . . . , n} is a finite set of players,

and A = ×i∈NAi, where Ai is player i’s set of actions. An Interactive Belief

1Specifically, elasticity grows rapidly as a function of the size of the exact game (e.g.,

the number of repetitions in the repeated prisoner’s dilemma, or the number of legs of the

centipede).
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System (with a common prior) for this game form is a tuple (p, u, (Ti)i∈N),

where Ti is player i’s set of types (or information states), and each type

ti ∈ Ti contains a choice of action ai(ti) ∈ Ai; p ∈ ∆(T ) is the common prior

probability distribution over T = ×i∈NTi; and u : T ×A→ Rn is the payoff.

We call a profile of types t = (t1, . . . , tn) ∈ T a state of the world.

A payoff function g : A→ Rn, along with our game form (N,A), gives a

normal form game (N,A, g). We will also refer to the payoff function g as a

game, where no ambiguity may arise.

Let u : T × A → Rn and v : T × A → Rn be two payoff functions

(over the same type space T ). A norm ‖·‖ on Rn induces a distance be-

tween u and v, by Ep (maxa∈A ‖u(t, a)− v(t, a)‖) . Thus, the L1-distance is

Ep
(
maxa∈A(

∑
i∈N |ui(t, a)− vi(t, a)|)

)
.

Similarly, the distance between a belief system S = (p, u, T ) and a game

g : A→ Rn, is Ep (maxa∈A ‖u(t, a)− g(a)‖). Equivalently, it is the distance

between u and the type-independent payoff g̃ : T×A→ Rn given by g̃(t, a) =

g(a). When the L1-distance2 between S and g is δ, we will say that S is an

approximation of order δ of the game g. We may also write d(S, g) = δ.

In a belief system (p, u, T ), a payoff function g : A → Rn is common

knowledge among the players, if for every state of the world t and every

a ∈ A, u(t, a) = g(a).

Example 2.1. N = {1, 2}, A1 = A2 = {D,C}. Player 1 has two types,

T1 = {c, d}, and player 2 has just one type, T2 = {c}. The common prior is

p(c, c) = p(d, c) = 1
2
. The payoff u(t, a) is given in Figure 1.

What is the L1-distance between this belief system and the game g de-

picted in Figure 2 (“chicken”)? For t = (d, c) the payoffs are the same, i.e.,

∀i ∀a gi(a) = ui(t, a). For t = (c, c), the maximum difference is 2, attained

at a = (C,D), i.e., maxa∈A(
∑

i∈N |gi(a)− ui(t, a)|) = |7− 5| = 2. Hence the

distance is p(c, c) · 2 = 1
2
· 2 = 1.

2Since all norms on a finite space are equivalent, the specific choice of norm is insignif-

icant.

4



Figure 1:

D C

D 0, 0 7, 2

C 2, 5 7, 6

t = (c, c)

D C

D 0, 0 7, 2

C 2, 7 6, 6

t = (d, c)

D C

D 0, 0 7, 2

C 2, 7 6, 6

Figure 2: Chicken

We say that player i is rational at state t, if his action ai(ti) maxi-

mizes his expected payoff, given his belief (i.e., his type). That is, ai(ti) ∈
arg maxx[Ep (ui(t, (x, a

−i(t))) | ti)], where a−i(t) = (aj(tj))j 6=i. We say that

a belief system is rational if every player is rational at every state (i.e., they

play a Bayesian equilibrium).

For a game Γ = (N,A, g), define the set of rational distributions, BEΓ(δ) ⊆
∆(A), to be all distributions over A that are achieved as the action distri-

bution of a rational approximation of Γ, of order ≤ δ (“action distribution”

meaning the average over tuples of actions, i.e., Ep (a(t))). The set of ratio-

nal payoffs, BEPΓ(δ), is the set of all payoff profiles achieved as the average

payoff (i.e., Ep (u(t, a(t)))) of such approximations. Obviously, both BE and

BEP are monotonically increasing in δ. Note that BE(0) is just the set of

correlated equilibrium distributions, and BEP(0) the correlated equilibrium

payoffs.
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3 Properties of Approximations

Similarly to a standard procedure concerning correlated equilibria, we can

restrict our attention to systems in which all the types who choose the same

action are combined into one.

Proposition 3.1. For any rational belief system, there exists another ratio-

nal belief system of the same order or less, with Ti = Ai for every i ∈ N .

Proof. Let S = (T, p, u) be a rational system. For ai ∈ Ai, denote Fi(ai) =

{ti ∈ Ti : ai(ti) = ai} and F (a) = {t ∈ T : a(t) = a}. We construct a system

in which the types are Ai, by Ŝ = (T̂ , p̂, û), where T̂i = Ai ; player i of type

t̂i ∈ Ai chooses the action t̂i (i.e., ai(t̂i) = t̂i ) ; p̂(t̂) = p(F (t̂)) ; and for t̂ ∈ T̂
and x ∈ A, û(t̂, x) = Ep

(
u(t, x) | t ∈ F (t̂)

)
.

S is rational, so for any ti ∈ Fi(ai), the expressionEp (ui(t, (xi, a
−i(t))) | ti)

is maximized by xi = ai. Therefore Ep (ui(t, (xi, a
−i(t))) | ti ∈ Fi(ai)) is also

maximized by xi = ai . To establish the rationality of Ŝ, we maximize

Ep̂
(
ûi(t̂, (xi, a

−i(t))) | t̂i = ai
)

= Ep̂
(
Ep
(
ui(t, (xi, a

−i(t))) | t ∈ F (t̂)
)
| t̂i = ai

)
= Ep (ui(t, (xi, a

−i(t))) | ti ∈ Fi(ai)). This is the same expression as before,

and therefore is maximized by xi = ai .

d(Ŝ, g) = Ep̂
(
maxa∈A ‖û(t̂, a)− g(a)‖

)
=

Ep̂
(
maxa∈A ‖Ep

(
u(t, a) | t ∈ F (t̂)

)
− g(a)‖

)
≤

Ep̂
(
maxa∈AEp

(
‖u(t, a)− g(a)‖ | t ∈ F (t̂)

))
≤

Ep̂
(
Ep
(
maxa∈A ‖u(t, a)− g(a)‖ | t ∈ F (t̂)

))
=

Ep (maxa∈A ‖u(t, a)− g(a)‖) = d(S, g) .

Therefore, for any finite game Γ, BEΓ and BEPΓ can be defined over

belief systems that are finite.

Note that the construction of Ŝ in the above proof does not depend on g.

In fact, the transformation S → Ŝ is a kind of “coarsening” of the system,

since it takes the payoffs to be the conditional expectation of payoffs with

respect to the partition {F (a)}a∈A . Such a coarsening is closer than S to

any payoff function g.
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Corollary 3.2. If Γ is a finite game, then for any δ, BEΓ(δ) and BEPΓ(δ)

are closed.

Given two systems S1 = (T 1, p1, u1), S2 = (T 2, p2, u2), we define a convex

combination of the two, denoted λS1 + (1−λ)S2 (0 ≤ λ ≤ 1), as the system

(T, p, u), where Ti = T 1
i ∪T 2

i (assuming that T 1
i and T 2

i are disjoint), u is the

union of u1 and u2, and p(t) equals λp1(t) for t ∈ T 1, and (1 − λ)p2(t) for

t ∈ T 2.

Lemma 3.3. If S = λS1 + (1 − λ)S2, then for any game g, d(S, g) =

λ d(S1, g) + (1− λ)d(S2, g).

Proof. Note that the construction of S is equivalent to the following proce-

dure. We toss a coin with probabilities (λ, 1 − λ), and accordingly choose

either the setting of S1, or that of S2 (and we inform the players of the

outcome of the coin toss). Then a direct computation of d(S, g) verifies the

result.

Corollary 3.4. For 0 ≤ λ ≤ 1, and δ = λ δ1+(1−λ)δ2, BE(δ) ⊇ λBE(δ1)+

(1− λ)BE(δ2).

Corollary 3.5. For any game Γ and any δ, BEΓ(δ) and BEPΓ(δ) are convex.

Proof. By Corollary 3.4, BEΓ(δ) ⊇ λBE(δ) + (1− λ)BE(δ) .

4 Elasticity

Recall that BEPΓ(0) is just the set of correlated equilibrium payoffs CEP(Γ).

Let d(BEPΓ(δ),CEP(Γ)) be the Hausdorff distance between the two sets,

or more simply in our case (since the latter set is a subset of the former)

maxx∈BEPΓ(δ) miny∈CEP(Γ) d(x, y).

Definition 4.1. The elasticity of a game Γ is

η(Γ) = sup
δ>0

d(BEPΓ(δ),CEP(Γ))

δ
− 1
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Note that η is nonnegative. For example, if a system S consists of chang-

ing the game by adding a constant to every outcome, then this also adds

the same constant to the equilibrium payoffs, without affecting the equilib-

rium strategies. In this case, (equilibrium payoff distance) / (payoff distance)

−1 = 0.

Proposition 4.2. (a) If Γ has only one player, then η(Γ) = 0 .

(b) If Γ is a two-player zero-sum game,3 then η(Γ) ≤ 2 .

Proof. (a) Let v be what the player can get in Γ, and let S = (T, p, u) be some

system with d(S, g) = δ. Then |E (u(a(t))− g(a(t)))| ≤ E (|u(a(t))− g(a(t))|)
≤ E (maxa∈A |u(a)− g(a)|) = δ. Therefore the expectation in S cannot ex-

ceed v+ δ, since his current average play would then yield more than v in Γ.

And it cannot fall below v − δ, since sticking to his optimal play in Γ (at all

types) would then be better in S.

(b) Let v be the value of Γ. Then player 1 has a strategy that guarantees

v in Γ. Denote δi = E (maxa∈A |ui(a)− gi(a)|) for i = 1, 2. Since δ =

E (maxa∈A |u1(a)− g1(a)|+ |u2(a)− g2(a)|), we get that δ1, δ2 ≤ δ ≤ δ1 + δ2.

Similarly to (a), the expectation of player 1 in S, E (u1), is ≥ v − δ1, since

that optimal strategy can guarantee that much. Likewise E (u2) ≥ −v − δ2.

On the other hand, by writing u = g+ (u− g), we get that E (u1 + u2) ≤
E (g1 + g2) + δ = δ. Now let α1 = E (u1) − v, α2 = E (u2) − (−v). So

α1 ≥ −δ1, α2 ≥ −δ2, and α1 + a2 ≤ δ. If both numbers have the same sign,

then |α1|+ |α2| ≤ δ1 + δ2, and therefore (|α1|+ |α2|)/δ ≤ 2, since δ ≥ δ1, δ2.

Otherwise, if, say, α1 > 0 and α2 < 0, then |α1| ≤ δ + δ2, and |α2| ≤ δ2, and

therefore (|α1|+ |α2|)/δ ≤ (δ + 2δ2)/δ ≤ 3.

The following theorem tells us that in order to establish η, it suffices to

consider only small changes in the game data.

Theorem 4.3. For any game Γ,

η(Γ) = lim
δ→0

d(BEPΓ(δ),CEP(Γ))

δ
− 1

3There are simple zero-sum games whose elasticity is 2, and this is not a peculiarity of

the L1 norm, as we could also get 2 using the L∞ norm.
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Proof. Denote φ(δ) = d(BEPΓ(δ),CEP(Γ)). First we note that φ(δ) is a

concave function. Indeed, let 0 ≤ λ ≤ 1, and let δ = λ δ1 + (1 − λ)δ2.

Then by Corollary 3.4, d(BEPΓ(δ),CEP) ≥ λ d(BEPΓ(δ1),CEP) + (1 −
λ)d(BEPΓ(δ1),CEP) . Now, since φ(0) = 0 and φ is concave, the function

φ(δ)/δ is decreasing, and the result follows.

Theorem 4.4. For any finite game Γ, η(Γ) <∞ .

In other words, for any finite Γ there exists a number M , such that for

any δ ≥ 0 and any x ∈ BEPΓ(δ), d(x,BEPΓ(δ)) ≤M δ .

Proof. Let S be a rational belief system of order δ, with average payoff

x. Let z ∈ ∆(A) be the induced distribution over action profiles. Ra-

tionality implies that whenever any type ti of player i chooses the action

ai(ti) ∈ Ai, this action is best given ti. That is, ai = ai(ti) maximizes

Ep (ui ((ti, t−i), (ai, a−i(t−i) | ti) )).

Let ai ∈ Ai be chosen with positive probability. Denote by F = F (ai)

all the types of player i that choose the action ai. Then E (ui(t, a(t)) | F ) is

maximized by the choice of ai. By writing u = g + (u − g), the maximized

expression is E (gi(a(t)) | F ) + E (ui(t, a(t))− gi(a(t)) | F ). If we multiply

this by P(F ), then the first part is equal to
∑

a−i∈A−i
z(ai, a−i) gi(ai, a−i)

and the second part is ≤ E (ui(t, a(t))− gi(a(t))) = δ. Therefore, for any

bi ∈ Ai, we get that
∑

a−i∈A−i
z(ai, a−i) (gi(ai, a−i)− gi(bi, a−i)) ≥ −2δ.

Let CE(Γ) be the set of correlated equilibrium distributions. It is the in-

tersection of the halfspaces H i
a,b = {ζ ∈ ∆(A) :

∑
a−i∈A−i

ζ(a, a−i) (gi(a, a−i)−
gi(b, a−i)) ≥ 0}, for all i ∈ N and a, b ∈ Ai.

By Lemma 4.5, there exists M , such that d(z,CE) < 2δM . Therefore,

d(
∑

a∈A z(a)g(a), CEP) ≤ 2δM ·‖g(a)a∈A‖2. And d(x,CEP) ≤ d(
∑

a∈A z(a)g(a),

CEP) + δ .

Lemma 4.5. Let ∅ 6= C = ∩kj=1Hj be a finite intersection of halfspaces,

where Hj = {x ∈ Rn : 〈ej, x〉 ≥ 0}, ej ∈ Rn. Then there exists a number M

such that for any z ∈ Rn \ C, d(z, C) ≤M ·max{−〈ej, z〉 : 1 ≤ j ≤ k}.
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Proof. Fix z ∈ Rn \ C. Denote V = span {ej : 〈aj, z〉 ≤ 0}, and choose an

independent set of vectors {ej} that spans V ; w.l.o.g. it is {e1, . . . , em}. Let

φ(z) be the closest point to z in C, and denote v = z − φ(z). Then v ∈ V ,

because if v = v1 ⊕ v2, where v1 ∈ V and v2 ∈ V ⊥, then for some ε > 0

φ(z) + εv2 is still in C, and is closer to z.

Since (e1, . . . , em) is a basis for V , it follows that if we define N : V → R
by N(v) = max{−〈ei, v〉 : 1 ≤ j ≤ m}, we can verify that N is a norm.

Since all norms are equivalent, there exists K = K(e1, . . . , em) with ‖v‖ ≤
K ·N(v) = K ·max{−〈ej, v〉 : 1 ≤ j ≤ m}. By taking M to be the maximum

over all K(E), where E is any linearly independent subset of {e1, . . . , ek}, we

get the result.

There is, however, no universal bound. Even if we fixed the game form

and bound all payoffs to a certain range, we would still find games whose

elasticity is as high as we please.

5 Large Elasticity in Repeated Games

Neyman (1999) considers finitely repeated games, where the number of rep-

etitions T is not common knowledge. He shows that with a very small de-

viation from common knowledge of the length of the repeated game (i.e.,

common knowledge of the proposition T = n), we get equilibrium payoffs

that approximate every feasible and strictly individually rational payoff (of

the stage game). Thus, for example, in the (normalized) finitely repeated

prisoner’s dilemma we get an equilibrium whose payoff is close to the full

cooperation payoff. There are a few senses in which the required deviation

from common knowledge is small. In particular, the expectation of |T − n|
is exponentially small in n.

With this class of uncertainties, namely uncertainties about the length of

a repeated game, we may define the L-elasticity of the game as the maximal

ratio between the expected change of the equilibrium payoff and the expected

change of the length (E |T − n|). In this terminology, Neyman’s results say,
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in particular, that the scale of growth of the L-elasticity of the repeated

prisoner’s dilemma is exponential in n.

Proposition 5.1 (Neyman (1999)). There exist numbers B ≥ A > 1 , such

that the L-elasticity of the normalized n-repeated prisoner’s dilemma is larger

than An and smaller than Bn .

As we will see, the “L-uncertainties,” namely the uncertainties about the

length of the game, can be seen as a subclass of the class of uncertainties

employed by the elasticity concept.

In order to consider various lengths T of the game, Neyman takes the set

of strategies of each player to be the strategies of the infinitely repeated game.

Two strategies that completely agree on the first n stages are equivalent in

the original n-repeated game.

We can use Neyman’s result to prove that the elasticity of the n-repeated

prisoner’s dilemma grows at least exponentially in n. To do this, we trans-

late the uncertainty about the length of the game T into uncertainty about

payoffs. Simply, for every pair of strategies of the infinitely repeated game,

a value of T determines the payoffs of the players.

We should also account for the shift from n-stage strategies to infinite

strategies.

Definition 5.2. The reduced form of a game in normal form (N,A, g) is a

game (N, Â, g), where for each i ∈ N , Âi are the equivalence classes of Ai

(i.e., ai ∼ a′i ⇐⇒ g(ai, a
−i) = g(a′i, a

−i) for every a−i ∈ A−i). Two games

are isomorphic if they have the same reduced form.

Thus, the original n-stage game is the reduced form of the game with

infinite n-equivalent strategies. The following lemma tells us that the two

games will have the same elasticity.

Let BE(δ)/∼ denote the projection of BE(δ) over the equivalence classes

of actions.

Lemma 5.3. Let Γ be a game, and R(Γ) its reduced form. Then BEΓ(δ)/∼
= BER(Γ)(δ)/∼ and BEPΓ(δ) = BEPR(Γ)(δ), for any δ.
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Proof. Let Γ = (N,A, g), R(Γ) = (N, Â, g). Let ϕi : Ai → Âi be the function

that associates an action xi ∈ Ai with its equivalence class ϕi(xi). Let ψi :

Âi → Ai be some arbitrary function that associates every equivalence class

x̂i ∈ Âi with a “representative” of that class ψi(x̂i) ∈ Ai (i.e., ϕi(ψi(x̂i)) =

x̂i).

Suppose S = (T, p, u) is a rational belief system over (N,A). For each

ti ∈ Ti, define the function f
(ti)
i : Ai → Ai by

f
(ti)
i (x) =

{
ϕi(ψi(x)) if x 6= ai(ti)

ai(ti) if x = ai(ti)

That is, if x is the action chosen by the type ti, we keep it; otherwise, we

replace x with the fixed representative of its equivalence class.

First, we construct the system Se = (T, p, ue) where the types and prior

are the same T and p as in S, and ue(t, (ai)i∈N) = u(t, (fi(ai))i∈N). Here two

actions that are equivalent (i.e., according to g) are also equivalent according

to ue.

If x ∈ Ai is not equivalent to ai(ti), then E (uei (t, (x, a
−i(t))) | ti) =

E (ui(t, (fi(x), f−i(a−i(t)))) | ti) = E (ui(t, (fi(x), a−i(t))) | ti) ≤ [because S

is rational] E (ui(t, (ai(ti), a
−i(t))) | ti) = E (uei (t, (ai(ti), a

−i(t))) | ti) . So Se

is rational.

For any t ∈ T , maxa∈A ‖ue(t, a)− g(a)‖ = maxa∈A ‖u(t, f(a))− g(a)‖ =

maxx∈f(A) ‖u(t, x))− g(x)‖ ≤ [because f(A) ⊆ A] maxx∈A ‖u(t, x))− g(x)‖ .

Therefore d(Se, g) ≤ d(S, g).

Now consider the system over (N, Â) defined by Ŝ = (T, p, û), where

û(t, â) = ue(t, ψ(â)) . Since equivalent actions are equivalent in Se, it follows

that Ŝ is still rational and that d(Ŝ, g) = d(Se, g) (≤ d(S, g)).

The other direction is simpler: Any belief system over (N, Â) can be

directly copied into a belief system over (N,A), simply by taking all actions

that are equivalent (according to g) to be equivalent in the belief system (i.e.,

equivalent according to u).

Corollary 5.4. If Γ1 and Γ2 are isomorphic games, then BEΓ1(δ)/ ∼=

BEΓ2(δ)/∼ and BEΓ1(δ) = BEΓ2(δ), for any δ.

12



We are thus able to derive the following from Neyman’s result:

Proposition 5.5. There exists a number A > 1 , such that the elasticity of

the normalized n-repeated prisoner’s dilemma is greater than An.

6 Uncertainty about Rationality

Aumann (1987) shows that when the rationality of all the players is com-

mon knowledge, then the distribution of their action profile is a correlated

equilibrium distribution. Indeed, common knowledge of rationality may be

considered a strong assumption. As Aumann (1992) writes: “In real inter-

active situations there is a great deal of uncertainty about what others will

do, to what extent they are rational, what they think about what you think

and about your rationality, and so on.” In the same paper, he sets out to

demonstrate what a rational player might do when rationality is not com-

monly known. He shows how a slight departure from common knowledge of

rationality can have a big strategic effect – the players’ actions can deviate

sharply from the correlated equilibria. Such a state of affairs can account

for human behavior in well-known “backward induction paradoxes,” such as

centipede games and the finitely repeated prisoner’s dilemma.

Thus in Aumann’s model, in the vast majority of “states of the world”

the players of the centipede game are rational. Moreover, in the vast major-

ity of states, rationality is mutually known (i.e., each player knows that the

other player is rational). And yet, in the vast majority of states, the play-

ers do not “go out” immediately at the start of the game, but rather they

“stay in” for a few rounds. So this staying-in behavior, which cannot occur

when rationality is common knowledge, is possible in this “almost common

knowledge” situation.

In particular, in Aumann’s examples each player’s “expected irrational-

ity” is small. That is, the irrationality of some type of player i is taken

to be the difference between his expected payoff and what a rational player

might have expected in his place. Player i’s expected irrationality is then

13



the weighted average of the irrationality of his types. Note that it does not

seem enough to consider only the probability of irrational types; we want to

account for the “extent of irrationality” that each type exhibits.

This concept of expected irrationality can be used to define a parallel

notion of elasticity with respect to uncertainty about rationality, instead of

uncertainty about the game, as follows. In a belief system S, let Li(ti) =

maxx∈Ai
(Ep (ui(t, (x, a

−i(t)))− ui(t, a(t)) | ti)) be the irrationality of type

ti. If ti plays optimally given his belief, then Li(ti) = 0. The irrationality

of the system, denoted I(S), is then
∑

i∈N Ep (Li(ti)), namely the sum of

the expected irrationality of the players.4 For a game Γ = (N,A, g), define

IRRΓ(δ) to be the action distributions of any system S where the payoff g is

common knowledge, and I(S) ≤ δ.

Although uncertainty about rationality is conceptually quite different

from uncertainty about the game, the following proposition states that all the

distributions achieved with some irrationality bound, can also be achieved

by rational systems with a deviation of the same order of magnitude (and

vice versa).

Proposition 6.1. For any game Γ, IRRΓ(2 δ) ⊆ BEΓ(δ) ⊆ IRRΓ(2 δn).

Proof. Let Γ = (N,A, g). Let S = (T, p, u) be a rational system, with

d(S, g) = δ. Consider the system Ŝ = (T, p, g), where the payoff g is com-

mon knowledge, and the types and prior are the same T and p. By writing

g = u+ (g − u) we write:

gi(x, a
−i(t))−gi(a(t)) = [ui(t, (x, a

−i(t)))− ui(t, (a(t)))]+gi(x, a
−i(t))−gi(a(t))−

ui(t, (x, a
−i(t))) + ui(t, (a(t))) .

To compute Li(ti) we need to take the conditional expectation of this,

given ti. Then for the first parenthesis we get ≤ 0, because of the rationality

of S. Thus Li(ti) = E (gi(x, a
−i(t))− gi(a(t)) | ti)

≤ E (gi(x, a
−i(t))− ui(t, (x, a−i(t))) + ui(t, (a(t)))− gi(a(t)) | ti)

≤ E (2 maxa∈A |gi(a)− ui(t, a)| | ti) .

4A reasonable alternative is to define it as maxi∈N Ep (Li(ti)) .
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Hence, E (Li(ti)) ≤ 2E (E (maxa∈A |gi(a)− ui(t, a)|) | ti)
= 2E (maxa∈A |gi(a)− ui(t, a)|) ≤ 2E (maxa∈A ‖g(a)− u(t, a)‖) = 2 d(S, g) =

2δ . And therefore the irrationality of Ŝ is ≤ 2 δn .

To prove the other inclusion, let S = (T, p, g) with irrationality δ. Denote

the function Li(ti) for this system by LSi (ti), and define u as follows. If

xi 6= ai(ti), then ui(t, x) = gi(x)−LSi (ti)/2; and if xi = ai(ti), then ui(t, x) =

gi(x) + LSi (ti)/2. Consider the system Ŝ = (T, p, u). The definition of u

ensures that ai(ti) maximizes i’s payoff given his belief ti, namely every type

ti is rational. For any t ∈ T , a ∈ A, and i ∈ N , |ui(t, a)− g(a)| = LSi (ti)/2,

therefore also ‖u(t, a)− g(a)‖ = LSi (ti)/2, and so

d(Ŝ, g) = E (maxa∈A ‖u(t, a)− g(a)‖) = E
(
LSi (ti)/2

)
= δ/2 .

This allows us to easily translate results concerning uncertainty about the

game to results concerning uncertainty about rationality, and vice versa.

7 Remarks

7.1 Extending the Distance to Bayesian Games

We have defined elasticity by looking at normal-form games, and in particular

the distance between them and their approximations, Bayesian games. It

seems natural then to try and extend our space of games to Bayesian games,

in which normal-form games are included as a degenerate case, and have

some measure of distance between any two points in this space, i.e., two

Bayesian games. The definition is simple for two games with the same set of

types, as in Section 2; but we want it for any two games.

So consider two Bayesian games S1 = (T1, p1, u1) and S2 = (T2, p2, u2).

The following definition might seem appealing. Define their distance by

minE (d(u1, u2)), where the minimum is taken over all worlds that combine

S1 and S2 (i.e., a probability p over T1×T2, with the appropriate marginals).

Note that this amounts to measuring the distance between the two distribu-

tions over (RN)A, namely the distributions of ui(·) induced by pi (i = 1, 2).
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The reason why such a definition is inappropriate is that it does not

reflect the individual information of each player. For example, consider the

two Bayesian games in Figure 3. There are two possible states of nature, A

Figure 3:

γ δ

α A B

β B A

γ δ

α A B

β A B

and B, and let d(A,B) = 1. In each of the games the types of player 1 are

α, β and the types of player 2 are γ, δ. Let the prior in both cases be 1/4 for

each state of the world.

Here minE (d(u1, u2)) = 0, because we can choose a world that combines

the two games where the state of nature, either A or B, is identical in the

first and the second games.

We believe that the distance should be defined by the types of the players,

and not just by the payoffs, as follows. Take the minimum of Ep (d(u1, u2))

over all combinations (p, T1 × T2) that embed the two games: namely, the

marginal distribution of p over T1 equals p1, and the marginal over T2 equals

p2, but also with the following conditional independence properties: for every

player i, the type ti2 is independent of t−i1 given ti1, and also independent given

t−i2 (and likewise when replacing 1 and 2.)

If we think of a normal-form game as a Bayesian game with only one

possible type profile, then we immediately see that this definition of distance

between Bayesian games extends our previous definition of distance between

a normal-form game and a Bayesian game.

In the above example, we can construct a combination, with Ep (d(u1, u2))

= 1/2 , as follows. Let the states of the world be denoted by the tuple

(t11, t
1
2, t

2
1, t

2
2). p is constructed so that the two types of each player are iden-

tical (i.e., ti1 = ti2) in all possible states of the world, and p(α, α, γ, γ) =

p(α, α, δ, δ) = p(β, β, γ, γ) = p(β, β, δ, δ) = 1/4. Then with probability 1/2
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the states of nature are identical (and then d(u1, u2) = 0), and with probabil-

ity 1/2 they are different, and then d(u1, u2) = 1, and hence Ep (d(u1, u2)) =

1/2.

This combination satisfies the stated conditions. First, the marginal dis-

tribution over T1 is 1/4 for each combination, as required, and similarly for

T2. As for the conditional independence conditions, take for example player

1’s type in the first game and player 2’s type in the second game, t11 and

t22, given player 1’s type in the second game, t12. t11 is completely determined

given t12, and therefore, conditional on t12, t11 and t22 are trivially independent.

Now we show that, in fact, any combination satisfying these conditions

has Ep (d(u1, u2)) = 1/2. Consider any such combination, and first let us

confine our attention to the event E = {t21 = δ}. t11 and t22 are independent

given E. Note that u2 is always determined by t22, and that given E, u1

is determined by t11. Therefore, u1 and u2 are independent given E. Now,

the marginal distribution over T1 has to be the same as in the first game;

therefore it follows that given E the distribution of t21 is either γ or δ with

equal probability, and hence u1 = A or B with equal probability. u2 also gets

the values A or B, and is independent of u1; therefore u1 and u2 coincide or

differ with equal probability. Hence Ep (d(u1, u2) | E) = 1/2.

We can follow the same argument for the event {t21 = γ}, and thus get

that overall Ep (d(u1, u2)) = 1/2. Therefore, the distance between the two

games in our example is 1/2.

7.2 Individual scales

It is not hard to see that elasticity is invariant to adding a constant to any

player’s payoff function. It is also invariant to multiplying the payoffs of

all players by a constant; but multiplying the payoff of a single player by a

constant may change the elasticity.

One way to make it invariant might be to define it so that given a game,

we first rescale any player’s payoff function in the usual sense (positive linear

affine transformation), so that each player’s maximal payoff is 1 and the
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minimal is 0, and then compute the elasticity. Then if some player’s payoff

in game A is a multiple of his payoff in game B, the two games will still have

the same elasticity. This may seem satisfactory, at least in some cases.

It may be argued that either way the notion involves a comparison of

individual utility scales, which some may find problematic. The problem

lies not in the concept of utility comparison in general (in fact, this author

believes that in many situations utility comparison cannot, or at least should

not, be avoided), but rather in the fact that games are often perceived as

modelling ordinal utilities and not cardinal utilities.

Yet, if one tries to analyze, through the elasticity concept or through

other means, the consequences of an uncertainty of the modeler (about the

knowledge of the players), then the specific numbers that the modeler ascribes

to the different players may not be that meaningless.

Suppose our modeler writes down the prisoner’s dilemma, with player

1’s payoffs in the four cells being (0, 1, 4, 5) and player 2’s payoffs being

(0, 100, 400, 500). Why does she choose those particular values? If she is not

ready to consider any uncertainty, any kind of perturbation, then perhaps

nothing can be deduced from her specific choice.

But if she is taking perturbations into account, we may have to take her

numbers seriously. The different scales of 1 and 2 may reflect her ability to

discern the preferences of player 2 more clearly than those of player 1. Or

they may relate to something like 1’s uncertainty about 2’s uncertainty about

1’s discerning 2’s preferences, etc.

In short, at some possible state of the world, player 2’s preferences seem to

some player (or to the modeler) a lot clearer than player 1’s. That degree of

clarity is manifested in the difference between 2’s payoff in various outcomes,

compared to 1’s differences. And indeed, this is invariant to adding a constant

to a player’s payoffs, but not invariant to a positive multiple.

We could, then, say that the numbers do not involve a comparison be-

tween the utilities of two agents, but rather they are all in the mind of one

“agent,” the modeler. And they reflect what she knows about the preferences
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of the players, what she knows about their beliefs about the preferences, and

so on.

7.2.1 Example

An extreme example is the game in Figure 4, where if we multiplied the

payoff of one of the players by some factor, the elasticity becomes arbitrarily

small as the factor grows.

Figure 4:

0, 0 4, 0

0, 4 3, 3

7.3 Growth Rate

Having seen that the elasticity of the repeated prisoner’s dilemma grows at

least exponentially (as well as that of other games), it will be of interest to

show that the order of growth is exponential, i.e., to show an exponential

upper bound.

Moreover, perhaps there is room for “classifications” of the elasticity

growth rate of repeated games (or maybe some other sorts of parametrized

games), with classes such as subexponential, superexponential, etc.
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