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1 Introduction

One’s ability to identify and harness top-level experts becomes a crucial requirement in an environment

of growing complexity. The gravity of this problem is even more significant when entire markets

and economies are at stake. The 2007–2009 financial crisis offers some insights on how ill-motivated

experts can produce poorly-designed, risky contracts that, in return, unleash a dramatic chain reaction

throughout the global economy.1 In this paper, we tackle the problem of experts testing in such a

set-up, i.e., in the delegated portfolio-managers market.

For several decades, the portfolio-managers problem has been the focus of many empirical and

theoretical studies.2 A significant part of these studies derive impossibility results, showing that an

investor cannot separate the skilled from the unskilled managers. The reason is clear: it is quite

difficult to detect low-level managers, or even charlatans, in a noisy, risky market with little to no

prior information. Nevertheless, we prove that no matter how difficult it may seem, the separation is

still possible.

Before exploring further into our results, we wish to dwell on the paper by Foster and Young

(2010). This paper accurately explains the portfolio-managers problem by giving one of the strongest

impossibility result so far.3 Foster and Young (2010) explore the profitable ability of low-level managers

to mimic the investment strategies of high-level managers, in an undetectable manner, to a point where

the investor’s fund is lost entirely. The fact that personal collaterals are more problematic for high-

level managers, as they can produce excess expected returns for every dollar held in escrow, plays a

significant part in the impossibility result. That is, they show that penalties either deter all managers,

or deter none.

Our model captures a similar situation. We consider a single-period investment where an investor,

faced with managers of different abilities, can only observe their realized returns. In this framework

we design incentives schemes such that only the best portfolio managers, in terms of expected payoffs,

agree to participate in the single-period investment.

This goal is ambitious is several respects. First, experts testing typically involves some form of

repetition. Namely, the consecutive sampling enables the investor to gain additional information about

the managers’ subjective capabilities. However, such learning cannot take place in a single-stage model

as ours. Moreover, we do not settle for an ex-post detection, but aim to deter the suboptimal managers

1See, e.g., Hansen (2009); Fligstein and Goldstein (2010); and Simpson (2011). For a general survey on the wrong

incentives that led to the financial crisis of 2007–2009, see Fligstein and Roehrkasse (2013).
2See, among many others, Sharpe (1981); Barry and Starks (1984); Starks (1987); Scharfstein and Stein (1990);

Chevalier and Ellison (1997); Carpenter (2000); Lo (2001); Hodder and Jackwerth (2007); Goetzmann et al. (2007); Van

Binsbergen et al. (2008); Dasgupta et al. (2011); Chassang (2013).
3A simple example to illustrate their result follows in Subsection 2.1.
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from entering the market completely. Second, our model follows the strict assumptions of previous

impossibility studies: it does not assume that the investor has superior monitoring capabilities, nor

that managers have a liquidation boundary as in, e.g., He et al. (2015). Thus, we do not restrict low-

level managers from using various mimicking strategies. Third, we assume that the investor cannot

use biased schemes, i.e., she must treat all managers equally. Based on all of the above, we conclude

that the ability to separate good investors from poor ones applies in general financial markets, where

an uninformed investor can only observe the managers’ one-shot realized returns.

Our work is motivated by one specific element that previous works did not take into account, and

that is the ability the run a constant-sum competition between the managers. In previous studies,

the endowments and returns of one manager do not balance off with the ones of the other managers.

We, in contrast, consider schemes where all the managers’ collaterals are pooled together, and later

redistributed based on their performances.4 In other words, we design a (partially) constant-sum

game where the deposits of suboptimal managers are used to compensate superior managers for a-

priori depositing funds. Along with the basic assets-under-management fees, our endowments-based

trade-off incentivizes high-performance managers to participate in the investment, and the others to

refrain.

The simplicity of our proposed scheme, entitled the Tried-Stone scheme,5 is an important part of

this paper, related to the policy implications. By requiring few conditions and little knowledge on the

part of the investor, the designed scheme is implementable in small and large scales alike. That is, the

optimal Tried-Stone scheme, described in Sections 3 and 4, is implementable in general markets and

results in situations where only managers above a certain level agree to participate.6

Our analysis also includes an impossibility result. When the single-period potential-returns exceed

100%, we show that two managers of different abilities that interact with each other through risky

binary options cannot be separated by any feasible contract. That is, we prove that in case one of the

managers can more-than-double his funds, while the other losses everything, then no contract, based

solely on their realized returns, can distinguish between the two.7 This double-or-nothing condition is

not a mere technical issue: it goes to the core of our solution, and our understanding of the screening

problem. It stems from the inability to compensate a manager’s potential loss due to the personal

4The redistribution of funds among financial managers was the focus of Lagziel and Lehrer (2016).
5The term ‘Tried Stone’ is taken from Isaiah (28:16): “Therefore thus said the Lord GOD, Behold, I lay in Zion for

a foundation a stone, a tried stone, a precious corner stone, a sure foundation: he that believes shall not make haste.”

The stone symbolises a test, a benchmark, upon which one can get a truthful assessment.
6This result is motivated by the work of Bhattacharya and Pfleiderer (1985), and discussed in Section 1.1.
7The interaction between managers carries some resemblance to the more recent trend of studies concerning optimal

contracting jointly with asset prices. See, e.g., Qiu (2009); Buffa et al. (2014); Malamud and Petrov (2014); and Garleanu

and Pedersen (2015).
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collateral, with another deposit of the same amount. Therefore, the same condition is also crucial for

our positive results.

One could find an interesting (and rather entertaining) precedent to our Tried-Stone scheme in

Warren Buffett’s million-dollar bet with the money management firm, Protégé Partners.8 The “Oracle

of Omaha” made a 10-year bet, expiring on the last day of 2017, that the market performance of an

index fund of his choice can beat the average performance of five hedge funds carefully chosen by

Protégé. With slightly over a year ahead, Buffett is leading by more than 40 points! (65.67% versus

21.87%.) Though it is merely a friendly wager, the bet holds the same basic idea of running a

competition between two funds, and granting the entire deposit of a suboptimal contender to the

optimal one (and, in this case, his charity of choice). This example also shows that our solution is

not limited to the portfolio-managers setting. In fact, every competition that includes an entering fee,

ranging from best-photography contests to submitting academic papers to top journals, could employ

our reward scheme to attract only high level competitors, and thereby set a high-level competition.

1.1 Related literature

Studies of the delegated portfolio-managers problem range from the vast economic literature9 to the

financial one. As both fields are well-studied,10 we can only address several key papers that strongly

relate to our work, starting with the work by Bhattacharya and Pfleiderer (1985).

Similarly to our work, Bhattacharya and Pfleiderer (1985) consider a one-period setting with no-

learning involved. They showed that it is quite difficult, yet sometimes possible, to screen managers

below a certain level. However, their results depend greatly on normally distributed payoffs (i.e.,

constant absolute risk aversion utilities) of both the investor and the managers, and on the common-

knowledge of the managers’ deterministic alternative-employment wages. Though their work could

be extended beyond the CARA-utility conditions, some form of risk-aversion is needed, as well as

additional restrictions over the distributions of the available assets. Foster and Young (2010) argue that

such risk-aversion is somewhat limiting in the screening problem. Namely, an investor can use various

schemes, where managers invest their own private funds, to deter low-level risk-averse managers. These

schemes do not apply otherwise.

The normally distributed payoffs is also a basic requirement in the work of Admati and Pfleiderer

(1997), which studies the design of a benchmark-adjusted schemes to infer the managers’ skills from

ex-post returns. Their analysis shows that the use of exogenous benchmarks in linear contracts is,

8Fortune, “Why Buffett’s Million-Dollar Bet Against Hedge Funds Was a Slam Dunk” on May 11, 2016.
9The manipulability abilities of low-level agents were proven to exist in many economic papers, such as Lehrer (2001);

Sandroni et al. (2003); Sandroni (2003); Shmaya (2008); and Olszewski and Sandroni (2008).
10See Stracca (2006) for a comprehensive survey of the field.
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generally, suboptimal with respect to risk sharing, exerting effort, and choosing the optimal portfolio

for the investor. Our solution for this benchmark problem is another important aspect of the Tried-

Stone scheme. The Tried-Stone scheme generates a competition between managers such that each

manager is compared to all the other managers. In other words, our benchmark is endogenously

derived from the induced-competition equilibrium, thus enabling optimality.

Bhattacharya and Pfleiderer (1985) and Admati and Pfleiderer (1997) also share a key feature

regarding the managers’ available assets. Specifically, they assume that managers can invest either in

a risk free asset, or in a unique asset of normally-distributed returns. In such a set-up, the difference

between managers depends solely on their private signals, while mimicking strategies are not consid-

ered. We, on the other hand, do not limit the available assets in such a way, and allow the use of

different mimicking strategies.

In a more recent work Dasgupta and Prat (2006) show that managers’ career concerns might limit

the ability to screen out uninformed managers. They use a two-stage model, where all sides are risk-

neutral, to prove that low-level managers might invest randomly, since a no-trade policy signals for

a lack of information. Their analysis leads to a situation where an average return (with respect to

the market) is as bad as a negative return, since both outcomes signal for poor performance. This is

fundamentally different from our results. Our goal is to screen out all sub-optimal managers. There-

fore, by definition, all the post-screening participating managers generate similar optimal expected

returns. More importantly, Dasgupta and Prat (2006) assume that the mangers’ payoff are a linear

function of the returns. Though this assumption is feasible when returns are positive, it is unclear

how to generate negative payments when returns are negative. This understanding is one of the main

contributions of Foster and Young (2010).

Foster and Young (2010) present one of the broadest impossibility result so far, arguing that

low-level managers can always use options-trading strategies to mimic expert managers. They also

consider risk-neutral parties and derive specific strategies for unskilled managers to use in the presence

of skilled ones. In many respects, our positive result responds to their impossibility result with a single

condition that returns are bounded by the double-or-nothing range. That is, we assume that managers

cannot produce returns that exceeds 100% in a single time period. Though this assumption could be

weakened and is broadly discussed in Section 2.2, we stress that the length of a single time period is

not limited in any way. Thus, for practical purposes, this restriction is quite weak.

The bounded assets are also vital for the positive result of He et al. (2015). Their recent work

assumes that the investor can prevent the managers from losing the entire fund, thus basically ignoring

mimicking strategies á la Foster and Young (2010). This restriction is based on an investor with

superior monitoring and regulating capabilities, that are redundant in our set-up.
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Note that we do not remain naive to the possible implications of our proposed contracts. Per-

sonal deposits fix an opportunity cost with potentially significant repercussions. Therefore, the results

throughout this work should not be considered as a call-for-action. The accumulated practical and

theoretical experience teaches us that many suggested reforms, such as postponing bonuses and insti-

tuting clawback provisions, do not effectively limit the gaming ability of financial managers. Therefore,

our theoretical analysis is aimed to what could be done, rather than what should be done.

1.2 Structure of the paper

The paper is organized as follows. In Section 2 we described a two-managers model. We discuss the

main assumptions, along with a simple example to illustrate the complexity of the problem. Section

3 presents the Tried-Stone scheme and shows how the investor could fix the endowments such that

only the superior manager is willing to participate in the investment (Theorem 1 and Corollary 1).

In Section 4 we extend the model to numerous portfolio managers and generalize previous results

(Lemma 1, Theorem 2, and Theorem 3). Our impossibility result (Lemma 2), with several concluding

remarks and further comments are given in Section 5.

2 The model - a two-manager framework

Consider a risk-neutral investor with an initial endowment of 2w that she wishes to invest. Her main

goal is to maximize her expected earnings using the abilities of two risk-neutral fund managers. The

first manager, denoted Manager 1, has superior trading abilities than the second manager, denoted

Manager 2. Specifically, every Manager i can invest in any portfolio from a set Ai, and has an optimal

portfolio Yi (a portfolio that maximizes expected returns). Assume that the optimal portfolio of

Manager 1 produces excess expected returns relative to that produced by the optimal portfolio of

Manager 2. That is, ErY1s ¡ ErY2s.

The investor introduces a scheme f meant to incentivize managers to invest in her best interest.

The scheme f induces a competition between the managers, referred to as an investment game Gf . In

addition, the investor may require an endowment C ¥ 0 as an entry fee for participating in Gf . Given

the investment game and entry fee, the managers decide whether to participate in the investment.

Ideally, the investor produces an optimal scheme that lures only Manager 1 to invest her funds and

only in Y1. In other words, a scheme is optimal if it induces, in every equilibrium, the maximal

expected gross return of 2wErY1s for the investor.

Formally, the problem begins when the investor publicly commits to a scheme f . Let f : R2
� Ñ R2

�

be the investor’s proposed scheme where fipr1, r2q is the payoff of an active Manager i based on the
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realized-returns vector pr1, r2q P R2
�. The scheme f induces an investment game, denoted Gf , in

which every Manager i decides first whether to participate or decline, considering the opportunity

cost11 CErYis. A manager who is willing to participate in Gf is called an active manager, otherwise

we refer to him as inactive.

In case both managers decide to be active, they get an equal share, w, and individually decide on

how to invest it. Let the profile σ � pσ1, σ2q be an equilibrium in the investment game Gf , where σi

is the portfolio of Manager i. The expected value of the investor’s portfolio is then wErσ1 � σ2s, and

the expected profit of Manager i is πi � Erfipσ1, σ2qs � CErYis.

However, if only a single manager is active, say Manager i, then he receives the entire amount of

2w to invest in a portfolio that he chooses. In this case, no endowment is needed and Manager i’s

payoff is fixed to be a share λ P p0, 1q of the overall funds after the investment is realized. Namely,

if Manager i is the only active manager, then his optimal action is the optimal portfolio Yi and his

expected profit is πi � λEr2wYis, whereas the investor’s expected net profit is p1� λqEr2wYis.

We require that every scheme f satisfy two conditions: symmetry and feasibility. The symmetry

of f is considered in the normal sense of f1pr1, r2q � f2pr2, r1q for every realized rates r1, r2 P R�. It

follows from the investor’s inability to, a priori, distinguish between the two managers. The feasibility

condition states that a scheme f must be non-negative, implying that any penalty for bad performance

is limited to the managers’ personal uninvested funds (endowment C), previously held in escrow in some

risk-free asset. This requirement is presumably the toughest obstacle in designing an optimal scheme,

since it significantly limits the investor’s ability to impose penalties on under-preforming managers.

The funds held in escrow generate a significant loss to high-performance managers, relative to low-

performance managers, thus resulting in a difficulty to effectively deter low-level managers without

deterring the better ones. Using invested funds to penalize managers is not considered feasible, since

such funds are possibly lost due to bad investments.

2.1 An illustrative example

Before discussing the main assumptions and results, we consider a concrete example. Assume that

Manager 1’s optimal portfolio produces a return of 5% with probability 1, whereas Manager 2’s optimal

portfolio produces the same rate with probability 1
1.05 , and otherwise loses the entire amount. The

investor decides on a scheme f where an active manager needs to deposit an amount C ¡ 0 that

will be returned to him by the end of the period, unless he generate a negative return (i.e., below 1).

In addition, every active manager will get a share λ out of the funds he manages by the end of the

11The entry fee C is given in nominal values, whereas the opportunity cost CErYis is given in real values, adjusted to

Manager i’s investment capabilities.
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investment, including the returns. Specifically, when Manager j invests in σj , the expected profit of

an active Manager i induced by the scheme f is

πi � Erfipσ1, σ2qs � CErYis

� λwErσis � CPrpσi ¥ 1q � CErYis.

The first term is the manager’s fees out of the managed funds; the second term follows from the

potential loss of endowment C; and the last term is the manager’s opportunity cost for not personally

investing the amount C.

The individual decision of each manger to participate depends on C. Specifically, the expected

profit of the two managers in equilibrium12 pY1, Y2q are

π1 � λw1.05� 0� Cr1.05� 1s ; π2 � λw � C
�
1� 1

1.05

�
� 0.

On the one hand, for every C ¥ λw 1.05
0.05 , the profit of both managers is non-positive. On the other

hand, if C   λw 1.05
0.05 , then both profit are positive. Therefore, there exists no deposit that enables

the investor to distinguish between the two managers. This result is not surprising since the proposed

scheme lacks the key element of our Tried-Stone solution, which is a competition between managers. In

this case, the individual profit of one manager is independent of the other’s realized return, generating

no competition whatsoever.

2.2 Main assumptions

There are three main assumptions concerning our portfolio-managers model that we wish to clarify: (i)

the different trading capabilities, (ii) the distributions of available portfolios, and (iii) risk neutrality.

The excess abilities of Manager 1 over those of Manager 2 may stem from several sources, such

as a superior understanding of the market, lower transaction costs, a technological trading hedge,

and so on. Specifically, the difference could also follow from Manager 2’s willingness to exercise a

mimicking strategy. As in many studies of this field, one can assume that Manager 2 mimics Manager

1 to generate the same realized values, but with inferior probabilities. These types of mimicking

strategies play a crucial rule in previous impossibility results, and are also considered in the current

work. However, to maintain generality and avoid the complexity of different information structures

and signalling systems (as in, e.g., Bhattacharya and Pfleiderer (1985) and Berk and Green (2004)), we

simply assume that Manager 1 has the ability to invest in an optimal portfolio Y1, whereas Manager

2 cannot match the expected return of Y1.

12To simplify the analysis, we assume that all other assets in Ai fall short of Yi.
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The second assumption relates to the distributions of the available portfolios. We assume that

both managers can produce returns ranging from losing the entire fund to doubling it in a single

stage. That is, Prp0 ¤ Y ¤ 2q � 1 for every portfolio Y P A1 Y A2. The reason for these bounds lays

in the feasibility condition and the rebalanced endowments. Namely, a potential loss of more than

100% due to an endowment of C, cannot be matched by another endowment of the same amount.

From a practical perspective, this restriction is quite weak, as one can always shorten the basic time

frame such that the probability of more than doubling the fund is sufficiently close to zero.13 The

restriction also teaches us that the rebalancing should be limited to a specific time frame such that

the double-or-nothing range is met.

We could weaken this assumption to some extent, since the investor can use her private funds

to offset the managers’ potential losses. Otherwise, we make no additional assumptions over the

distributions of the portfolios. Our results are robust in the sense that we do not condition neither

on the types of distributions, such as a geometric Brownian motion, nor on possible correlations or

dependence. For the sake of simplicity, we fix the risk-free return rate to zero. However, one could

assume that the rates generated by the portfolios in Ai are relative to some non-zero risk-free rate.

The last assumption we wish to clarify is the managers’ risk neutrality. When managers are risk

averse, the investor can impose some simple restrictions to eliminate low-level managers. For example,

the investor may require that active managers invest their own private funds in the same portfolio, and

by doing so he can eliminate managers that do not generate excess returns relative to a risk-free asset.

For this reason, the assumption that managers are risk neutral complicates the problem compared to

risk-averse managers. For the same reason we also assume that the expected optimal returns of both

managers is non-negative (i.e., ErYis ¥ 1 for every i � 1, 2). Omitting these two assumptions may

involve additional technical difficulties, yet will not significantly affect our results.

3 Optimal schemes

The design of an optimal scheme must be a based on a combinations of penalties and positive rewards,

carrots and sticks. Any scheme based solely on penalties will not attract Manager 1, just as a strictly

positive scheme will not deter Manager 2. Thus, our optimal scheme, referred to as the Tried-Stone

scheme, is a two-stage plan: it begins when every active manager secures a deposit C ¡ 0 beforehand,

an ends when payoffs are distributed according to realized returns. Though the value of C is later

determined, we should point out that the use of this deposit is one of the main new elements of our

proposed solution. Our optimal scheme uses the deposit of Manager i to compensate the other active

13For example, eight years into the Buffett-Protégé wager and neither party has yet exceeded this threshold.

8



manager for cases where Manager i under preforms.

Assume that Manager 1 and Manager 2 produce the realized returns of r1 and r2, respectively.

The Tried-Stone scheme f states that

f1pr1, r2q � λw

�
1�

r1 � r2
2

�
� C

�
1�

r1 � r2
2

�
, (1)

f2pr1, r2q � λw

�
1�

r2 � r1
2

�
� C

�
1�

r2 � r1
2

�
. (2)

In words, the fees and deposits are divided such that every active manager starts with the same basic

amount of λw � C. That is, every manger i gets a fee of λw and gets his own deposit C. Once the

returns pr1, r2q are observed, Manager i’s gains and losses are proportional to the difference between

the realized returns. Note that the realized returns pr1, r2q are public, while the opportunity cost

CErYis is Manager i’s (stochastic) private information, therefore f is well-defined. In addition, f is

symmetric, and feasible as the investor only divides the overall available fees and deposits.14

The implementation of the Tried-Stone scheme is simple. First, the investor secures the amount

of 2λw that will eventually be divided as fees. Next, every manager, who is willing to participate in

the investment, secures an amount of C. These endowments could be handled by a third party and

invested in a risk-free asset until investments are realized. After returns are observed, the fees and

deposits are allocated according to the normalized differences of realized returns.

An important property of the Tried-Stone scheme is the ability to divide a fixed predetermined sum

of 2wλ � 2C between the managers based on their results. This possibility is similar to the General

Reward Scheme presented in Lagziel and Lehrer (2016), where a problem of different incentives with

homogeneous managers is considered. Using this ability, the investor secures an endowment of C from

each active manager, where the potential loss of Manager 1, due to the opportunity cost, is matched to

the loss of Manager 2, by the expected reimbursement. The reimbursement bypasses the main problem

presented in previously mentioned studies. The scheme’s linearity implies that the unique dominant-

strategy equilibrium of the investment game induced by the Tried-Stone scheme is σ � pY1, Y2q. Thus,

the profits are given by

π1 � λw

�
1�

Y1 � Y2
2

�
� C

�
1�

Y1 � Y2
2

�
,

π2 � λw

�
1�

Y2 � Y1
2

�
� C

�
1�

Y2 � Y1
2

�
,

and the second terms of both profits are identical.

14The feasibility requirement follows from the condition that returns are bounded by the double-or-nothing range. In

case a higher bound is needed, one can take a larger denominator to normalize �pr1 � r2q.
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Denote e� � ErY1�Y2s and e� � ErY1�Y2s, where e� ¡ 2 and e� ¡ 0 follow from the assumptions

given in Subsection 2.2. The following theorem specifics the values of C such that The Tried-Stone

scheme is optimal.

Theorem 1. If C
λw P

�
2�e�
e��2, ,

2�e�
e��2

	
, then the Tried-Stone scheme is optimal.

Note that the deposit of every active manager is proportional to his basic fee of size λw. This

relation is necessary, since an optimal scheme must ensure that the expected profit of a low-level

manager is negative, while maintaining a positive expected profit for high-level managers.

Proof. When both managers are active, the linearity of fi w.r.t. the return of Manager i implies

that the dominant-strategy equilibrium is σ � pY1, Y2q. Hence, the expected profits of the participating

managers are

π2 � Erf2pσqs � CErY2s

� λw
�
1�

e�
2

�
� C

�
1�

e�
2

�
  λw

�
2� e�

2

�
� λw

�
2� e�
e� � 2


�
1�

e�
2

�
� 0

� λw

�
2� e�

2

�
� λw

�
2� e�
e� � 2


�
1�

e�
2

�
  λw

�
1�

e�
2

�
� C

�
1�

e�
2

�
� Erf1pσqs � CErY1s

� π1,

as needed. Thus, Manager 2 cannot gain from participating in the fund along with Manager 1, who

becomes the only active portfolio manager. In this case, no endowment is required (as no penalties

are involved) and Manager 1 invests the entire amount of 2w in Y1 in order to maximize his expected

λ-share of the portfolio.

Before extending Theorem 1, let us reconsider the same concrete environment previously described

in Section 2. Fix the fee λ to 0.5% and assume that the optimal portfolio of Manager 1 produces

5% w.p. 1, whereas Manager 2’s optimal portfolio produces the same rate w.p. 1
1.05 , and �100%

otherwise. That is, Y1 � 1.05 and

Y2 �

#
1.05, w.p. 1

1.05 ,

0, w.p. 0.05
1.05 .

Using the Tried-Stone scheme along with the condition of Theorem 1, take C
λw � 40, or equivalently

C � 0.2w. Hence, each active manager needs to deposit 20¢ for every dollar bestowed in his hands to
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invest. When doing so, Theorem 1 shows that Manager 2 will decline, while Manager 1 becomes the

only active portfolio manager.

A priori, a 20¢ on-the-dollar deposit may seem excessive compared, e.g., to the Basel III regulatory

framework that requires less than roughly 12% in high-quality liquid assets.15 Nevertheless, this re-

quirement is based on the risky nature of the portfolio-management market, and it is also proportional

to the managers’ share of the profits. Namely, in case an active Manager i produces a 5% profit, then

the ratio between the 0.5% manager’s fee (of the basic fund) and the total profit is 0.1, which means

that the manager gets 10% of the profits, while his 20%-deposit is kept in a risk-free asset. Such a

deposit might even be aligned with the manager’s personal investment strategy, thus resulting with

no potential loss.

These deposits are not the only univested funds, according to the Tried-Stone scheme. The investor

also keeps a share λ of her funds in a risk-free asset, to be distributed as fees after returns are observed.

One could solve this inefficiency by updating the scheme such that it will consist of the basic share-

the-profits fees. Specifically, consider an updated scheme where Eqs. (1) and (2) are altered such

that

f1pr1, r2q � λwr1 � C

�
1�

r1 � r2
2

�
,

f2pr1, r2q � λwr2 � C

�
1�

r2 � r1
2

�
.

In simple terms, each manager gets a share λ of his fund’s realized value, with the same offset of

deposits as in the original Tried-Stone scheme. The use of the common assets-under-management fees

is important, since it enables to transform the currently-used contracts into optimal scheme just by

introducing the endowments condition.

Note that the unique equilibrium, given that both managers are active, is still σ � pY1, Y2q.

This outcome holds throughout the current work. All the schemes we produce are linear w.r.t. the

managers’ returns, therefore the dominant strategy of every active manager is to invest in an optimal

portfolio. One can even generalize this result to non risk-neutral cases by replacing ri with Upriq for

some utility function U , as in Lagziel and Lehrer (2016).

The following corollary shows that one can fix C such that Manager 2 cannot gain from partici-

pating in the investment. The proof is a straightforward computation following the same arguments

as the proof of Theorem 1, and therefore omitted.

Corollary 1. If C
λw P

�
2ErY2s
e��2, ,

2ErY1s
e��2

	
, then the updated Tried-Stone scheme is optimal.

15See Atkinson and Blundell-Wignall (2010); Slovik and Cournède (2011); Financial Times, “Europes banks face

tougher demands” on July 15, 2012; Wall Street Journal, “Basel III Is Simpler and Stronger” on October 14, 2012.
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One problem arising from Theorem 1 and Corollary 1 is the difficulty to accurately determine C

with no information on the managers’ available portfolios. However, the implementation of the Tried-

Stone scheme (either the original, or the updated version) requires only the average of optimal expected

returns, since one can fix C � 2λw
e��2 or C � λwe�

e��2 , depending on the chosen scheme. Therefore, the

investor need not be aware of all the available assets in the market. In addition, both results hold for

a range of values, hence some error in C is acceptable. Nevertheless, we believe that the exogenous

dependency calls for further research of the proposed schemes and model, such that C becomes an

indigenous element.

Remark 1. A possible extension of our model to generate an indigenous entry fee C is to use a

Dutch auction. Starting with a sufficiently high value, the fee is lowered until one manager agrees

to pay the required price. Next, the entry fee is fixed accordingly and both managers are offered to

become active. Though Manager 2 can overbid to eliminate Manager 1 from the competition, there

exists an equilibrium where an always-active Manager 1 bids within the relevant range of Theorem 1,

or Corollary 1. If indeed Manager 1 chooses the always-active strategy, Manager 2 cannot profit from

overbidding and will never become active, maintaining optimality. However, the always-active strategy

is also relevant for Manager 2. Therefore, as previously stated, a complete examination of this problem

is left for future research.

Another possible extension relates to the managers’ ability to independently fix their subjective

fees, i.e., their share of the managed funds. In an actual market, the managers can privately and freely

choose their fees based on their personal abilities and the investors’ preferences. On the one hand, low-

level managers might reduce their fees to balance their relatively suboptimal turnouts. On the other

hand, any reduction might also signal for poor performance, resulting in a low ability to raise public

funds. Ultimately, an investor could (and probably, would) condition on these privately-determined

fees when designing the competition. In Section 5 we present one way of dealing with individual fees.

This extension also enables managers to adjust their deposits. According to Theorem 1 and

Corollary 1, the collaterals depend linearly on the share λ of the managers, such that a decrease in

λ reduces the needed endowment. Our model lays the groundwork for such analysis, by enabling the

investors to strategically manipulate fund flows between managers, thus opening the possibility for a

combined fee- and return-based competition. This understanding becomes even more significant in

the following section where a market with more than two managers is considered.
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4 A managers market

Studies of the portfolio-manager problem are not easy to apply. First, many results in this field are

impossibility results stating that managers cannot be separated based on different trading capabilities.

Second, positive results usually involve complicated contracts that cannot be applied easily by either

retail clients, or even by a regulatory agency in a large scale environment with numerous investors and

managers. Our model and specifically, the symmetry and feasibility conditions, along with the Tried-

Stone scheme solution are of a different nature. Our solution is designed such that every investor, from

small private ones to large corporations, can apply it. In this section, we show how our Tried-Stone

scheme could be used as a policy tool.

Though the theoretical results are unequivocal, we emphasize that our suggested schemes should

be considered with caution to the full extent. The use of personal transferable collaterals is unprece-

dented in the portfolio-managers market. Therefore, the practical implications of such regulatory

restrictions remain relatively vague. Nonetheless, previously-stated impossibility results along with

our model and proposed schemes suggest that transferable collaterals are the only way to deal with

sophisticated strategies in a stochastic ill-monitored environment. Therefore, the following results

primarily facilitate the screening of sub-optimal managers in a wide range of scenarios, rather than

call for such implementations.

Before exploring further into this issue, we wish to discuss the concept of a regulator from a

theoretical perspective. Both in real life and in the current research, a regulator is, in fact, a game

designer. The regulator takes a known game or a known mechanism and considers ways of improving

it for her or others’ benefit. The regulator can either make small adjustments or she can change the

mechanism completely. In our set-up, the regulator uses the managers’ deposits in order to screen

out low-level managers,16 while allowing other managers to operate freely. By doing so, she designs a

competition, a game, where the managers act as players, and their behaviour is affected by the rules

that the regulator dictates.

4.1 The Regulatory Tried-Stone scheme

Formally, fix k ¥ 2 portfolio managers and recall that the optimal portfolio of Manager i is Yi where

ErYis ¥ 1. Denote vi � ErYis and assume, as we previously did, that the managers’ indices are aligned

according to their trading capabilities, such that a lower index implies a higher optimal expected return

(i.e., vi ¡ vj for every i   j). In this subsection we assume that the yields of all portfolios are bounded

16In the current section, the reader can refer to the managers as investment firms or large financial institutions, rather

individuals.
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by a �100R% return rate, where 0   R ¤ 0.5. That is, Pr p1�R ¤ Y ¤ 1�Rq � 1 for every portfolio

Y . Though this assumption is stricter than the assumption given in the previous section, we still do not

limit the time frame by which the managers are assessed. Therefore, one can take a sufficiently-short

time frame such that this assumption holds for practical purposes.17 In any case, a broad discussion

over the choice of R and its importance is given at the end of the current section.

The multi-managers market evolves as follows. Every manager, who is willing to actively partici-

pate in the market, gets an initial amount of w to invest.18 We assume that all managers share the

same fee λ P p0, 1q taken out of their managed-portfolios’ realized value. The regulator, as a market

designer, determines the endowment C ¡ 0 that each manager needs to deposit before entering the

market. In case only a single manager chooses to be active, we use the assumptions from Section 2,

where no endowment is needed as the manager gets a share of the portfolio as fees.

A scheme designed for k managers is a function defined for every set of active managers with a

vector of returns r. That is, for every set of active managers of size 2 ¤ l ¤ k, the vector r P Rl� states

their returns, and fiprq, where f : Rl� Ñ Rl, defines the payoff of an active Manager i.

Define the Regulatory Tried-Stone scheme (RTS) for every active Manager i with a realized return

ri by

fiprq � λwri � C

�
1�

ri � r̃�i
2R

�
,

where r̃�i is the average realized return of all active managers excluding Manager i. In words, every

active Manager i, who produces a realized return of ri, gets a fee of λwri from the investor, along

with a compensation C
�
1� ri�r̃�i

2R

�
based on Manager i’s return, relative to the average of the market

(i.e., the other managers). This offset is managed by the regulator using the initial endowments of

all active managers. As before, the RTS is symmetric and feasible by the normalization of the term
ri�r̃�i

2R P r�1, 1s.

Observation 1. The payoff of an active Manager i is linearly increasing in the realized return ri.

Thus, similarly to the original Tried-Stone scheme, the dominant strategy of every active Manager i

is to invest in the optimal portfolio Yi. Specifically, assuming that the realization of Yi is ri, then the

profit of an active Manager i is

πi � fiprq � Cri � λwri � C

�
1�

rip1� 2Rq � r̃�i
2R

�
.

17This assumption could be weakened as well, at a cost of limiting the results of this section to specific cases.
18To simplify the computation and without loss of generality, we assume that w is uniform among active managers.

Since all payoffs are linear in w, one could change this assumption by fixing w according to the number of active managers,

as in the 2-manager model.
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Another important observation regarding the RTS is the relation between the decision to actively

participate in the investment and the managers’ optimal expected returns. Specifically, if C is fixed

such that a low-level manager gains from entering the market, the same decision holds for any high-level

manager as well. This observation is proved in the following lemma.

Lemma 1. In every equilibrium induced by the RTS with more than one active Manager j, every

superior Manager i   j is also active.

The more-than-one condition of Lemma 1 prevents an absurdly high C from being fixed, such

that no manager can profit from entering the market along with another manager. Otherwise, the

only equilibria include a single (arbitrary) active manager with no endowment and no competition.

Alternatively, the more-than-one condition could be replaced by an upper bound on C such that

C   λwα1.

Proof. Assume, by contradiction, there exists an equilibrium σ where Manager j participates, but

Manager i   j does not. Without loss of generality, assume that Manager j is the lowest-level active

manager (w.r.t. expected optimal returns). The RTS is linearly increasing in an active manager’s

return and linearly decreasing in the other active-managers’ average return. Thus, if Manager i

decides to participate, his expected profit will be higher then Manager j’s profit for two reasons.

First, Manager i produces excess expected return relative to Manager j as vi ¡ vj . Second, Manager

i also gains from the reduced benchmark, which consists of the returns of other active managers

(including Manager j), compared to Manager j’s benchmark in the assumed equilibrium σ (that does

not include Manager j). Since Manager j’s profit is positive given σ, Manager i must enter the market

as well, contradicting the equilibrium assumption.

The monotonicity effect presented in Lemma 1 has a complementary aspect: high-level managers

can completely drive out low-level managers from the market. Namely, when high-level mangers

become active, they increase the market’s average, thus increasing the benchmark of all other active

managers. The increase leads to higher losses for below-average managers, that could result in an

elimination from the market. In some respects, the RTS is designed to create an inverse effect to

the lemon market problem of Akerlof (1970). Akerlof’s lemon market shows how traders of low-value

cars use information asymmetry to decrease the expected value of a traded car to a point where high-

value cars are eliminated from the market, resulting in a no-trade theorem. In contrast, we prove (in

Theorem 2) that a regulator can use the RTS’s inverse effect to fix C such that, in every equilibrium,

every manager below a certain level remains inactive.
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4.2 Relatively superior managers

Before we present the main result of this section, a few notations are needed. For every Manager i,

let Si � t1, . . . , iu be the set of managers that are at least as good as Manager i in terms of optimal

expected returns. For every i ¡ 1, denote ṽ�i �
1
i�1

°i�1
j�1 vj to be the average expected return of

managers superior to Manager i and define

αi �
vi

1
2R rṽ�i � vip1� 2Rq � 2Rs

to be the ratio between the expected return of Manager i and the expected loss for depositing C

(including the induced compensation) in case only higher-level managers are active. Since ṽ�1 is not

defined, fix α1 �
v1
v1�1 . These αi-ratios play a crucial part in the ability to screen out inferior traders.

We say that Manager i is relatively superior (RS) if αi ¡ αj for every j ¡ i. That is, Manager i

is RS if its expected optimal return, relative to the potential loss, due to superior active managers, is

higher than the same ratio of every inferior Manager j, where j ¡ i. A straightforward examination

shows that the RS condition is equivalent to the monotonicity of vi{pṽ�i � 2Rq w.r.t. i. Specifically,

Manager i is RS if
vi

ṽ�i � 2R
¡

vj
ṽ�j � 2R

, (3)

for every j ¡ i.

One can verify that the condition given by Ineq.(3) becomes weaker as R decrease. In other words,

a manager remains RS when limiting the support to R1   R instead of R. In addition, Ineq. (3)

is sensitive to changes in R. For example, taking the maximal R � 0.5, meaning that the portfolios

realizations range between �50% and �50%, implies that the condition does not hold whenever the

expected optimal returns change linearly. That is, assuming that vi � a� pi� 1qb for some a ¡ 1 and

b ¡ 0, there exists no relatively-superior manager. However, if R � 0.25 and given the same linearity,

then every manager is RS. In fact, if R � 0.25 and the expected returns are decreasing according to

some concave function, then every manager is RS (see Lemma 3 in the appendix).19

A sufficient condition leading a RS Manager i is

iai ¥
2

i� 1

i�1̧

j�1

jaj .

where aj � vj � vj�1. Every term jaj could be viewed as the marginal contribution of Manager j

relative to the adjacent-level Manager j � 1, and the inequality suggests that Manager i’s marginal

contribution is at least twice as high as the average marginal contribution of all superior managers.

19One could even extend the last statement beyond concave functions. See the comment following Lemma 3.
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The necessity of the RS condition follows from the ability of low-level managers to enter the market

and decrease the average expected returns, thus reducing the penalty for poor performance. Once the

penalties are reduced, the endowment C must be sufficiently high to deter low-level managers. How-

ever, if low-level managers choose not to participate, then the average expected return remains high,

and combined with a high endowment, might also deter high-level managers from actively investing.

Hence, the expected optimal return of inactive managers must be bounded away from the lowest-active

manager’s return, such that the regulator has a sufficient margin to keep the endowment C as low as

possible, while deterring low-level managers.

From a technical preceptive, the decision of a low-level manager to enter the market causes a

discontinuity in r̃�i, and the margin produced by the relatively-superior condition enables the regulator

to deal with such discontinuity. The following theorem shows that the relative superiority is a necessary

and sufficient condition to screen out managers below a certain level.

Theorem 2. Given the RTS, there exists C   λwαi such that all active managers have an expected

return rate of at least vi if and only if Manager i is relatively-superior.

The proof is given in the Appendix. We wish to clarify though that the result of Theorem 2 holds

in every equilibrium. To be specific, the existence of a RS Manager i ensures that one can fix C, so

that there exists no equilibrium with a below-vi expected-return active manager.

While Theorem 2 states that managers i� 1, . . . , k are inactive, it does not specify conditions for

the existence of an equilibrium with an active set Si of managers. For that purpose, we introduce the

following theorem, that exhibits a necessary and sufficient condition for such an equilibrium.

Theorem 3. Given the RTS, there exists an equilibrium where the set of active managers is Si if and

only if Manager i is RS w.r.t. Manager i� 1 (i.e., if αi ¡ αi�1).

Note that Theorem 3 requires Manager i to be RS only compared to Manager i � 1, whereas

Theorem 2 requires relative superiority over every manger j, where j ¡ i. In addition, in case the

number of managers is very large and the influence of every manager over the market is negligible, the

condition of Theorem 3 becomes redundant. Another scenario that may lead to the same redundancy

is when managers are allowed to enter the market with different volumes of trade. However, such

extensions go beyond our analysis and requires more complicated schemes, and therefore postponed

to future research.

In Theorem 2 and 3 we did not specify the possible range for the nominal entry fee C. These values

could be derived directly from the expected payoff of the lowest-level active manager. However and

more importantly, the requirement to fix C might even be redundant in the more-than-one manager
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set-up. Namely, when facing numerous managers, there is a simple method to transform C into an

endogenous variable of the problem. The following subsection explains this solution.

4.3 Endogenizing C

The transition from two managers into numerous managers caries some advantages concerning the

investor’s available information. The screening of a suboptimal manager among two possible candidates

leaves the investor with no benchmark to asses the performance of the, allegedly, optimal manager.

Thus, the investor cannot re-evaluate the performance of such manager and reward or penalize him, in

accordance. This lack of information also affects the investor’s ability to accurately, and a priori, fix the

entry fee C. On the other hand, the possibility to maintain more than one manager (post screening)

enables the investor to use the different active managers to evaluate each other in a competitive set-up.

In addition, it also enables the investor to endogenize C to the point where he needs no information

over the possible expected profits in the market.

Specifically, consider a mechanism similar to the one described in Remark 1 where the entry fee C

is not fixed by the investor, but auctioned among the managers. To simplify the auction, assume that

C is proportional to λw, i.e., proportional to the active managers’ share of the managed funds. Now,

assume that the investor runs a first-price auction for C when the highest value defines the entry fee

for all managers. Contrarily to the Dutch auction mentioned in Remark 1, the investor also establishes

a competition-only rule where no funds are distributed when only a single manager agrees to pay the

entry fee. In other words, the investment is annulled when only one manager agrees to participate.

The competition-only rule eliminates the possibility of an over-bidding always-active manager, as

described in Remark 1. That is, no manager can gain from overbidding C and eliminating all other

managers from the market. Thus, the conditions of Lemma 1 are met and top-level managers can fix

C (through their bidding strategy) to eliminate sub-optimal managers such that at least two managers

remain in the competition. In return, the investor needs no prior information about the ability of the

available managers, other than the R-bound which could be manipulated based on the time frame

in question. For practical purposes, top-level managers have a strong incentive to eliminate some

of the competition, as their expected profit is proportional to the amount of funds they manage.

Therefore, we conclude that the investor can use the market to induce a self-sustainable competition,

that inherently generate the required information for its existence.
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5 Discussion

5.1 Critical bounds

In Section 4 and throughout this paper, we try to minimize restrictions over possible portfolios. In

fact, the R-bound on available-portfolios yields is the only restriction we impose on the managers’

investment strategies. It is one of the two critical values mentioned in the paper, the other being the

endowment C. Thus, we designate some concluding remarks for its resolution.

5.1.1 The elimination of superstar managers

There are two ways to incorrectly determine R such that the equilibrium results of Section 4 change

dramatically. On the one hand, fixing a too-low R may lead to realized returns that violate the

1 � R bounds, resulting in an impossibility to exercise the RTS. On the other hand, trying to avoid

the possibility of an ill-defined mechanism by fixing R above the 50% barrier, may deter high-level

managers from entering the market altogether.

Consider the first problem of underestimating realized returns. The offset of endowments is based

on the ability to deliver non-negative compensations that, in return, sum up to the overall amount

bestowed by active managers. Once realized returns exceed the fixed bounds, the declared scheme is

not necessarily well-defined. To be specific, these bounds ensure that the allocation rule is normalized

and the scheme is feasible. Once they are breached, the scheme may assign negative returns, and

therefore cannot be used.

To solve this issue, we can truncate the RTS using the piecewise-linear function φ : RÑ R defined

by

φpxq �

$''&
''%

1�R, if x   1�R,

x, if 1�R ¤ x ¤ 1�R,

1�R, if x ¡ 1�R.

Instead of evaluating the performance of Manager i by his realized return ri, we use φpriq to ensure

that the allocation rule is well defined. However, such truncation leads to another problem, involving

the second concern of deterring high-level managers from becoming active.

Observation 1 shows how taking R ¡ 0.5 can lead to a linearly-decreasing scheme with respect to

managers’ returns. That is, the compensation term is reduced by the enlarged normalization factor R,

whereas the opportunity cost does not change. The same problem arises when combing the feasibility

condition with a truncated scheme. Since the opportunity cost is unaffected by φ, the truncated RTS

can inflict heavy losses on high-level managers with no real pacifications.
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The following example illustrates how the truncated scheme can produce an interesting phe-

nomenon where, in equilibrium, only mediocre-level managers remain active, while both extremes

(either high- or low-level managers) do not participate in the investment.

Example 1. Consider the truncated RTS with R � 0.5, where all managers are RS, and their

available investment strategies agree with the 1 � R range. Clearly, the results of Section 4 still hold

given C � λwαi for some 1   i   k.

Now consider an additional manager, denoted Manager 0, with an optimal portfolio Y0 that exceeds

the R-bound, such that ErY0s �
1.5αi
αi�1 . Though the conditions of Lemma 1 and Theorem 2 may still

hold, the expected profit π0 of an active Manager 0, given a profile of strategies σ � pY0, Y1, . . . , Yiq, is

π0 � λwErY0s � C

�
1�

ErφpY0qs � v�0

2R

�
� CErY0s

� λwErY0sp1� αiq � λwαi r1�ErφpY0qs � v�0s

  λwErY0sp1� αiq � λwαiErφpY0qs

  λwErY0sp1� αiq � 1.5λwαi

�
1.5λwαi
αi � 1

p1� αiq � 1.5λwαi � 0,

where the first inequality follows from the positive expected returns of all managers (above 1), and the

second inequality follows from the bounds on φ. Therefore, the set of active managers include only

Managers 1, . . . , i, while the optimal Manager 0 and suboptimal Managers i�1, . . . , k remain inactive.

5.1.2 The impossible competition

Another natural question regarding the R bound and arising from Theorem 1 and Corollary 1, is

whether these results are extendible beyond the double-or-nothing condition. Though the answer

might be positive in some cases, we can also find situations where the answer is negative for any

symmetric and feasible scheme. We describe here one possible scenario where two managers of differ-

ent capabilities interact in a risky binary investment, making them inseparable from an uninformed

investor’s perspective.

Consider the two managers case described in Section 2, and assume that both managers interact

with each other only via the options market, similarly to the cash-or-nothing puts-based strategies of

Foster and Young (2010). Specifically, let pY1, Y2q agree with the joint distribution given in Table 1.

where a ¡ 2 and ErY1s ¡ ErY2s ¥ 1. That is, the two managers are entangled in an investment where

one of the two managers produces a return of 100a% (with probability p ¡ 0.5 in favor of Manager
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Y1zY2 0 a

0 0 1� p

a p 0

Table 1: The joint distribution of pY1, Y2q.

1), whereas the other’s return is �100%. The following lemma shows that a symmetric and feasible

scheme f cannot be optimal given this distribution.

Lemma 2. Let f be a symmetric and feasible scheme. In case both managers are active, either the

expected profits of both managers is positive, or that of Manager 1 is non-positive.

In other words, in case both managers choose to be active, the only impossible outcome is the

one given in the proof of Theorem 1, where Manager 1’s expected profit is positive and Manager 2’s

expected profit is negative.

Proof. Fix a symmetric and feasible scheme f with an endowment C ¥ 0. The symmetry and

feasibility conditions imply that f1pr1, r2q � Hpr1, r2q and f2pr1, r2q � Hpr2, r1q where H : R2
� Ñ R�

is some non-negative function. The managers’ expected profits are

π1 � Erf1pY1, Y2qs � CErY1s � pHpa, 0q � p1� pqHp0, aq � Cap,

π2 � Erf2pY1, Y2qs � CErY2s � p1� pqHpa, 0q � pHp0, aq � Cap1� pq.

Denote C� � p1�pqHpa,0q�pHp0,aq
p1�pqa and C� � pHpa,0q�p1�pqHp0,aq

pa . A straightforward examination shows

that p ¡ 0.5 yields C� ¤ C�. One can also verify that a deposit C ¡ C� produces negative expected

profits for both managers, while a deposit of C   C� generates positive expected profits for both

managers. Otherwise, C� ¤ C ¤ C� leads to π1 ¤ 0 ¤ π2 and concludes the proof.

Lemma 2 extends the results of Foster and Young (2010) to the competition framework, by stating

that the expected profits of both managers are either jointly-positive or jointly-negative. However,

Lemma 2 also shows that there exists an additional possibility where only the suboptimal Manager 2

gains in expectation. This last possibility bares some clear resemblance to Example 1.

We could further extend Lemma 2 to cases where both managers lose their funds at the same

time with positive probability, i.e., to cases where PrpY1 � Y2 � 0q ¡ 0. However, the fact that both

managers cannot produce profitable investments simultaneously is a necessary condition for Lemma

2 (i.e., PrpY1 � Y2 � aq � 0). In other words, for every arbitrarily small, yet positive, probability

PrpY1 � Y2 � aq there exists a scheme that screens out only Manager 2.20 The reason for this zero-

probability condition lays in the feasibility condition. Once this probability is positive, the opportunity

20In addition, it also implies that the set of distributions enabling an optimal screening is not (topologically) closed.
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cost of both managers increase by the same term of aCPrpY1 � Y2 � aq, thus allowing the investor to

enlarge both the required deposit and the compensation for the highest earning manager. Though this

increase affects both managers, it is (relativity) more significant for Manager 2 since his opportunity

cost, as well as his probability of being the highest earning manager, are originally lower than the ones

of Manager 1.

In general, Example 1 and Lemma 2 are mainly motivated by the feasibility condition. The

inability to truncate the opportunity cost in Example 1 and the inability to compensate the high-level

manager in Lemma 2 generate a significant loss for extremely talented managers, preventing them

from participating in the investment. For this reason and due to its importance, we consider the

possibility of alternating the opportunity cost in the following subsection.

5.2 The opportunity cost - real versus nominal

Though the opportunity cost and feasibility condition are the driving force of the current research,

they do not necessarily represent every portfolio-managers setting. One can think of scenarios where

a risk-averse Manager i outweighs the nominal gains from the rebalanced endowments and fees, over

the potential personal loss of CYi. Moreover, managers’ personal preferences may also dictate that

a portion of their personal funds should be held in a relatively risk-free asset. In such cases, a low-

level manager focusing on the nominal losses of C, due to relatively-poor performance, is more easily

deterred from the market.

To exemplify the possible magnitude of such changes, we give a concise review of previous results

while considering the opportunity cost in nominal values, rather than real values adjusted to the

managers’ abilities. In general, this annulment improves previous results, by weakening the basic

conditions leading to these statements. Namely, consider the same investment problem as in Section

4.1, while ignoring the (subjective) opportunity cost for depositing C. Hence, every active Manager i

with a realized return ri has a profit of

πi � fiprq � C � λwri � C

�
1�

ri � r̃�i
2R

�
� C.

The first significant change we observe relates to the bound R, discussed in the previous subsec-

tion. Given the new scheme, all previous results hold independently of the support of the portfolios

determined by R. To be exact, one could choose any bound R, and determine C proportionally to R to

fit previous conditions. In addition, the upper bound on C in Theorem 1 is redundant, since Manager

1 can never lose, in expectation, when facing Manager 2, independently of either C or R. Therefore,

one can fix absurdly high values for both parameters without affecting the result of Theorem 1. By the

same reasons, the result of Lemma 1 remains valid, but without any conditions whatsoever (neither
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on C, nor on the number of active managers). We can also reformulate Theorems 2 and 3 such that

the parameter R is eliminated from the RS condition, and Ineq. (3) becomes

vi
ṽ�i

¡
vj
ṽ�j

.

Clearly, the last inequality produces a weaker condition than Ineq. (3), thus improving both results.

To be clear, we do not suggest to ignore the actual opportunity cost. The real-values analysis

goes to the core of our model, and ignoring it altogether seems unrealistic. We believe that some

modifications of it (based on further theoretical, experimental, and mostly empirical investigations)

are in order, so that it will better fit the managers’ actual strategic positions.

5.3 Individual fees and the index-fund competition

Extending our multiple-investor model to a set-up where managers can strategically fix their fees is

not easy. The main problem follows from the inability to coordinate the preliminary distribution of

funds among managers. Hence, one should consider an exogenous distribution of funds that changes

according to the managers’ reputation and predetermined fees. However, when a single large investor

is concerned, e.g., a pension fund, the problem is straightforward. In this subsection we briefly present

a possible solution for this issue, and leave the comprehensive analysis for future research.

Consider the k-manager problem given in Section 4, with a single investor and an initial endowment

of w. Assume that every Manager i can fix a publicly-observed individual fee λi P p0, 1q. This stage

occurs prior to the initial distribution of funds among the managers. In return, the investor can

condition on the vector of fees pλ1, . . . , λkq when distributing her funds among active managers.

Now assume that an investor, using the RTS, decides to entrust every active Manager i with an

initial endowment wi such that λiwi is constant across all active managers. That is, given a vector

pλ1, . . . , λlq of active managers’ fees, every Manager i gets

wi �
wλ�1

i°l
i�1 λ

�1
i

.

Note that the distribution is well-defined (non-negative and sums up to w), and λiwi is uniform

among all active managers. One can also verify that, given this preliminary distribution, previous

results (namely, Theorems 1, 2, and 3, along with Lemma 1 and Corollary 1) still hold. Therefore,

the extension of previous results to the case of a single investor and individual fees is practical.

However, once the investor employs this uniform-λiwi policy, the normalizing factor
°l
i�1 λ

�1
i in

the denominator incentivizes active managers to increase their fees. In response, the investor may

wish to cap all fees at some level λ   1. Nevertheless, the first-order conditions suggest that, in
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equilibrium, all active managers will fix a fee of λ. Hence, although the uniform-λiwi policy maintains

the return-based competition, it is not necessarily optimal in terms of reducing fees.

This extension is significant to cases where portfolio managers cannot outperform simple index

funds.21 In most cases, index funds provide a portfolio with a broad market exposure and low operating

expenses, compared to hedge-fund managers. Probably the most famous competition between two such

funds is the previously-described million-dollar bet between Warren Buffett and Protégé Partners.

When comparing the net returns of the two sides, one should consider the 0.05% charges of Buffett’s

fund, with the typical 2%� 20% of the hedge-fund managers (2% a year of the basic fund and 20% of

the profits). Though Buffett’s lead remains substantial when considering gross returns, it does shrink

considerably relative to his current 40 points net advantage.

5.4 Concluding remarks

In this paper we presented a method for, a-priori, screening low-level managers, using liability con-

tracts. Our design shows that personal collaterals could be effective, once used to compensate high-level

managers for their potential losses. These contracts apply in either small, or large scale environments,

while using traditional share-the-profits incentives.

However, the practical decision to use endowments in the portfolio-managers market should not

be taken in a light-headed manner. The implications of such restrictions (in a relatively open market)

bears a lot of risk towards the managers and financial institutions that may surpass the advantages.

Therefore, our theoretical analysis should be taken with the utmost discretion and prudence.

Nevertheless, among previously-described advantages, these restrictions also carry a surplus in the

form of limiting the manipulation power of scam artists, like Bernard L. (”Bernie”) Madoff.22 The

basic requirement to balance publicly-raised funds with personal endowments limits the ability of

fraudulent entities to produce “Ponzi schemes”, where a manager pays returns to his investors from

newly-raised capital rather than from actual profits. On the other hand, this will also limit the ability

of portfolio managers to expand quickly in a high-risk market. We leave this notion, along with other

possible extensions, for future research.
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6 Appendix

Theorem 2. Given the RTS, there exists C   λwαi such that all active managers have an expected

return rate of at least vi if and only if Manager i is relatively-superior.

Proof. Fix a relatively-superior Manager i. In case i � k, then one can fix C � 0 to show that

all managers are active. Otherwise, consider i� � argmaxj¡iαj and fix C
λw P pαi� , αiq. We start by

proving the existence of an equilibrium with active managers Si.

Consider the strategy profile σ � pY1, . . . , Yiq. For every active Manager j ¤ i, the RTS fj is

linearly increasing in rj , thus Yj is still a dominant strategy of Manager j. If i � 1, then the expected

profit of Manager i given σ is strictly positive as no endowment is needed. Otherwise, the expected

profit of Manager 1   i   k given σ is

πi � Erfipσqs � CErYis

� λwvi � C

�
1�

vi
2R

�
1

2Rpi� 1q

¸
l i

vl

�
� Cvi

� λwvi � C

�
1�

vip1� 2Rq � ṽ�i
2R

�

� λwvi � C
vi
αi

¡ 0, (4)

27



where the inequality follows from the chosen C. By the proof of Lemma 1, the expected profit of

every active Manager j   i given σ is higher than Erfipσqs due to the reduced benchmark and the

excess expected return relative to Manager i. Thus, no active Manager j P Si can gain from becoming

inactive.

On the other hand, in case an inactive Manager j R Si becomes active and invests in Yj , then

πj � Erfjpσ, Yjqs � CErYjs

� λwvj � C

�
1�

vj
2R

�
1

2Ri

¸
lPSi

vl

�
� Cvj

¤ λwvj � C

�
1�

vjp1� 2Rq � ṽ�j
2R

�

� λwvj � C
vj
αj

  0, (5)

where the first inequality follows from the reduced benchmark, and the second inequality follows from

the chosen C and the relatively-superior condition. Hence, no Manager has a profitable deviation from

σ, establishing the existence of an equilibrium.

The last inequality also provides uniqueness w.r.t. to set of possibly active managers. Lemma 1

proves that, in every equilibrium with an active Manager j ¡ i,23 all the managers of higher ability

than Manager j must be active as well. If j is potentially the highest-index active manager, then

his expected profit would be λwvj � C
vj
αj

  0, and therefore actively investing in Yj cannot be an

equilibrium strategy. This concludes the first part of the proof.

For the second part of the proof, fix C   λwαi such that the stated condition holds. Assume,

by contradiction, that Manager i is not relatively-superior. Hence, there exists j� ¡ i such that

αj� ¥ αi ¡
C
λw . Fix the profile of optimal portfolios σ1 � pY1, . . . , Yj�q, and note that

Erfj�pσ
1qs � CErYj�s � λwvj� � C

vj�

αj�
¡ 0,

where the inequality follows from αj� ¡
C
λw . By the proof of Lemma 1 and given σ1, we know that the

expected profit of every manager superior to j� is also positive. Therefore, there exists an equilibrium

with managers not only from Si.

Note that σ1 is not necessarily an equilibrium as additional managers of lower abilities may join

the investment. However, as already mentioned, once low-level managers become active, superior

managers have a stronger incentive to invest, thus establishing an equilibrium with active managers

beyond Si. Contradiction. This concludes the proof of Theorem 2.

23The trivial case of a single active Manager j ¡ i is impossible, since C is bounded by λwαi.
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Theorem 3. Given the RTS, there exists an equilibrium where the set of active managers is Si if and

only if Manager i is RS w.r.t. Manager i� 1 (i.e., if αi ¡ αi�1).

Proof. We prove the equivalence between αi ¡ αi�1 and the existence of an equilibrium σ �

pY1, . . . , Yiq.

Assume αi ¡ αi�1 and fix C
λw P pαi�1, αiq. Relying on the proof of Theorem 2 and given σ, we

know that no active manager can profit from deviating and becoming inactive. Also, Ineq. (5) still

holds when taking j � i � 1. Thus, we only need to prove that every inactive Manager j ¡ i � 1

cannot profit from deviating. In case an inactive Manager j ¡ i� 1 becomes active,

Erfjpσ, Yjqs � CErYjs � λwvj � C

�
1�

vj
2R

�
1

2Ri

¸
lPSi

vl

�
� Cvj

� λwvj � C

�
1�

vjp1� 2Rq � ṽi�1

2R

�

  λwvi�1 � C

�
1�

vi�1p1� 2Rq � ṽi�1

2R

�
� Erfi�1pσ, Yi�1qs   0,

where the first inequality follows from vj   vi�1 as j ¡ i� 1. Therefore, σ is indeed an equilibrium.

Now assume, by contradiction, that σ is an equilibrium and αi�1 ¡ αi. By Ineq. (4) we know that

αi�1 ¥ αi ¡
C
λw . Hence, if Manager i� 1 becomes active, then by a similar computation to Ineq. (4)

we get

Erfi�1pσ, Yi�1qs � CErYi�1s � λwvi�1 � C
vi�1

αi�1
¡ 0.

Thus establishing that σ is not an equilibrium and concluding the proof.

Lemma 3. Fix R � 0.25 and assume that the expected values tvi, i ¥ 1u are determined according to

some concave function. That is, assume that

vi � vi�1 ¤ vi�2 � vi�1, (6)

for every i ¥ 1. Then every Manager i is RS.

Proof. The concavity assumption given by Ineq. (6) suggests that vi � vi�1 ¥
vj�vi
i�j , for every
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j   i. Note that
°i�1
j�1pi� jq � ipi�1q

2 . Thus, an pi� jq-weighted average yields

vi � vi�1 ¥
2

ipi� 1q

i�1̧

j�1

�
pi� jq

�
vj � vi
i� j


�

�
2

ipi� 1q

i�1̧

j�1

pvj � viq

�
2

i
pv�i � viq

� 2

�
v�i �

�
i� 1

i
v�i �

1

i
vi


�
� 2

�
v�i � v�pi�1q

�
.

Hence,

pvi � vi�1qpv�i � 2Rq ¥ 2
�
v�i � v�pi�1q

�
pv�i � 2Rq

�
�
v�i � v�pi�1q

�
p2v�i � 1q

¡
�
v�i � v�pi�1q

�
vi,

where the first equality follows from R � 0.25, the second inequality follows from v�i ¡ vi ¥ 1.

Therefore,

�2Rvi � vi�1v�i � 2Rvi�1 ¡ �viv�pi�1q,

or, equivalently,

vipv�pi�1q � 2Rq ¡ vi�1pv�i � 2Rq,

and the RS condition, given by Ineq. (3), holds for every Manager i.

Observation 2. Note that Lemma 3 could be extended beyond concave functions. Formally, fix ε ¡ 0

and assume that the values tvi, i ¥ 1u sustain the following condition

vi � vi�1 ¥
vj � vi
j � i

� ε,

for every j ¡ i. For a sufficiently small ε ¡ 0, the result of Lemma 3 still holds.
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