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1 Introduction

The standard economic models of private provision of public goods by sel�sh agents

often predict an ine�cient level of contributions. These theoretical predictions appear

to be inconsistent with empirical behavior.1

In an attempt to understand this discrepancy, economists use lab and �eld ex-

periments to investigate the factors shaping the voluntary provision of public goods.

The Linear Voluntary Contribution Mechanism (LVCM) has been the most common

experimental design employed. It assumes a production technology of the public

good which is linear and additively separable in agents' contributions. Under this

key assumption the dominant strategy for agents with self-regarding preferences is to

contribute nothing at all (i.e., to free-ride) rather than make a positive contribution

which results in a private cost and a social bene�t.2 The robust experimental �nding

is that contributions are signi�cantly higher than zero in early rounds, but diminish

over time. Positive contributions have been interpreted (among other explanations)

as re�ecting confusion, altruism or willingness to cooperate if others do.3

Identifying why subjects may want to coordinate in voluntary contribution contexts

is essential to understanding empirical observations. In this study we generalize the

linear mechanism used in most public good experiments by letting agents' contribu-

tions be complements in production. This provision technology captures two essential

features. First, an increase in one's contribution raises the marginal return on others'

contributions, and second - the provision is more e�cient when agents' contributions

are relatively homogeneous.

Complementarity is fundamental when the provision is performed through e�ort.

Through evolution, Homo sapiens has learned to coordinate e�orts in order to hunt

1In the US, for example, donations accounted for over 2% of GDP in 2014 (Giving USA, 2015).
2Assuming that the marginal per capita return (MPCR) is lower than one.
3The experimental literature is much too vast and thoughtful to be covered fairly here. An

interested reader is referred to Ledyard (1995), for an older but very helpful survey, and a more
recent survey by Vesterlund (Forthcoming). Typically, changes in the environment have been shown
to increase cooperation, e.g. allowing communications between participants, increasing the group
size, setting a higher marginal per capita return on total contributions, and introducing the ability
to administer punishment.
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and guard. A family (household) may be viewed as an environment in which public

goods are provided through e�ort, and in which complementarity is instrumental.

Similarly, many modern charities that provide for public goods rely on e�orts by

stakeholders (mainly board members) in order to raise funds and produce their public

good of choice. Crucially, in several joint endeavors such as school funding activities,

neighborhood improvement initiatives and even some scienti�c research projects, the

return to a participant's e�ort depends on the level of e�ort that all other participants

choose to exert.

For low levels of complementarity, the unique Nash equilibrium remains the zero-

contribution equilibrium (though in the non-linear case it is not in dominant strate-

gies). When complementarity is su�ciently high a new (second) full-contribution

equilibrium emerges, transforming the selection of equilibrium into a coordination

problem.

Our experimental design varies the degree of complementarity, encompassing the

special linear case. For the linear (no-complementarity) benchmark, we replicate the

usual result of positive but diminishing contributions. When we introduce comple-

mentarity, subjects visibly respond to it. With strong complementarity subjects are

able to coordinate on the full contribution equilibrium. When complementarity is

sizable but insu�cient to support a new equilibrium, subjects persistently contribute

above the unique zero contribution sel�sh-equilibrium and we observe little or no

convergence towards this equilibrium.

To understand what motivates subjects to make these choices, we investigate

the decision-making processes underlying their choices. This analysis relies on a

wealth of unique non-choice data, including accurate information about calculations

made by each subject before submitting a choice and how long it took to submit a

choice. We document a variety of facts about the way subjects form conjectures about

other players' contributions, whether subjects are able to identify pro�t-maximizing

responses to their conjectures, and how these calculations relate to their choices.

The examination of choice and non-choice data allows us to reduce the rich het-

erogeneity in observed contributions to two modus operandi, which we associate to

two di�erent types of agents denoted respectively as Homo pecuniarius and Homo
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behavioralis. Homo pecuniarius maximizes money-pro�ts by best responding to his

or her beliefs, which are shaped by recent history. Homo behavioralis, on the other

hand, is able to identify the pro�t-maximizing choice but chooses to systematically

deviate from it. We �nd no strong evidence of confusion: Homo behavioralis sub-

jects appear willing to sacri�ce some pecuniary rewards to pursue other goals. When

complementarity is low, some agents may have altruistic motives and they contribute

above their monetary best-response. When complementarity is high, altruistic be-

havior is indistinguishable from pro�t maximization, but a new competitive motive

surfaces: by lowering their contribution below the pecuniary best-response some sub-

jects are able to make relatively higher pro�ts than other participants.4 We quantify

the magnitude of these behavioral motives and show that they are relatively modest

but lead to signi�cant and systematic deviations from the pecuniary best-response.

These two types of agents co-exist and are able to best respond to each other in

equilibrium. Over time their interaction shapes aggregate dynamics and provides a

way to interpret the patterns observed under di�erent degrees of complementarity.

The paper is organized as follows. Section 2 overviews the theoretical model and

equilibrium predictions. The experimental design and laboratory procedures are de-

scribed in Section 3. In Section 4 we report results from aggregate data and show that

contribution behavior converges towards equilibrium values, with one conspicuous ex-

ception which we examine in detail. Section 5 explores individual-level behavior. The

combined use of choice and non-choice data is instrumental in explaining deviations

from the pro�t-maximizing strategies. We then classify subjects into two types, Homo

pecuniarius and Homo behvaioralis, and we estimate the magnitude of altruistic and

competitive motives. Section 6 provides a summary of related research, and Section

7 concludes.

4In the low complementarity treatment, competition is indistinguishable from pro�t-maximizing
behavior.
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2 The Voluntary Contribution Mechanism with Com-

plementarity

Consider a set of n individuals, indexed by i ∈ {1, ..., n}, each endowed with ω > 0,

who must decide whether � and how much � to invest in a public good which maps

private contributions into an output that is equally shared among all group members.

Let gi denote individual i's contribution to the public good. The remainder of the

endowment that is not allocated to the public good (ω − gi), is consumed privately by

player i. Individual investments in the public good are aggregated through a constant

elasticity of substitution production function that exhibits constant returns to scale.

Player i's preferences are additively separable between the private and public goods:

πi = ω − gi + β

(
n∑

i=1

gρi

)1/ρ

, (2.1)

where ρ ≤ 1 denotes the degree of complementarity and β > 0 is a constant. The

voluntary contribution mechanism with complementarity (VCMC) encompasses, as

a special case when ρ = 1, the standard LVCM. The individual return from an

investment in the public good depends on the contributions of all n players and on

the degree of complementarity between their investments.5

2.1 Best-response function

In the well studied special case of LVCM (ρ = 1), the unique dominant strategy is

to contribute zero whenever β is below one, or allocate the entire endowment to the

public good when β is greater than one. In the general VCMC environment, the best

response (BR) of agent i, denoted as g∗i (g−i), is a linear function of the generalized

ρ-mean of his or her conjecture about the contributions of other group members,

denoted by the vector g−i ∈ <n−1
+ . Denote by Mρ (g−i) the generalized ρ-mean of g−i:

5The marginal per capita return on contributions to the public good (MPCR) is equal to

β (
∑n
i=1 g

ρ
i )

1−ρ
ρ gρ−1i . This reduces to the customary β in the linear case. In standard LVCM

experiments it is usually assumed that 1
n < β < 1.
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Mρ(g−i) ≡
(∑n−1

i=1 g
ρ
−i

n−1

)1/ρ

.6 To see this, consider the �rst order condition with respect

to gi:
7

∂πi
∂gi

= β
(

(g∗i )
ρ +

∑
gρ−i

) 1−ρ
ρ (

(g∗i )
ρ−1)− 1 = 0. (2.2)

Rearranging terms, we obtain g∗i (g−i);

g∗i (g−i) =




kMρ(g−i) if kMρ(g−i) ≤ ω

ω otherwise,
(2.3)

where k ≡
(

n−1

β
ρ
ρ−1−1

) 1
ρ

is a constant that depends on the model's parameters. If k > 0,

the contributions are complementary; moreover, as the degree of complementarity

diminishes (ρ increases), k decreases as well. In the limit, when ρ approaches one, k

goes to zero and the BR of player i is to invest zero in the public good regardless of

other players' actions. As agent i's BR depends on the generalized mean of g−i, it

depends also on the dispersion of other players' contributions: for a given arithmetic

mean, player i's optimal contribution decreases as the dispersion of other players'

contributions increases. Put simply, there is an additional bene�t from coordination.

Figure 2.1 summarizes the BR g∗i (g−i) for di�erent values of the complementarity

parameter ρ (each used in the experiments that follow). The generalized ρ−mean of

other group members' contributions is measured on the horizontal axis, and player i's

contribution is shown on the vertical-axis. The solid lines represent the BR of player

i.

Imposing the symmetry condition gi + G−i = ngi in Equation (2.2)8 and solving for

gi, we characterize the symmetric equilibria:

geqi =





0 if k < 1

{0, ω} if k > 1.
(2.4)

6The arithmetic mean is a special case of the generalized mean (when ρ = 1). The arithmetic
and the generalized means are identical when all contributions are equal, that is when g−i = g1n−1.

7Details on the derivation of the best response can be found in Appendix A.
8 Where G−i =

∑
j 6=i gj .
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Figure 2.1: Best-Response Functions
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Thus, for given β and n and with su�ciently high complementarity, there exist two

equilibria.9 When k = 1, any symmetric strategy pro�le is a Nash equilibrium.10

3 Experimental Design

The baseline parameters are chosen so that the linear treatment (ρ = 1) is easily

comparable to similarly parameterized LVCM experiments.11 Speci�cally, we assign

the following values: (i) number of players in a group, n = 4; (ii) initial token

9Alternatively, k T 1 if and only if ρ S ln(n)
ln(n/β) .

10It is immediate to verify that only symmetric equilibria exist. Suppose that there exists a non-
symmetric equilibrium g∗ and denote by g∗min = min {g∗} < max {g∗} = g∗max . For the case of
k ≤ 1 it follows that kMρ

(
g∗−max

)
< g∗max which is a contradiction. Similarly, if k ≥ 1 it follows

that kMρ

(
g∗−min

)
> g∗min which is a contradiction.

11See, among others, Fehr and Gächter (2000); Kosfeld et al. (2009); Fischbacher and Gächter
(2010).
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endowment, ω = 20; and (iii) β = 0.4. The latter is a commonly assumed value

of the MPCR in the linear case. In the non-linear case, however, the MPCR also

depends on the curvature parameter ρ and on contributions of other players.

Our treatments consist of variations in the degree of complementarity, ρ. Table 3.1

presents an overview of each treatment design, highlighting key aspects for each value

of ρ. The equilibrium contribution is displayed in the third column. For su�ciently

large values of ρ there exists a unique equilibrium of zero contribution. There also

exists a threshold value of ρ below which the equilibrium contribution is either zero or

the whole endowment ω (given the baseline parameters, this happens when ρ < 0.602).

Finally, the fourth column reports the exchange rate used in each treatment, adjusted

so that expected payo�s were similar across treatments.

Table 3.1: Experimental Treatments

Degree of Number of Equilibrium Exchange Rate
Complementarity Sessions Contribution (tokens per CAD)

ρ = 1 2 {0} 1
ρ = 0.70 1 {0} 2
ρ = 0.65 2 {0} 2
ρ = 0.58 1 {0,20} 2.5
ρ = 0.54 2 {0,20} 3

3.1 Experimental procedures

In each experimental session we recruited 16 subjects with no prior experience in any

treatment of our experiment. Subjects were recruited from the broad undergraduate

population of the University of British Columbia using the online recruitment system

ORSEE (Greiner, 2015). The subject pool includes students with many di�erent

majors.

Each session was developed in the following way: upon arriving at the lab, subjects

were seated at individual computer stations and given a set of written instructions; at

the same time the instructions were displayed on their computer screens.12 After read-

12The instructions can be found in Appendix I.
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ing the instructions subjects were required to answer a set of control questions. The

goal of the control questions was to verify and measure subjects' basic understanding

of how to use the tools in their computer interfaces and how to interpret informa-

tion displayed on the screens. Subjects received cash for answering control questions

correctly.13 The experiment did not proceed any further until all participants had

answered all control questions correctly.

At the beginning of each round of the experiment, subjects were matched with

three other participants. They then played the static game described in Section 2.

This game was repeated 20 times.

To avoid reputation e�ects, we used an extreme version of the stranger matching

protocol. The group composition was predetermined and unknown to the partici-

pants. We pre-selected the groups so that the subjects were matched with a given

participant only in four rounds and each time someone was matched with a partici-

pant he or she had encountered before, all other group members were di�erent. This

means that any given grouping of four players never occurred more than once.

All eight sessions were computerized, using the software z-Tree (Fischbacher,

2007). Given the di�culty of computing potential earnings using the non-linear

payo� function, we provided subjects with a computer interface which eliminated

the need to make calculations. Through this interface subjects were able to enter

as many hypothetical choices and conjectures of other group member's contributions

as they wanted, visualizing the potential payo� associated with each combination.14

In each round subjects had 95 seconds to submit their chosen contribution. At the

end of each round they were informed about their own earnings and the contribution

choices of other group members.15 At the end of the experiment, subjects were paid

13The questions' goal was to facilitate subjects' learning of the main features of the VCMC.
Relevant features included are: (i) decreasing marginal productivity in the group account given a
�xed level of others' contributions, (ii) e�ciency gains due to coordination, and (iii) absence of a
dominant strategy (for treatments in which ρ < 1). Subjects were credited $0.20, $0.15 or $0.10 for
each question answered correctly in, respectively, the �rst, second, and third attempt. There were
19 control questions, which can be found in Appendix E.

14Figure D.1 of Appendix D displays a screenshot of the main interface.
15Figure D.2 of Appendix D shows the screenshot of the feedback given to subjects at the end

of each round. Subjects were shown their overall income, as well as the breakdown between their
private account income and group account income. Given that group income is the same for each
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the payo� they obtained in a single randomly selected round.

The sessions were conducted at the Experimental Lab of the Vancouver School of

Economics, at the University of British Columbia (ELVSE), in January 2015. The

experiments lasted 90 minutes. Subjects were paid in Canadian dollars (CAD). On

average, participants earned $30.60. This amount includes $5 show-up fee and the

additional cash received for the control questions.

In what follows we begin by examining how changing the degree of complementar-

ity in di�erent treatments is re�ected in both the level and the evolution of individual

contributions. Next, using a combination of choice and non-choice data, we document

various interesting aspects of the choice process: we examine the scope of history de-

pendence in subjects' decision-making, and document how past contributions by past

group players shape the subject's current choice. This history-dependence allows us

to de�ne a notion of BR to past contributions and assess to what extent subjects'

choices can be framed as rational (pro�t-maximizing) behavior, both in the cross

section and over time. Non-choice data also reveal di�erences in calculator usage

and response time, showing how subjects process information and make choices in

di�erent ways.

4 Results

Manipulating the degree of complementarity induces stark changes in subjects' be-

havior. This is re�ected in the average contribution chosen by subjects, as well as

in the heterogeneity among contributions. In this section we study how changes in

complementarity a�ect the level and evolution of individual contributions.

group member, subjects could easily infer the earnings of each one of the other group members by
looking at their contributions, reported in the same screen.
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Figure 4.1: Average Contribution over Time
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con�dence intervals at the 95% con�dence level.

4.1 Average contributions

Each solid line in Figure 4.1 represents the evolution of the average contribution

over the 20 rounds of an individual treatment (dotted lines identify 95% con�dence

intervals). Figure 4.1 clearly shows that average contributions increase with comple-

mentarity.16 With the exception of ρ = 0.65, average contributions converge towards

the socially ine�cient equilibrium when the degree of complementarity supports only

one zero-contribution equilibrium. In contrast, they converge towards the socially ef-

�cient equilibrium when complementarity introduces an additional full-contribution

equilibrium.

16Average contributions when ρ = 0.58 look marginally higher than average contributions when
ρ = 0.54. However, this di�erence is not statistically signi�cant.
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4.1.1 Initial contributions

The average contribution in the �rst round is signi�cantly higher than zero in all

treatments. This is not surprising given existing evidence about LVCM experiments.

Some variation exists in �rst-round contributions across treatments: subjects in high-

complementarity (HC) treatments, with ρ equal to 0.54 or 0.58, contribute 4.3 tokens

more, on average, than subjects in low-complementarity (LC) ones, with ρ equal to

0.65 or 0.70. The di�erence in contributions across treatments is substantial, even

in the �rst round when subjects have yet to receive any feedback. This may be

attributed to the training subjects receive before deciding on contributions: subjects'

understanding of the rules of the game is re�ected in their initial beliefs about others'

contributions, and these beliefs are likely to be treatment speci�c. To verify the

role of the training we can compare the initial conjectures on others' contributions

across di�erent treatments. Table 4.1 shows the average of the generalized mean of

the conjectures in each treatment.17 Column 2 reports conjectures made during the

practice period, before the experiment started: unsurprisingly no signi�cant di�erence

across treatments is apparent at this stage, as subjects are still learning about the

payo� space and may experiment with any conjectures that come to mind. However,

starting from round 1 (column 3) we observe signi�cant di�erences across treatments.

When a subject chooses to best respond to beliefs, his or her contributions will become

lower as the degree of complementarity diminishes (ρ increases).

4.1.2 Treatment-speci�c dynamics

In the LVCM environment we observe a pattern consistent with many previous ex-

periments. Initially the average contribution is signi�cantly larger than zero; as the

rounds progress, there is a progressive decline in contributions.

In the linear case the dominant strategy is to contribute zero.18 The treatment

17We did not elicit beliefs. Rather, we collected data on the inputs subjects entered in the payo�
calculator. This includes conjectures about other group members' contributions, which are a proxy
of beliefs about others' contributions. In Section 5 we describe these data extensively.

18The linear treatment is also useful to benchmark our experimental design. While di�erences
exist in the instructions and experimental interface, the aggregate results appear remarkably similar
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Table 4.1: Average Conjecture about Others' Contributions1

Treatment Practice Round 1 Round 2 Round 5 Round≥10
LVCM

10.3 6.6 5.2 3.7 3
(5.6) (6.3) (5) (4.6) (4.6)

ρ = 0.70
10.1 7.6 5.3 2.8 4.6
(5.2) (5) (4.5) (3) (6.3)

ρ = 0.65
10.7 10 10.1 6.9 6.8
(5.3) (5.1) (4.4) (5.6) (5)

ρ = 0.58
11.1 11.7 12.1 17.7 15.4
(5.6) (5.3) (4.5) (2.8) (5.5)

ρ = 0.54
10.3 10.3 12.3 14.5 13.8
(5.7) (5.8) (6.1) (4.3) (6.1)

No. of conjectures 2,339 264 150 140 537
1Each cell reports the average value for the generalized mean of the conjectures of
others' contributions (standard deviations are reported in parentheses).

with ρ = 0.70 introduces very slight complementarity in contributions. Yet, the

pattern remains quite similar to that of the LVCM treatment despite the fact that a

zero contribution is no longer the dominant strategy.

By contrast, when complementarity is su�ciently strong to generate an additional

full-contribution equilibrium (ρ = 0.58 and ρ = 0.54), the evolution of the average

contribution exhibits the opposite pattern, as contributions tend to grow. In other

words, intense complementarity changes the way agents interact, and they �nd a way

to move towards the full-contribution equilibrium.

Finally, a unique pattern emerges when ρ = 0.65, a value which supports only

a unique equilibrium of zero contribution but is closer to the threshold at which a

full-contribution equilibrium arises. Experimental results show little or no evidence

of variation in the average contribution as rounds elapse; it is apparent that contri-

butions remain range-bound even as players gain experience in advanced rounds. It

is important to note that at this level of complementarity, the unique equilibrium

to those from standard LVCM experiments, albeit with slightly lower contributions (probably due
to the extensive control questions that minimized confusion).
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of zero-contribution has a full basin of attraction. Even if an agent believes that all

other group members will fully contribute, her best response is to contribute only

half of her endowment. The dynamics observed in this experiment are possible only

if many subjects contribute signi�cantly above their pecuniary best response.

4.2 Distribution and dispersion of contributions

The con�dence intervals reported in Figure 4.1 suggest that there is substantial het-

erogeneity in contributions. In this section we start by examining how the distribution

of contributions varies over time and across treatments, and we conclude the anal-

ysis by investigating the patterns of contributions' dispersion. Speci�cally we study

(i) whether subjects are able to coordinate and (ii) the e�ect of complementarity on

coordination rates.

4.2.1 Distribution of contributions

Figure 4.2 displays the cumulative distribution of contributions by treatment (i.e., by

complementarity). Individual contributions fall into one of two categories: dashed

lines show the cumulative distribution for rounds 1 to 10, and solid lines show the

cumulative distribution for rounds 11 to 20. The plots con�rm the �nding of the

previous subsection: the distributions in the LVCM and ρ = 0.70 treatment look

similar; the same is true for HC treatments, with not much di�erence between the

distributions under ρ = 0.58 and ρ = 0.54. Contributions concentrate at the extremes

as sessions progress towards the end.

By contrast, when ρ is set to 0.65, the mass distribution is more heavily concen-

trated in the interior of the strategy space. Subjects choose to contribute non-trivial

amounts even after 10 rounds: for example, in rounds 11 to 20, more than half of

all contributions are larger than 5 tokens. Contributions are range-bound, and show

little tendency towards convergence. In Section 5 we examine these patterns in detail.
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Figure 4.2: Cumulative Distribution Function
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4.2.2 Coordination and complementarity

A key feature of the VCMC production technology is that individuals not only bene�t

from others' contributions but also enjoy incremental gains as coordination improves.

The cost of less-than-perfect coordination depends on the degree of complementarity;

in the linear case there is no additional loss due to lack of coordination. As com-

plementarity increases, the impact of dispersion grows and it becomes more costly

to forego coordination; on the other hand, when complementarity is high a potential

obstacle to coordination is the multiplicity of equilibria.

We measure coordination in each treatment by capturing the loss due to disper-

sion. We de�ne the Dispersion Loss Index (DLI) for group k in round t (DLIk(t))

as:
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DLIk(t) =
1
4

∑4
i=1 gi(t)−

(
1
4

∑4
i=1 gi(t)

ρ
)1/ρ

10−
(

20
21/ρ

) .

The numerator of the DLIk(t) identi�es the dispersion loss as it measures the dif-

ference between actual group account output and hypothetical output under perfect

coordination. The denominator is just a normalization factor making the index com-

parable across treatments. When the contributions of the four group members are

identical (zero dispersion) the arithmetic mean and the generalized mean are iden-

tical for any ρ, and DLIk(t) = 0; when dispersion is highest, DLIk(t) = 1.19 This

index may be sensitive to outliers because there are only four groups in each session.

To account for this sensitivity, in each round/session we take the 16 actual contribu-

tions and average over all possible combinations of contributions that can be made

by groups of four players; for any such combination we compute DLIk(t) and, �nally,

we record the median DLIk(t) for that round.
20

Figure 4.3 reports median DLI by treatment, averaged over �ve-round intervals,21

and its 95% con�dence interval.22 This analysis illustrates that in HC treatments,

despite the multiplicity of equilibria, dispersion decreases over time. This is re�ected

in signi�cantly lower DLI, after multiple rounds, than in LC treatments and supports

the evidence from Figure 4.2. Subjects in HC treatments manage to better coordinate

their actions.

19This is achieved at the vector of contributions (0, 0, 20, 20) in which the discrepancy between
the arithmetic and the generalized mean is maximized.

20The total number of possible combinations is: 16!
12!×4! = 1, 820.

21We pool together LC treatments (ρ = 0.70 and ρ = 0.65) and HC ones (ρ = 0.58 and ρ = 0.54).
22Con�dence intervals are calculated using a binomial-based method. We also compute con�dence

intervals by randomly selecting 500 samples with replacement of the 1,820 combinations in ech
round/session. We obtain very similar results.
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Figure 4.3: Dispersion Loss Index
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Notes: This �gure reports the median dispersion loss index (DLI), for
high complementarity (HC) and low complementarity (LC) treatments,
averaged over 5-round intervals. The dotted lines display the 95%
con�dence interval.

5 How Do Players Choose Their Contribution?

So far the analysis has highlighted three main �ndings: (i) when complementarity

is su�ciently strong, subjects coordinate on the socially e�cient equilibrium; (ii)

similarly, when complementarity is su�ciently weak, contributions converge to the

unique zero-equilibrium; (iii) in the middling case of ρ = 0.65, there appears to be

no visible convergence to equilibrium over 20 rounds, as some subjects persistently

deviate from their money-maximizing strategies.

In addition, we �nd recurrent over-contribution in LC treatments, and under-

contribution in HC treatments. While observed choices provide some support for

the complementarity hypothesis, this is not su�cient evidence to ascribe individual

actions to pro�t-seeking motives. This is especially true in the case of ρ = 0.65.

It is very hard to interpret individual choices through the examination of choice

data alone; therefore we complement the analysis by resorting to non-choice data.
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Throughout each session participants were given access to a payo� calculator. By

using the calculator subjects could see the monetary payo� associated with as many

hypothetical contributions as they wished, including di�erent hypothetical values of

their own choice. We recorded every trial that subjects entered in the calculator

during both the practice period and the experiment.

This non-choice data is di�erent from information collected using �mouse lab�

techniques. In the latter, participants may be aware that experimenters are gathering

data and this may in�uence their choices. Moreover, �nding the optimal strategy in

the VCMC makes the use of the calculator often necessary, as payo� functions are

non-linear and individual gains are a�ected by the dispersion of players' contributions.

For these reasons subjects depend on the calculator to evaluate di�erent strategies

and to make informed choices, and the input they enter into the calculator can be

considered in many instances a good proxy of their beliefs about the contribution of

others.23

Combining choice and non-choice data makes it possible to ask questions like

these: Are conjectures in�uenced by the history of other players' contributions? How

do subjects adjust their behavior from one round to the next? Do they use history-

dependent best-response strategies? If so, how is this re�ected in the use of the

calculator? Do subjects in speci�c treatments use the calculator more or less inten-

sively? How do they experiment with hypothetical contributions? Are they able to

�nd the pro�t-maximizing strategy given their conjectures? How does this relate to

their actual contribution? And can we classify subjects according to the way they

use the calculator?

5.1 Classifying subjects into types

Large di�erences exist in subjects' behavior within each treatment: some contribute

consistently more than others; many change their choices repeatedly, while others

23Cherry et al. (2015) also provide subjects a payo� calculator and analyze non-choice data. A
key di�erence with respect to our design is that, in their case, subjects have to enter a conjecture
�rst, and then the experimenters display a table with the payo�s associated with each hypothetical
choice given that conjecture.

18



Table 5.1: Dependent variable: current conjecture. Explanatory variable:
contributions by other group members in previous rounds1

Generalized Mean Arithmetic Mean

F (g−i,t−1) 0.564∗∗∗ 0.574∗∗∗

(0.07) (0.08)

F (g−i,t−2) 0.140∗∗ 0.171∗∗∗

(0.07) (0.06)

F (g−i,t−3) 0.054 0.050

(0.06) (0.06)

F (g−i,t−4) -0.011 -0.034

(0.07) (0.07)

F (g−i,t−5) 0.100∗ 0.090

(0.06) (0.06)

Constant 1.707∗∗∗ 1.666∗∗∗

(0.46) (0.45)

Observations 963 963
1We estimate the following least-squares speci�cation: F ( ˆgi,t) = C+

∑5
L=1 ALF

(
g−i,t−L

)
+ui,t.

Where ĝi is a vector of player i's conjectures about other group members' contributions, g−i,t−L
contains the vector of contributions made by other members in round t − L, C is a common
constant, and ui,t is an idiosyncratic error. We let the function F (· ) be either the arithmetic or
the generalized mean of degree ρ. The standard errors (reported in parentheses) are clustered by
individuals and obtained by bootstrap estimations with 1,000 replications. *p < 0.1, **p < 0.05,
***p < 0.01. As a robustness check, we also estimate this speci�cation including dummy variables
to control for di�erent treatments. Results looks very similar.

do not. Also, as we document below, the calculator is used with di�erent intensity.

This suggests that not all agents conduct themselves in the same way when it comes

to choosing a contribution. To facilitate the analysis we classify subjects into two

broad groups, or types, based on the discrepancy between the payo� associated with

the history-dependent BR and the payo� from the actual contribution. A larger

discrepancy indicates larger foregone earnings. Then we examine whether there are

di�erences in the calculator usage of di�erent subject types.

Our grouping criterion considers the payo� associated with the history-dependent

BR. Thus, we begin by showing evidence of history dependence of subjects' beliefs

about others, buttressing the choice of history-dependent BR as our benchmark.
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Next, we assess the length of subjects' memory span; to do this we regress the conjec-

tures about others' contributions on the actual contributions by group partners in the

previous �ve rounds. Table 5.1 reports the results, showing that subjects' conjectures

respond to other members' contributions in the previous two rounds.24

How should one use information about contributions in the previous two rounds

to de�ne a BR? Restricting subjects to respond to the speci�c contributions observed

in a given round seems unreasonable because subjects are well aware that they will

not be matched with the same set of individuals in subsequent rounds. Instead, we

posit that subjects may respond to any possible combination that can be obtained

by combining group members' contributions in rounds t− 1 and t− 2. Then for each

subject/round, and for every combination of the partners' contributions, we compute

the di�erence between the pro�t associated with the BR and the pro�t associated

with the actual choice; we only keep the lowest such di�erence per subject/round

and we call it Min Loss.25,26 Next, we de�ne the proportional loss as
Min Lossi,t

πBRi,t
.

This is a money index that measures how close actual contributions are to the money

maximizing contributions (conditional on conjectures). If the lowest proportional loss

is zero, then the choice can be rationalized through the lens of pecuniary-pro�t-seeking

behavior. The �nal step is to compute the average proportional loss of each subject.

Then for each treatment group (LVCM, LC, HC) we obtain a median proportional

loss, by selecting the median value among all the individual averages in that treatment

group. Subjects are denoted as Type 1 if their individual proportional loss is not

higher than the median value for their group. The remaining subjects are denoted as

24To con�rm the results of Table 5.1, we consider all conjectures from round 2 onwards, and
�nd that roughly 11% coincide exactly with previous round contributions by other group members.
In 28% of the cases the conjecture matches exactly with one of the 10 possible combinations that
can be formed from the prior round group members' contributions. Finally, in 38% of the cases
the conjecture matches exactly one of the 56 possible combinations that can be formed from group
members' contributions in the two previous rounds. These relative frequencies are extremely high
when compared to the three most recurring individual conjectures, namely (0, 0, 0), (20, 20, 20) and
(10, 10, 10), which were considered in only 9%, 7%, and 3% of the cases, respectively. Agents clearly
appear to make conjectures based on past experiences.

25Min Lossi,t = min
(
πBRi,t − πACTi,t

)
.

26We sort the πBRi,t values from highest to lowest. We then remove the two lowest and highest
values. We do this to avoid bias due to outlying contributions, whether unusually high or low.
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Type 2. It is worth stressing again that this grouping criterion requires the joint use

of choice and non-choice data.

5.2 Patterns of individual contributions

Valuable information about individual decision-making can be elicited from the evo-

lution of individual contributions. Crucially one can measure how close contributions

are to the notion of history-dependent pecuniary-BR, as de�ned in Section 5.1. In

HC treatments, despite much heterogeneity, a remarkable two thirds of all contribu-

tions are consistent with BR behavior. Moreover, subjects commit a full 20 tokens

in over half of the cases in which a full contribution is within the range classi�ed

as BR. Even when a deviation exists, it is often small. Most deviations are due to

under-contributions: in HC treatments subjects under-contribute in 30% of the cases,

but over-contribute in only 5% of them.

In LC treatments just 42% of contributions are consistent with BR and, when

deviations occur, they mostly result in over-contributions: in over half of all cases

subjects over-contribute, while under-contributions occur in only 3% of cases.

In Appendix B we present plots of the complete sequence of contributions made

by each subject. Contributions are juxtaposed to the rationalizable set (gray) � an

area consisting of the set of BRs computed using the steps described in Section 5.1.

This allows one to visualize whether a subject's contribution can be rationalized by

pecuniary-pro�t maximizing motives, and to appreciate how contributions drift into

and out of the BR range. In these same �gures we superimpose a red line representing

the myopic BR, that is a function of contributions by members of the group to which

the subject belonged in the previous round: this provides a more direct counterpart

to assess the path dependence of actual contributions. In Appendix C we include a

graphical representation of the patterns of deviation for either type of subject.

5.3 Linking types to behavioral categories

What drives Type 2 subjects to deviate from pro�t-maximizing strategies? One possi-

bility is that over-contribution in LC treatments may re�ect motives that are beyond
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simple pro�t seeking. For example, when optimal contributions become smaller, some

agents may �nd joy in the act of contributing to a group account. Such joy of giv-

ing would be harder to experience when complementarity is high and pro�t-seeking

behavior dictates high contributions.

On the other hand, under-contribution in HC treatments might be due to com-

petitive motives; when other subjects contribute relatively high amounts, marginally

reducing one's own contributions may guarantee the highest payo� in the group.

This motive would be indistinguishable from pecuniary-pro�t-maximizing when com-

plementarity is low, as both usually lead to lower contributions relative to other group

members.

It is conceivable that subjects � even pro�t-seeking ones � may deviate from

the pro�t-maximizing strategy because they do not understand the rules of the game.

Given their conjectures they may fail to calculate the pro�t-maximizing choices. To

discriminate between confusion and alternative behavioral motives we examine both

the mechanical use of the calculator (number of rounds the calculator is activated and

the number of hypothetical contributions and conjectures about other players) and

what we call payo�-relevant use of it. We exploit this information to identify whether

subjects are able to compute the BR to their conjectures using the calculator, and

whether they systematically play a BR strategy after they identify it.27

We adopt two measures of payo� relevant use: (i) the di�erence between hypothet-

ical contributions and the BR to conjectures about other players' choices (ĝi−g∗i (ĝ−i)),
denoted as Di�erence1 ;28,29 (ii) the di�erence between actual contributions and the

27To analyze mechanical use of the calculator we examine the following variables: (i) CalcRound,
number of rounds the calculator was used by a subject, (ii) Hyp, number of own hypothetical contri-
butions entered in the calculator, (iii) Conj, number of conjectures about other players' contributions
that were entered in the calculator, and (iv) Hyp per Conj, number of own hypothetical contributions
entered, given a conjecture about other players' contributions.

28We consider all conjectures and hypothetical contributions starting from the practice session.
29When there are multiple hypothetical contributions per conjecture for the same subject, we

keep only the current or past hypothetical contributions that maximize the monetary payo� given
that conjecture. We consider past hypothetical own contributions because we �nd evidence of
persistence in conjectures. In other words, some subjects might select a given conjecture and adjust
their hypothetical own contributions over several rounds (more details can be found in Appendix
G). Finally, we group conjectures within di�erent bins based on their generalized ρ-mean. The bins,
B, are de�ned as follows: if Mρ ≤ 0.5 then Mρ ∈ {B = 1}; if Mρ ≥ 19.5 then Mρ ∈ {B = 21}; if
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BR to conjectures (gi − g∗i (ĝ−i)), called Di�erence2.

5.3.1 Mechanical use of the calculator

We begin by reporting in Table 5.2 the summary statistics of the mechanical variables

for di�erent types and treatments.30

Number of rounds. Table 5.2 con�rms that the LVCM is arguably the easiest

environment for Type 1 subjects: they end up using the calculator very little (in only

4.4 rounds).31 In contrast, Type 2 agents use the calculator in the LVCM as much as

in other LC treatments. This suggests that Type 1 may use the calculator to identify

the BR and then mechanically play it to maximize pecuniary rewards.

The degree of complementarity noticeably a�ects calculator usage: subjects in

LC treatments use the calculator in twice as many rounds as subjects in HC sessions

(roughly, in 10 versus 5 rounds). This supports the view that subjects �nd it easier

to calculate BR strategies in HC treatments.32 For example, when ρ = 0.54, the

BR is to invest the whole endowment in the group account if other group members

invest at least half of their endowment; this means that, after a few rounds, agents

may e�ectively adopt something close to a high-investment strategy which requires

no further re�nement through the use of the calculator. In LC treatments, instead,

choosing a strategy that maximizes payo� requires more �ne tuning. For example,

when ρ = 0.70, a subject would optimally choose to invest one quarter of the average

contribution made by others to maximize his or her payo�, assuming all other players

contribute the same amount. Hence, it may be harder to identify a BR strategy in

LC treatments.

Conjectures and hypothetical choices. Looking at conjectures, and at the

number of own hypothetical choices per conjecture, there is no signi�cant di�erence

j − 1.5 < Mρ ≤ j − 0.5 then Mρ ∈ {B = j} for j = 2, . . . , 20. When ρ = 0.54 (ρ = 0.58) we group
in the same bin all conjectures for which Mρ ≥ 10 (Mρ ≥ 15).

30As a robustness check for the results in Table 5.2, Appendix F contains a table displaying
results for a grouping of subjects based on the assumption that subjects respond only to other group
members' contributions in the previous round.

31Three Type 1 participants did not even activate the calculator after the practice round.
32Six subjects in the HC treatment did not use the calculator after the practice period.
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across types. However, subjects in LC and HC treatments enter more hypothetical

choices than in LVCM. A Type 1 subject enters on average slightly more hypothetical

contributions per conjecture than does a Type 2 subject in the LC and the HC

sessions. One may expect this behavior from an individual who is very concerned

about maximizing her money earnings. The di�erence, however, is not signi�cant,

possibly because a Type 2 subject may be able to approximate the monetary BR.

The next subsection provides evidence to that e�ect.

Table 5.2: Di�erences in Mechanical Use of the Calculator, by Subject Type within
Complementarity Level1

LVCM LC HC

Type 1 Type 2
t-test

Type 1 Type 2
t-test

Type 1 Type 2
t-test

(p-value) (p-value) (p-value)

CalcRound 4.4 9.5 0.0 11.1 9.5 0.3 5.0 5.4 0.8
(1.2) (1.9) (1.1) (0.9) (0.7) (1.2)

Hyp 14.1 19.7 0.2 28.7 26.3 0.5 24.5 21.3 0.5

(2.3) (3.3) (3.0) (2.3) (3.6) (3.2)

Conj 12.6 13.6 0.5 14.6 14.8 0.9 9.0 9.4 0.7
(1.3) (1.1) (0.9) (0.8) (0.7) (0.6)

Hyp Per Conj 3.2 4.1 0.1 6.9 5.9 0.1 8.0 6.5 0.3

(0.4) (0.4) (0.5) (0.4) (1.1) (0.9)

Observations 16 16 24 24 24 24

1Each cell reports the average value for the respective category (standard errors are reported in parentheses).
The t-tests of the means are reported in the third column of each treatment. CalcRound. number of rounds
subjects used the calculator; Hyp. number of hypothetical own contributions; Conj. No. of conjectures about
others; Hyp per Conj. number of own hypothetical contributions entered, given a conjecture about other players'
contributions. We include the practice rounds.

5.3.2 Homo pecuniarius versus Homo behavioralis

Next, we examine the way payo�-relevant measures Di�erence1 and Di�erence2

are distributed among participants. When a subject identi�es the pecuniary-pro�t-

maximizing strategy using the calculator, the discrepancy between hypothetical and

BR contribution levels (Di�erence1 ) is close to zero. Similarly, a value of Di�erence2

close to zero indicates that a participant has pursued the pecuniary-pro�t-maximizing

strategy for a given conjecture. Figure 5.1 displays a scatter plot of the average value

of Di�erence1 and Di�erence2 for each subject. Blue circles and red squares refer
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to Type 1 and Type 2 subjects, respectively. The plot con�rms that both types

are usually capable of �nding the pro�t-maximizing contribution using the calculator

(Di�erence1 is never very far from zero). This means that confusion cannot account

for most of the observed choices.33 Considering actual choices (Di�erence2 ), signi�-

cant di�erences become apparent: Type 1 subjects (Homo pecuniaris) clearly pursue

the pecuniary-pro�t-maximizing strategy, whereas Type 2 individuals (Homo behav-

ioralis) often choose to deviate from it. Type 2 subjects seem to exhibit altruistic

behavior in LC treatments, while in HC environments Type 2 subjects act as if they

have a competitive motive.34 Crucially, variation in the degree of complementarity

and the magnitude of optimal contributions may play a role in the occurrence of

di�erent behavioral motives. When BR choices are very low (LC treatments) some

agents may enhance their payo� through altruistic over-contributions; such joy-of-

giving could be tainted, or less salient, in an environment where a high payo� is

associated with a high contribution. When the magnitude of the optimal contribu-

tion is large, a competitive motive may become more appealing as agents recognize

that small reductions in contribution are both costly to other players and useful to

boosting relative performance within a group. This competitive motive is indistin-

guishable from pecuniary-pro�t-maximizing in low complementarity environments.35

Behavioral motives may operate side by side with pro�t-seeking behavior as agents

consider all these aspects in their decision making. This observation motivates the

analysis in the next Section.

33This is also con�rmed when looking at the performance on the control questions. There is a
negligible di�erence between the payo�s each type obtained from answering the control questions
correctly. Type 1 subjects earned $3.73, whereas Type 2 received $3.63.

34Since this is a between-subject study, we make no claim as to the identity of types across
treatments. That is, an agent may appear as Homo pecuniaris in LC treatments (since competitive
behavior coincides with pro�t maximizing) while under-contributing in HC treatments - like a Homo

behavioralis. An opposite pattern may emerge as well.
35An alternative view of the evidence from the payo�-relevant measures is presented in Appendix

C, where we plot the relative frequency of deviations by type and treatment. This o�ers more
evidence that agents are able to identify the pecuniary BR.
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Figure 5.1: Di�erence1 versus Di�erence2

(a) High Complementarity
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(b) Low Complementarity
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(c) LVCM
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Notes: The blue circles display the average Di�erence1 and Di�erence2 for each Type 1 subject. The red squares
display the average Di�erence1 and Di�erence2 for each Type 2 subject.
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5.4 Quantifying altruistic and competitive motives

Given that deviations from payo�-maximizing strategies cannot be simply attributed

to confusion, Type 2 subjects appear to pursue a combination of monetary and non-

monetary rewards. In what follows we attempt to quantify the magnitude of non-

pecuniary motives by estimating how much money these subjects are willing to forego

in the process of making gifts (in LC treatments) or to obtain a relatively higher payo�

within their group (in HC treatments).

5.4.1 Measuring non-pecuniary motives

Andreoni et al. (2008) de�ne the warm-glow of giving as �the utility one gets simply

from the act of giving� (p.1). Therefore an individual's utility function can be de�ned

as Ui = π(gi, g−i, ρ) + γ, where γ captures the joy-of-giving motive in LC. We use

observed choices by Homo behavioralis (Type 2) to estimate γ for each treatment. By

de�nition, γ is the di�erence between the pecuniary-pro�t-maximizing contribution

and the pecuniary-pro�ts from the actual contribution of Type 2 subjects.

π(ρ, g∗i (ḡ), ḡ)− π(ρ, ḡType2, ḡ) = γ, (5.1)

where ḡ is the average contribution observed among all players and ḡType2 is the

observed average contribution of Type 2 subjects.36 Equation (5.1) describes the

choice of a Homo behavioralis subject: when other subjects contribute ḡ, he or she

prefers to contribute ḡType2 tokens rather than g∗i (ḡ). We assume that the warm-

glow compensates a subject for the pecuniary loss. Table 5.3 reports the estimated

average magnitude of γ within each treatment; the estimates are roughly similar when

comparing across treatments (between 0.75 and 0.85 tokens).37

36We assume that g−i = ḡ. To eliminate early learning stages concerning the game and the
environment, we concentrate on the last 10 rounds.

37This amounts are even lower if one convert the tokens to CAD based on the exchange rates in
Table 3.1.
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Table 5.3: Warm-Glow Estimates1

ρ ḡ g∗i (ḡ) ḡType2 γ

1 0.7 0 1.4 0.84

0.70 1.9 0.5 3.7 0.88

0.65 7.2 3.7 9.2 0.76

1The �rst column displays the degree of complementarity, ḡ is the overall average contri-
bution, g∗i (ḡ) is the BR given the average contribution, ḡType2 is the average contribution
of Type 2, and γ captures the warm-glow. We only consider the last 10 rounds.

Using similar reasoning one can quantify the intensity of competitive motives in

HC treatments; that is, the pecuniary payo� a subject is willing sacri�ce in exchange

for a higher income rank within a group. We de�ne the individual utility function

as Ui = π(gi, g−i, ρ) + κ, where κ measures the joy of winning. Table 5.4 reports

estimates for κ. The competitive motive is estimated to be higher for ρ = 0.54 than

for ρ = 0.58. This is consistent with two observations: (i) Type 2 deviations are

marginally larger in ρ = 0.54 and (ii) for any given κ, the cost of deviating is non-

trivially higher when complementarity is stronger. In the next subsection we discuss

the latter point in some detail.

Table 5.4: Competitive-Motive Estimates1

ρ ḡ g∗i (ḡ) ḡType2 κ

0.58 17.6 20 13.8 0.68

0.54 16.2 20 13.3 1.62
1The �rst column displays the degree of complementarity, ḡ is the overall average contri-
bution, g∗i (ḡ) is the BR given the average contribution, ḡType2 is the average contribution
of Type 2, and κ captures the competitive motives. We only consider the last 10 rounds.

Finally, we examine the distribution of estimated γ and κ in the subjects' popu-

lation. To do this, we use the Min Loss (de�ned in Section 5.1). The left panel of

Figure 5.2 displays the cumulative distribution of the individual Min Loss values for

rounds 11 to 20 in the LC and LVCM treatments. For the treatment corresponding

to ρ = 0.65, 90% of the losses are 1.25 tokens or less. In contrast, for ρ = 0.70 and
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LVCM, only three quarters of the losses are less than or equal to 1 token. The dis-

tributions of losses in the latter treatments treatments are characterized by a higher

probability mass towards larger realization than in the case of ρ = 0.65, suggesting

that losses tend to be less costly when ρ = 0.65. In a similar fashion, the right panel of

Figure 5.2 plots the cumulative distribution of individual Min Loss values for rounds

11 to 20 in the HC treatments. In this case 80% of the losses are at most 1.5 tokens

in both treatments.

Figure 5.2: Cumulative Distribution of the Individual Minimum Loss

(a) LVCM and LC
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Notes : Each line of the left panel displays the cumulative distribution of the per-round Min Loss for the LC and
LVCM treatments. Whereas, each line of the right panel displays cumulative distribution of the per-round Min Loss

for the HC treatments. We consider the minimum loss per subjects for rounds 11 to 20.

5.4.2 Complementarity and cost of deviations from pecuniary best-response

In the VCMC, the cost of a constant deviation from the money-maximizing strategy

changes with ρ. As ρ decreases the payo� function becomes �atter and any marginal

change in strategy has a smaller e�ect on the �nal reward. This implies that rational-

izing similar deviations from money-pro�t-maximizing requires a higher warm-glow

value (γ) as ρ increases. This observation helps rationalize the contributions of Type

2 subjects when ρ = 0.65 as opposed to ρ = 0.70.
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To illustrate this point we assume that subject i makes a contribution equal to

the average contribution of Type 2 subjects when ρ = 0.6538 and then we calcu-

late the di�erence between the money earnings that subject i would make following

this strategy and that obtained when monetary-best-responding to group members'

contributions.39 This di�erence measures the monetary cost of deviating from the

pro�t-maximizing strategy, which is plotted on the left panel in Figure 5.3. The x-

axis displays the contributions of others (ḡ−i), and the y-axis reports the cost for each

treatment. When ḡ−i = 0, the cost is the same irrespective of complementarity; as the

investment by other players grows, over-contributing becomes generally less costly.

Comparing between treatments in panel (a), as complementarity increases the cost

of over-contributing is reduced. This implies that in treatments with higher comple-

mentarity it is less expensive to behave altruistically, which accounts for the di�erent

behavior of players in the ρ = 0.65 and ρ = 0.70 treatments. For the LVCM the cost

is constant and it is higher than in LC. In other words, an identical value of the �joy

of giving� motive is translated into a higher over-contribution as complementarity

increases (from LVCM to ρ = 0.7 to ρ = 0.65).

The right panel of Figure 5.3 displays the cost of deviating in HC treatments. Here

we assume that player i makes a contribution equal to the average contribution of

Type 2 subjects in HC treatments, which is 13.3 tokens. In HC the cost function does

not monotonically decrease in other players' contributions, and losses start mounting

if one does not best-respond to high contributions by others. In these cases, if ρ

decreases (that is, complementarity increases), the competitive motive κmust become

stronger to justify similar deviations below pecuniary-BR.

38Type 2 subjects contribute an average of 9.2 tokens when ρ = 0.65 (last 10 rounds).
39To facilitate the analysis we assume that other members' contributions are equal.
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Figure 5.3: Cost of Deviating from the Money-Pro�t-Maximizing Strategy

(a) LVCM and LC

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10
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Notes : Each line of the left panel displays the cost of deviating from the pro�t-maximizing strategy (in tokens) for
the LC and LVCM treatments when subject i contributes 9.3 tokens (the observed average contribution of Type 2
when ρ = 0.65). Each line of the right panel displays the cost of deviating from the pro�t-maximizing strategy (in
tokens) for the HC treatments when subject i contributes 13.3 tokens (the observed average contribution of Type 2
in HC). The cost is equal to: π(ρ, g∗i , ḡ−i) − π(ρ, gi, ḡ−i).

5.5 Evidence from response times

Precise measures of subjects' response times are available for all treatments. This in-

formation provides an alternative way to peek at the mechanics of individual decision-

making. Analyzing decision times in public good games has become increasingly pop-

ular following a study by Rand et al. (2012). In a one-shot LVCM experiment, they

show how shorter response times positively correlate with higher contributions, and

they interpret this as evidence that humans are instinctively generous. This inter-

pretation has been challenged by, among others, Recalde et al. (2014), who point out

how in the LVCM the only possible deviation is to over-contribute, making it hard to

distinguish between subjects who instinctively over-contribute and those who make

genuine mistakes.40 We combine qualitative non-choice data and response-time infor-

40Recalde et al. (2014) design a VCM in which the dominant strategy is at the interior of the
strategy space, and they replicate the �nding of Rand et al. (2012) when the equilibrium contribution
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mation to illustrate that some of the conclusions drawn by Rand et al. (2012) with

respect to instinctive generosity are not consistent with our �ndings. More generally

we argue that valuable information can be extracted from di�erences in the length

of time it takes subjects to enter their contributions and from the intensity of their

calculator usage over that interval.

5.5.1 Response time in the �rst round

First, we replicate the analysis of Rand et al. (2012). For comparability we consider

only the �rst-round contributions in the LVCM treatment. The results con�rm the

�ndings of Rand et al. (2012): subjects who contribute zero wait 33 seconds, on

average, before logging their choice. In contrast it takes only an average of 25 seconds

to select a positive contribution. Our experimental design allows us to go beyond the

one-shot game, and in the rest of this Section we report evidence about response

times after the �rst round. The analysis of sequential rounds makes it feasible to

assess how response times di�er when observed contributions are closer, or farther,

from hypothetical BRs.

5.5.2 Di�erences across treatments

Before proceeding, we categorize observed contributions into those that can, or can-

not, be rationalized using the procedure described in Section 5.1. This distinction

unveils some remarkable di�erences in both the quantity and quality of time use. As

shown in Figure 5.4 and Table 5.5 the response time of subjects in the HC and in the

LVCM treatments appear quite similar, and signi�cantly shorter than their counter-

parts in the LC treatments. We can look separately at subjects who maximize their

money earnings (those with low proportional loss; i.e, a loss below 0.1) and those who

do not (contributions associated with proportionally higher losses).41

is below the midpoint of the choice space. However, when the equilibrium is located above the
midpoint, they �nd a negative correlation between response time and contributions.

41As before, the notion of loss is de�ned in Section 5.1. The threshold 0.1 corresponds to the
median proportional loss for the LC treatment.
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In the HC and LVCM treatments the low-loss subjects respond faster. This high-

lights a new and interesting discrepancy: in one set of treatments the fastest subjects

are the ones who contribute little or nothing, while in another set the quickest sub-

jects are those who get closer to a full contribution. These results suggest that both

response times and the direction of deviations from BR may depend on the speci�c

environment, and that speedy choices do not necessarily imply over-contribution.

On the other hand, in LC treatments subjects who play close to pecuniary-BR

take more time before submitting their choices, possibly because calculating the (pe-

cuniary) optimal level of contribution with precision is more di�cult when comple-

mentarity is low. This interpretation is also supported by additional measurements;

as we show in Appendix H, agents who play close to pecuniary-BR in the LC treat-

ments not only take longer to log a choice but also use the calculator more intensively

and consider a higher number of potential combinations.

Table 5.5: Response Time

PropLoss ≤ 0.1 PropLoss > 0.1 Overall
Avg. (SD) obs. Avg. (SD) obs. Avg. (SD) obs.
seconds seconds seconds

LVCM 10.02 (0.67) 384 14.34 (1.00) 224 11.61 (0.57) 608

LC 26.31 (1.18) 449 20.33 (0.96) 463 23.28 (0.77) 912

HC 10.54 (0.56) 689 12.65 (0.95) 223 11.06 (0.49) 912
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Figure 5.4: Response-Time Frequencies
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Notes: Each solid line represents the cumulative distribution function
for subjects for which PropLoss ≤ 0.1 for each of the treatments.
Each dashed line represents the cumulative distribution function for
subjects for which PropLoss > 0.1 for each of the treatments. The
y-axis is displayed in percentage terms.

6 Related Literature

The experimental literature has focused on coordination failures in games with strate-

gic complementarities in players' decisions. The classic example is the two-by-two

Stag-Hunt game in which there are two Nash equilibria in pure strategies, one pay-

o� dominant and the other risk dominant (see Cooper et al., 1992). In this type

of coordination game, the Pareto superior (payo� dominant) outcome is not always

chosen; the equilibrium selection depends on the basin of attraction and the opti-

mization premium (see Battalio et al., 2001; Van Huyck, 2008). The current study

introduces coordination considerations into a public good game. Our experimental

result of no-convergence to the unique Nash equilibrium in the case of ρ = 0.65 is in

sharp contrast to experimental results in binary-action games. It testi�es that the

richer strategy space induces di�erent behavioral dynamics.
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Another example of a coordination game is the weakest-link game in which n

agents must choose an integer from the set 1 to k. The agents' payo� depends

on the minimum of all the chosen numbers. This is the extreme case of strategic

complementarities. The seminal paper by Van Huyck et al. (1990) shows that subjects

fail to coordinate on the e�cient outcome when groups are large.

In terms of complementarity in public goods provision, there are some experiments

based on Hirshleifer (1983) weakest-link mechanism. In this framework, public goods

provision depends on the minimum contribution. Moreover, there are multiple Pareto-

ranked equilibria because every set of symmetric choices is an equilibrium. Harrison

and Hirshleifer (1989) were the �rst to implement this in the lab. They compare

simultaneous and sequential two-player contribution games in which the provision of

the public good depends on the sum of contributions, on the minimum contribution

(weakest-link), or on the maximum contribution (best-shot). They �nd that under

the weakest-link mechanism, subjects' contributions are very close to the Pareto-

dominant equilibrium. Croson et al. (2005) ran a voluntary contribution experiment

in which the provision of the public good depends on the lowest contributor (weakest-

link). They contrast this treatment with the LVCM. They �nd that in most periods

subjects are unable to coordinate on any of the equilibria. As in the linear case, the

average contribution decreases over time. The authors suggest that imitation of the

lowest contributors may explain this pattern.

In another related paper, Steiger and Zultan (2014) compare the linear case and

a case in which the marginal return from the public good increases as the number

of contributors increases (through increasing returns to scale, IRS). Subjects have

binary choices: either contribute or not. In the IRS treatment there are two equilibria,

zero contribution and full contribution. The authors implement a partner-matching

protocol, and �nd that only groups that cooperate in early rounds are able to converge

to the full contribution equilibrium. Overall, they �nd that contributions decrease

over time, and the average contribution is not signi�cantly di�erent than what is

observed in the linear case.

Finally, Potters and Suetens (2009) design an experiment in which there is a

unique equilibrium at the interior of the choice space. They �nd that subjects con-
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verge faster to the equilibrium under strategic complementarity than under strategic

substitutability.42

In terms of the analysis of non-choice data, an example is Cherry et al. (2015) who

implement an output-sharing game with negative externalities. They use subjects'

conjectures to analyze deviations from the theoretical predictions. They suggest that

deviations are consistent with preferences for altruism and conformity.

7 Conclusions

In this paper we investigate how the introduction of complementarity among private

contributions towards a public good a�ects human choices to contribute. Consistent

with theoretical predictions we �nd a positive relationship between aggregate contri-

butions and the degree of complementarity. In high-complementarity environments

subjects learn to coordinate, moving towards the socially preferable equilibrium.43

By contrast, when complementarity is very low, choices converge to the unique zero-

contribution equilibrium. Subjects also seem to respond to complementarity when its

intensity is sizable but not enough to introduce a second full-contribution equilibrium;

in this case they persistently over-contribute and show little or no tendency towards

the unique zero contribution.

Manipulating the intensity of complementarity allows us to look at the decision-

making process and identify alternative motives underlying observed choices. We �nd

that deviations from the pro�t-maximizing strategy cannot be attributed to confusion,

but rather originate from non-pecuniary motives. Moreover, di�erent motives are

present under di�erent degrees of complementarity.

Not all subjects are equally sensitive to non-pecuniary motives. We �nd evidence

that while some individuals (Homo pecuniarius) can be clearly described as pro�t-

42The experiments implement a static game over 31 successive rounds. Between rounds there is
no change in group composition.

43In a related study (available upon request) we investigate how convergence to the payo�-
dominant (full contribution) equilibrium is a�ected when its basin of attraction is reduced. We
do this by requiring a minimal level of public good to be produced; if this level is not attained then
all contributions to the public good are lost. We show that also in such environments (and even
when the threshold is high) players tend to coordinate on the full contribution equilibrium.
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seekers who follow pecuniary best response strategies, others (Homo behavioralis)

are able to calculate the payo�-maximizing strategy but deliberately deviate from it.

The interaction of these di�erent types of participants is key to understanding how

groups behave and why we observe di�erent aggregate patterns under di�erent levels

of complementarity. The fact that Homo behavioralis subjects are willing to sacri�ce

some pecuniary rewards to deviate from BR strategies may lead to imperfect conver-

gence to equilibrium. The presence of Homo behavioralis increases social welfare when

complementarity is low, as it restrains group contributions from collapsing to zero,

but it reduces welfare when complementarity is high and full contributions would be

optimal. We also �nd strong evidence that Homo pecuniarius subjects respond to

the presence of behavioral agents by adjusting their contributions - especially so in

low-complementarity environments.
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A Derivation of the Best Response Function

Player i's payo� is

πi = ω − gi + β

(
n∑

i=1

gρi

)1/ρ

,

where ρ ≤ 1 denotes the degree of complementarity, gi denotes individual i's con-

tribution in the group account, ω is the endowment, and β is a constant. The best

response of player i is a unique solution, g∗i (g−i), to the �rst order condition

0 =
∂πi
∂gi

= β
(
gρi +

∑
gρ−i

) 1−ρ
ρ (

gρ−1
i

)
− 1

β
(
gρi +

∑
gρ−i

) 1−ρ
ρ

= g1−ρ
i

gρi +
∑

gρ−i = gρi β
ρ
ρ−1

gρi

(
β

ρ
ρ−1 − 1

)
= (n− 1)

∑
gρ−i

n− 1
.

In the last line we multiply and divide the right hand side by (n − 1) so the best

response of player i is de�ned as a function of Mρ =
(∑

gρ−i
n−1

.
)1/ρ

. Finally, de�ning

k ≡
(

n−1

β
ρ
ρ−1−1

) 1
ρ

yields:

g∗i (g−i) = k

(∑
gρ−i

n− 1

)1/ρ

.

The second order condition

∂2πi
∂g2

i

= (1− ρ)β
(
gρi +

∑
gρ−i

) 1−ρ
ρ

−1

g
2(ρ−1)
i + (ρ− 1)β

(
gρi +

∑
gρ−i

) 1−ρ
ρ
gρ−2
i

= (ρ− 1)β
(
gρi +

∑
gρ−i

) 1−ρ
ρ
gρ−2
i

(
1− gρi

gρi +
∑
gρ−i

)
< 0,

implies concavity of πi.
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B Best-Response Range and Contributions

Figure B.1: Session 1 (LVCM)
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Figure B.2: Session 2 (LVCM)
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Figure B.3: Session 3 (ρ = 0.54)
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Figure B.4: Session 4 (ρ = 0.54)
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Figure B.5: Session 5 (ρ = 0.65)
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Figure B.6: Session 6 (ρ = 0.65)
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Figure B.7: Session (ρ = 0.70)
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Figure B.8: Session 8 (ρ = 0.58)
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C Deviations from the Pro�t-Maximizing Strategies,

by Type

To highlight the stark di�erences in behavior across types, Figure C.1 plots a scatter

of actual contributions (y-axis) versus the BR associated with the lowest proportional

monetary loss (x-axis). A wider circle denotes a higher frequency. Panel (a) shows

this relationship in the HC group; panel (b) shows the same plot for the LC group.

In both panels, Type 1 subjects are shown in black circles, while Type 2 are in

gray ones. As one would expect, the average Type 1 subject makes choices that

are much closer to the BR. One can simply compare the area of the circles close to

the diagonal (contributions close to the BR) and the area of circles o� the diagonal

(contributions away from the BR). Type 2 subjects over-contribute in LC sessions

and under-contribute in HC ones.

Figure C.1: Contributions versus best response (based on previous two rounds' con-
tributions by other players)
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(b) Low Complementarity
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Notes : The plots displays actual contributions in the y-axis versus the BR associated with the lowest proportional
loss (x-axis). In the �gure a wider circle denotes a higher frequency. Type 1 subjects are shown in black circles; Type
2 are in gray ones.
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An alternative way to present the di�erences across types is to plot the relative

frequencies of deviations. The left panels in Figure C.2 display the way Di�erence2

(that is, gi − g∗i ) is distributed in di�erent treatments44; as expected, Type 2 agents

(red bars) under-contribute in HC and over contribute in LC treatments. The panels

on the right side report the deviation of actual choices from the hypothetical choices

(i.e., gi − ĝi); these deviations can be obtained by subtracting Di�erence1 from Dif-

ference2. They measure the extent to which deviations in actual choices are due to

deviations in hypothetical ones entered in the calculator. The plots con�rm that,

even after controlling for the use of the calculator, Type 2 subjects under-contribute

in HC and over contribute in LC and LVCM. In fact, deviations from BR occur with

relative frequencies which are both qualitatively and quantitatively close to those

observed for deviations from hypothetical contributions. This is evidence that par-

ticipants who deviate from BR are not doing so by blindly following a misguided and

erroneous optimal response. Instead, the fact that deviations from BR largely line up

with deviations from hypotheticals suggests a more deliberate behavior on the part

of the subjects.

44We plot the �per-round� average of the individual discrepancy between actual choices and BR,
without controlling for use of the calculator.
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Figure C.2: Deviations of actual choices from BR (Di�erence2 ) and from hypothetical
(Di�erence2 - Di�erence1 )
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(b) Deviations from Hyp. (HC)
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(c) Deviation from BR (LC)
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(d) Deviations from Hyp. (LC)
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(e) Deviation from BR (LVCM)
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(f) Deviations from Hyp. (LVCM)
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Notes : The blue (red) bars of the left panel display the relative frequency (in percentage) of the deviations from
the pro�t-maximizing strategy, gi − g∗(ĝ−i), for Type 1 (Type 2). The blue (red) bars of the right panel display the
relative frequency (in percentage) of the deviations from the pro�t-maximizing strategy controlling for the ability to
�nd the payo�-maximizing strategies using the calculator, gi − ĝi, for Type 1 (Type 2).
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D Computer Interface

Figure D.1: Main Computer Interface

Figure D.2: Feedback
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E Control Questions

Figure E.1: Control Question 1/7
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Figure E.2: Control Question 2/7

Figure E.3: Control Question 3/7
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Figure E.4: Control Question 4/7

Figure E.5: Control Question 5/7
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Figure E.6: Control Question 6/7

Figure E.7: Control Question 7/7
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F Myopic Best Response

As a robustness check we classify subjects based on how close their contributions are

from the best response given the other group members' contribution in the previous

round. The procedure is analogous to the one used in Section 5.1, but in this case we

consider the contributions made by other group members only in the previous round.

There are no signi�cant di�erences with respect to the classi�cation used in Section

5.1. Only 10 subjects would be re-classi�ed as Type 1 and another 10 subjects would

be re-classi�ed as Type 2 (with respect to Section 5.1).

Table F.1 is analogous to Table 5.2.

Table F.1: Di�erences in Mechanical Use of the Calculator, by Subject Type within
Complementarity Level (assuming myopic BR)1

LVCM LC HC

Type 1 Type 2
t-test

Type 1 Type 2
t-test

Type 1 Type 2
t-test

(p-value) (p-value) (p-value)

CalcRound 4.4 9.5 0.0 10.6 10.0 0.7 6.1 4.3 0.2
(1.2) (1.9) (1.1) (1.0) (0.9) (1.1)

Hyp 12.6 13.6 0.5 14.5 14.8 0.8 9.0 9.4 0.6

(1.3) (1.1) (0.9) (0.8) (0.6) (0.6)

Conj 14.1 19.7 0.2 29.8 25.1 0.2 26.7 19.1 0.1
(2.3) (3.3) (3.0) (2.2) (3.8) (2.8)

Hyp Per Conj 3.2 4.1 0.1 7.0 5.8 0.1 8.6 5.9 0.0

(0.4) (0.4) (0.5) (0.4) (1.0) (0.8)

Observations 16 16 24 24 24 24

1Each cell reports the average value for the respective category (standard errors are reported in parentheses).
The t-tests of the means are reported in the third column of each treatment. CalcRound. number of rounds
subjects used the calculator; Hyp. number of hypothetical own contributions; Conj. No. of conjectures about
others; Hyp per Conj. number of own hypothetical contributions entered, given a conjecture about other players'
contributions. We include the practice rounds.
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G Persistence of Conjectures

To better understand how persistent are the conjectures about other contributions,

in Table G.1 we display the number of new conjectures in each round and across

treatments. We also show the number of overall conjectures per round. Figure G.1

shows the �ve-round moving average for the new conjectures as a percentage of the

overall conjectures. Note that there is a signi�cant decrease in the percentage of

innovations over time, especially in HC. This supports the hypothesis of persistence

in subjects' conjectures, and suggests that some subjects form conjectures early in the

experiment which do not change much. Some of them adjust only their hypothetical

contributions.

Table G.1: Persistence of Conjectures

Round
LVCM LC HC

No. of New Overall No. of New Overall No. of new Overall
Conjectures Conjectures Conjectures Conjectures Conjectures Conjectures

Practice 314 314 471 471 332 332
1 11 36 42 106 12 64
2 6 23 30 66 10 33
3 9 27 20 76 8 27
4 7 18 19 69 8 38
5 6 26 17 67 2 22
6 8 25 14 61 5 23
7 0 8 12 47 1 18
8 2 13 12 47 3 26
9 2 10 8 48 0 15
10 1 4 9 27 1 12
11 2 8 5 39 1 14
12 2 8 5 40 3 10
13 1 5 4 29 0 9
14 0 9 1 20 0 9
15 1 9 4 25 0 8
16 1 5 4 25 2 7
17 0 3 4 30 0 3
18 1 4 3 33 0 5
19 0 3 1 22 0 8
20 0 4 0 17 2 12
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Figure G.1: New conjectures as a percentage of overall conjectures
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Notes: The solid lines of the graph display the
�ve-round moving average of the number of new
conjectures as a percentage of overall conjectures.
Notice that for period 4 we include data from the
practice round, for which the percentage of new
conjectures is 100%.
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H Intensity and Processing Speed on Calculator Us-

age

H.1 Intensity of calculator usage

It is not obvious that longer spells of time unambiguously imply higher e�ort or

better information processing. Therefore we combine time measures with records of

actual interactions with the interface by counting how many times the calculator was

activated before a choice was recorded. Looking at monetary-low-loss responses in the

LVCM and HC treatments, subjects make no use of the calculator in three quarters

of the rounds. In addition, it takes an average of only 8 seconds in the LVCM and 4

seconds in the HC to submit a choice.

In the LC treatments, however, this �nding is reversed, as the majority of low-loss

subjects (55% of them) use the calculator. Their average time to submission is 42

seconds. Subjects who do not use the calculator spend an average of only 6 seconds

before committing to a choice.45 For the ρ = 0.70 treatment, in 26% of the cases

in which subjects �get it wrong� and do not activate the calculator, contributions

are relatively large and exceed 5 tokens. These choices cannot be rationalized under

any set of conjectures and suggest some degree of guesswork on the part of agents,

which may be interpreted as a combination of confusion and inability (or reluctance)

to pursue a BR strategy using the calculator. In general, it appears that Type 1

subjects tend to use the calculator only in challenging environments, when identifying

BR strategies is not trivial.

H.2 Processing speed

Given the evidence presented so far, it is key to distinguish between subjects who

spend much of the time idly staring at the screen and those who do try to get the

most out of the calculator. To identify this di�erence we compute the average amount

of time subjects spend entering a given combination in the calculator. This is done by

45This value does not change if we focus on high-loss subjects who do not activate the calculator.
They spend an average of only 7 seconds submitting their choices.
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dividing the total time spent on the calculator by the number of combinations that

are considered during that time interval. The resulting statistic is a proxy for the

speed at which information is processed. Table H.1 shows that, in the LC treatments,

subjects on average consider more combinations per unit of time. Moreover, subjects

who play close to pecuniary-BR appear to process information signi�cantly faster

than those who don't. This is additional evidence in support of the hypothesis that

in more complex environments, like the LC ones, subjects tend to exert more e�ort

while choosing a contribution. This is especially true for a Homo pecuniarius subject,

who not only devotes more time to the choice problem but appears to be signi�cantly

more e�cient in his or her time use.

Table H.1: Processing Time

PropLoss ≤ 0.1 PropLoss > 0.1 Overall
Avg. (SD) obs. Avg. (SD) obs. Avg. (SD) obs.
seconds seconds seconds

LVCM 11.02 (0.98) 98 15.44 (1.40) 104 13.29 (0.88) 202

LC 9.44 (0.44) 246 11.01 (0.45) 214 10.17 (0.32) 460

HC 11.11 (0.62) 163 16.55 (1.13) 53 12.45 (0.56) 216
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I Instructions

The instructions distributed to subjects in all the treatments are reproduced on the

following pages. All subjects received the same set of instructions except that those in

the LVCM treatment received the following explanation about how the income from

the group account was calculated:

�The total group income depends on the investments of all group members, and it

is shared equally among all group members. This means that each group member

receives one quarter (1/4) of the total group income. Some important points to keep

in mind:

a. The more you and others invest in the group account, the higher the total group

income.

b. The group income is obtained by multiplying the sum of the investments of all

group members by 1.6 (remember that the resulting group income is shared equally

among group members).�

Also, the exchange rate was adjusted so that the average expected payo� was the

same across all treatments.
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Instructions 

You are taking part in an economic experiment in which you will be able to earn money. Your earnings 

depend on your decisions and on the decisions of the other participants with whom you will interact.  It 

is therefore important to read these instructions with attention. You are not allowed to communicate 

with the other participants during the experiment.  

All the transactions during the experiment and your entire earnings will be calculated in terms of tokens. 

At the end of the experiment, the total amount of tokens you have earned during this session will be 

converted to CAD and paid to you in cash according to the following rules:  

1. The game will be played for 20 rounds. At the end of the experiment, the computer will randomly 

select one of your decision rounds for payment. That is, there is an equal chance that any decision you 

make during the experiment will be the decision that counts for payment.  

2. The amount of tokens you get in the randomly selected round will be converted into CAD at the rate: 

2 tokens = $1. 

3. You will get $0.20 for every control question you answer correctly in the first attempt; $0.15 for every 

question you answer correctly in the second attempt; and $0.10 for every question you answer correctly 

in the third attempt. 

4. In addition, you will get a show-up fee of $5. 

Introduction  

This experiment is divided into different rounds. There will be 20 rounds in total. In each round you will 

obtain some income in tokens. The more tokens you get, the more money you will be paid at the end of 

the experiment. 

During all 20 rounds the participants are divided into groups of four. Therefore, you will be in a group 

with 3 other participants. The composition of the groups will change every round.  You will meet each 

of the participants only four times, in randomly chosen rounds. However, each time you are matched 

with a participant that you encountered before, the other group members will be different. This means 

that the group composition will never be identical in any two rounds. Moreover, you will never be 

informed of the identity of the other group members.  

Description of the rounds  

At the beginning of the rounds each participant in your group receives 20 tokens. We will refer to these 

tokens as the initial endowment. Your only decision will be on how to use your initial endowment. You 

will have to choose how many tokens you want to invest in a group account and how many of them 
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you'll want keep for yourself in a private account. You can invest any amount of your initial endowment 

in the group account. 

The decision on how many tokens to invest is up to you. Each other group member will also make such a 

decision. All decisions are made simultaneously. That is, nobody will be informed about the decision of 

the other group members before everyone made his or her decision.  

End of the rounds 

At the end of each round (after all choices are submitted), you will see:  (i) your investment choice, (ii) 

the investment choices of the other members in your group, and (iii) your income. Then, next round 

starts automatically and you will receive a new endowment of 20 tokens.  

Income calculation 

Each round, your total earnings will be calculated by adding up the income from your private account 

and the income from the group account: 

1. Income from your private account. You will earn 1 token for every token you keep in you private 

account. If for example, you keep 10 tokens in your private account your income will be 10 tokens. 

2. Income from the group account. The total group income depends on the investments of all group 

members, and it is shared equally among all of them. That is, each group member receives one quarter 

(1/4) of the total group income. 

Some important points to keep in mind: 

a. The more you and others invest, the higher the total group income.  

b. Taking as given the investments of all other group members, consider two levels for your 

investment in the group account (say, low investment and high investment). Next, increase both 

the low investment and the high investment by 1 token. The total group income will increase in 

both cases. However, the increase is smaller in the case of the higher investment level. 

c. When you increase your investment in the group account, the total income will not increase at a 

constant rate. The rate depends on the value of all participants’ investments in the group 

account. 

d. For the same average investment in the group account, the total group income would be higher 

if there is not much difference between the investments chosen by each one of the group 

members.  

e. If all other members in your group invest zero, the total group income will be determined by 

multiplying your investment in the group account by 1.6; the resulting amount is the group 

income and it will be shared equally among all group members.  
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Using the calculator to compute your income 

To calculate your potential income you will have access to a calculator (look at the picture below). 

To activate the calculator, you will be asked to fill in a hypothetical value for your own investment and 

for the other group members’ investment; then, you will be able to visualize your income for such 

hypothetical investment choices. You can consider as many hypothetical investment combinations as 

you want. 

Before the experiment starts you'll understand how to use the calculator; you will be able to practice 

with it; and finally, you will have to answer some control questions. For every correct answer you will 

get $0.20, $0.15, $0.10 if you give the correct answer in the first, second and third attempt, respectively.  

Remember that your actual investment decision has to be entered on the right hand side of the 

screen. Every round you will have 95 seconds to do that. 

 

Screen-shot of the experiment interface 
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