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Abstract

A decision-maker must accept or reject a privately informed agent. The agent always

wants to be accepted, while the decision-maker wants to accept only a subset of types.

The decision-maker has access to a set of feasible tests and, prior to making a decision,

requires the agent to choose a test from a menu. By offering a menu, the decision-maker

can use the choice as an additional source of information. I characterise the decision-

maker’s optimal menu for arbitrary type structures and feasible tests. I then apply this

characterisation to different environments. When the domain of feasible tests contains

a most informative test, I obtain conditions under which a dominated test is part of the

menu and under which only the most informative test is offered. I also characterise the

optimal menu when types are multidimensional or when tests vary in their difficulty.
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1 Introduction

In many economic settings, decision-makers (DMs) rely on tests to guide their actions. Uni-

versities use standardised tests as part of their admission process, firms interview job can-

didates before they hire them and regulators test products prior to authorisation. In these

examples, the DM is trying to learn some private information held by an agent: the ability of

a student, the productivity of a candidate or the quality of a product. Ideally, the DM would

want to set up a fully revealing test, but his testing capacity is usually constrained and thus

learning only from the test outcome is limited. However, there is an additional channel the

DM can use to learn about the agent. He can offer a menu of tests and let the agent choose

which test to take. The DM can then use this choice as an additional source of information.

In this paper, I study how the DM can optimally design a menu of tests when his testing

capacity is constrained.

Constraints on the testing capacity can take many forms and depend on the applications con-

sidered. For example, a hiring firm is constrained by the amount of time and resources it can

allocate to the selection process; most universities have to use externally provided tests like

the SAT or the GRE for their admission procedures; and medicine regulatory agencies face

both technological and ethical constraints when authorising new drugs.

Grossman (1981) and Milgrom (1981) showed that letting an agent disclose evidence about

his private information can be a powerful tool and gave conditions to reach full information

revelation. Disclosing evidence can be seen as choosing a particular kind of test that takes

a deterministic form. However, to apply their arguments, the DM would need access to a

rich domain of tests, in particular deterministic ones, and thus in most cases, full information

revelation is not attainable.

I develop general tools for characterising the optimal menu of tests for arbitrary domains
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of feasible tests. I then apply these tools to natural economic applications and determine

which tests are part of the optimal menu and how it depends on their properties and the DM’s

preferences. Specifically, I characterise the optimal menu when the domain of feasible tests

contains a most informative test, when tests vary in their difficulty and when each test can

identify only one dimension of the agent’s private information.

I consider a DM who has to accept or reject an agent. While the DM wants to accept a

subset of types (the A-types) and reject the others (the R-types), the agent always wants to be

accepted. The agent is privately informed about his type. The domain of feasible tests is an

exogenously given set of Blackwell experiments. The DM designs a menu of tests, a subset

of the feasible tests, from which the agent chooses one. The DM can commit to a menu but

not to a strategy, i.e., an action based on the test choice and outcome.

In some of the situations described above, DMs actually use menus of tests before taking a

decision. For example, in clinical trials, regulators let pharmaceutical firms design the studies

themselves (see e.g., Food and Administration, 2010). Universities sometimes allow students

to opt out of standardised tests in their admission process. When applying for a position in

an orchestra, musicians generally have a choice of pieces they can play. I also show that in

some cases the optimal menu contains only one test, rationalising the absence of choice.

The first step in the analysis is to provide a characterisation of the optimal menu for arbitrary

type structures and domain of feasible tests. In Theorem 1, I show that the optimal menu and

strategies are the outcome of an auxiliary zero-sum game. This result greatly simplifies the

analysis. Rather than comparing equilibria under different menus to determine the optimal

one, it is enough to find an equilibrium in one auxiliary game. In that game, the A-types

and the DM maximise the DM’s utility while the R-types minimise it. The A-types choose

a test but the R-types choose an A-type to mimic. I show that the tests chosen in that game

correspond to the optimal menu. Moreover, I show that if the DM could commit ex-ante to a
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strategy, the optimal menu and strategies would be exactly the same as without commitment.

Finally, Theorem 1 shows that A-types play a pure strategy in the optimal menu.

Theorem 1 implies that the number of tests in the optimal menu is bounded by the number

of A-types. Therefore, if there is only one A-type, as in binary-type models, there is always

an optimal menu with only one test. Thus in this case, the DM cannot productively use the

choice of tests to improve his choice. This is true without making any assumptions on the set

of available tests.

In Section 4, I use Theorem 1 to determine which tests are part of the optimal menu in three

natural economic applications. In Section 4.1, I consider a domain of feasible tests containing

a dominant one, in the sense of Blackwell (1953)’s informativeness order. In Lemma 1, I

first show that the most informative test is always part of an optimal menu. I then provide

conditions under which a dominated test is part of the optimal menu. One example of this

environment is a university considering whether to allow students to opt out of a standardised

test like the SAT when applying. This is effectively offering a menu with the SAT and an

uninformative test.

I first focus on environments where tests have two outcomes (pass and fail). In this case, types

can be ordered by how likely they are to generate the pass signal in the most informative test.

I show that for any prior the optimal menu contains only the most informative test if, and

only if, the DM’s payoff is single-peaked with respect to that order. This corresponds to

the DM willing to accept either only high types, only low types or only intermediate types,

as measured by their performance on the test. On the other hand, the optimal menu always

includes a strictly less informative test if, and only if, the DM’s payoff is enclosed. This

corresponds to the DM wanting to accept at least the worst and the best performer on the test.

Failure of single-peakness can occur for example when the most informative test does not

test all relevant dimensions or only tests a proxy of the relevant dimension.
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In the case where the domain of feasible tests contains a dominant tests and they generate

more than two signals, the results extend as follows. If there exists a subset of signals where

single-peakness is violated, there exists a less informative test that is part of the optimal menu

for some prior. On the other hand, if the environment is one-dimensional, in the sense that all

the tests satisfy the monotone likelihood ratio property and the DM wants to accept any type

above a threshold, only the most informative test is offered.

In the first application, I considered a domain of feasible tests where tests can be ordered by

their informativeness. In Section 4.2, I consider one-dimensional environments where feasi-

ble tests are ordered by their difficulty. For example, the DM could be a regulator deciding

how hard a compliance test is before authorising a product. The testing technology is a set of

pass-fail tests and varying the difficulty of a test changes which types it identifies better. A

more difficult test is informative when it is passed, as only high types are likely to produce a

high grade but it is less informative when it is failed. In this case, I show again that a singleton

menu is optimal.

In previous sections, I show that for natural specifications of one-dimensional environments,

a singleton menu is optimal. I then turn to multidimensional environments. For example, a

hiring firm could be guided by two considerations, the candidate’s technical and managerial

skills and specialise the interview on either dimension. More generally, I assume that the

agent’s type has two components and each test is informative about only one of them.1 Of-

fering tests for both dimensions allows A-types that perform badly in one dimension to select

the test where they perform best. I show that the optimal menu contains both tests whenever

the DM wants to accept any type that performs well in at least one dimension. This would be

the case if the hiring firm would be happy to hire a candidate with high technical skills but no

managerial skills and vice-versa. On the other hand, if the firm cares about both dimension

1The results extend easily to more than two dimensions.
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simultaneously, then for some priors, it uses only one test.

In Section 5, I move beyond specific applications and give a general condition on the DM’s

preferences and tests available that guarantees that a test is part of an optimal menu. I also

show the necessary and sufficient condition on tests for the DM to never make a mistake.

Finally, in Section 6, I show that the model can be easily extended to allow for communica-

tion. I model communication as an additional cheap-talk message on top of the test choice.

For example, it could be a cover letter where the candidate can freely communicate with the

DM when applying for a job or to university. A characterisation as in Theorem 1 also holds.

I also show that in this case, it is irrelevant for the outcome of the game who chooses the test,

the DM or the agent.

Relation to the literature

This paper relates to both the literature on strategic disclosure and mechanism design with

evidence and the literature on information design without commitment. The strategic disclo-

sure literature studies information provision by privately informed players. In these papers,

information provision is usually modelled with hard evidence (e.g., Grossman, 1981; Mil-

grom, 1981; Dye, 1985; Milgrom, 2008). Hard evidence is a particular kind of test that takes

a deterministic form: the agent can provide evidence that he belongs to a certain subset of

types. Another difference with modelling information with evidence is that, in my language,

not all types can participate in all tests. Instead, I allow arbitrary stochastic tests and all types

can participate in any test. I discuss the relation between these two modelling approach in

more details in Section 2.2.

Formally, my model is most closely related to Glazer and Rubinstein (2006). They also study

a problem where an agent wants to persuade a DM to accept him but in their model, the
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agent can only present deterministic evidence about his type. They characterise the optimal

mechanism that maps evidence to a decision and show that the outcome can be implemented

without commitment (see also Hart et al., 2017; Sher, 2011, for similar results with other

payoff structures). They also show that with deterministic evidence, the optimal decision rule

is deterministic. I extend their analysis in two ways. First, Theorem 1 generalises their result

on commitment to arbitrary testing technology and my characterisation result also applies in

their setup. I also show that that the optimal decision rule is no longer deterministic when

tests are stochastic. Second, I use the characterisation to prove general results on which test

is included in the optimal menu depending on the properties of the feasible tests.

Glazer and Rubinstein (2004) study a related problem. In this paper, the agent first send a

cheap-talk report. Based on the report, the DM chooses to verify one dimension of a mul-

tidimensional type and then takes an action. In Section 6, I extend the characterisation of

Theorem 1 to allow for communication from the agent. I show that in this case, it is irrele-

vant who chooses the test, the DM or the agent. These results generalise Glazer and Rubin-

stein (2004)’s result on the value of commitment to arbitrary type structures and domains of

feasible tests.2

More generally, this paper relates to the mechanism design with evidence literature (e.g.,

Green and Laffont, 1986; Bull and Watson, 2007; Deneckere and Severinov, 2008; Koessler

and Perez-Richet, 2019; Forges and Koessler, 2005; Kartik and Tercieux, 2012; Strausz,

2017). Assuming commitment from the DM, Theorem 1 characterises the optimal mech-

anism that maps a test choice and test outcome to an acceptance probability. Unlike most

of that literature, I allow for arbitrary domain of feasible tests that include non-deterministic

tests.3 The payoff structure assumed in this paper is commonly used in this literature, e.g.,

2It also extends a result of Carroll and Egorov (2019) that show the irrelevance of who chooses the test in
the case where the choice of test fully reveals the type.

3For an example of mechanism design paper with non-deterministic tests, see Ball and Kattwinkel (2022).
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in Glazer and Rubinstein (2004, 2006) and special cases of Ben-Porath et al. (2019, 2021).

The characterisation of Theorem 1 can be applied in these settings as well and thus provides

a useful tool beyond the model and applications considered here.

An important focus of the literature on strategic disclosure is finding conditions under which

all information is revealed in equilibrium, see e.g., Grossman (1981), Milgrom (1981), Lip-

man and Seppi (1995), Giovannoni and Seidmann (2007), Hagenbach et al. (2014) or Carroll

and Egorov (2019). In my model, if full information is possible, it is optimal, but I also

characterise the optimal choice of test when full information is not attainable. In Proposi-

tion 9, I provide the necessary and sufficient conditions for full payoff-relevant information

revelation.

The other branch of literature my paper relates to is information design without full com-

mitment. In these papers, the agent and the DM correspond to the sender and the receiver.

In particular, this paper is closer to models characterising receiver-optimal tests where the

sender can choose which test to take. For example, Rosar (2017) studies optimal test design

where an imperfectly informed sender chooses whether to take a test. In Harbaugh and Ras-

musen (2018), the sender is perfectly informed but pays a fixed cost to take the test. In both

case, a perfectly informative test is feasible but suboptimal because of the frictions intro-

duced – either imperfect information or the cost to take the test. These papers share the idea

that the receiver can learn from the choice of test. However, the menu is constrained to be

the designed test and a completely uninformative test, whereas I allow arbitrary menus from

arbitrary domains of feasible tests. Another important difference is that in these papers the

designer has to offer a menu of tests – if he could he would force the sender to take the fully

informative test. In my model, introducing a choice of test is the key channel that allows the

receiver to improve his payoffs by leveraging the private information of the sender.

Other papers consider the receiver-optimal design of tests where the sender’s action is par-
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tially observed or unobserved, e.g., DeMarzo et al. (2019), Deb and Stewart (2018), Perez-

Richet and Skreta (2022) or Ball (2021) (note that Perez-Richet and Skreta (2022) also con-

sider observable action). The design of the optimal test also has to take into account the

strategy of the sender, however unobservable actions fundamentally changes the sender’s in-

centives and thus how information is revealed. I discuss in Section 2.2 which results would

still apply if the outcome of the tests depends on the agent’s unobserved effort.4

Finally, this paper is related to Ely et al. (2021). They study the optimal allocation of tests

from a restricted set to agents with observable characteristics. My paper can be interpreted

as a problem of optimal allocation of tests with asymmetric information, thus the allocation

must also respect incentive constraints.

2 Model

There is a decision-maker (DM) and an agent. The agent has a type θ ∈ Θ, |Θ| < ∞, with

a common prior µ ∈ ∆(Θ). The set of types is partitioned in two: Θ = A ∪ R, A ∩ R = ∅.

The type is private information of the agent. The DM must take an action a ∈ {0, 1}, accept

or reject. The utilities of the DM and the agent are v(a, θ) = a
(
1[ θ ∈ A] − 1[θ ∈ R]

)
and u(a, θ) = a. That is, the DM wants to accept agents in A and reject agents in R. The

agent always wants to be accepted. The analysis is virtually unchanged by allowing for DM’s

utility functions of the form v(a, θ) = aν(θ) for some ν : Θ → R.

There is a finite exogenous set of test T ⊆ Π ≡ {π : Θ → ∆X}, where X is some

finite signal space. The conditional probabilities of test t are πt(·|θ). The set T captures the

4There are also papers studying sender-optimal tests when the sender cannot fully commit to reporting
the test correctly, e.g., Nguyen and Tan (2021), Lipnowski et al. (2022) or Koessler and Skreta (2022). In
Boleslavsky and Kim (2018) and Perez-Richet et al. (2020), the sender can commit but there is a third agent
whose effort determines respectively the state of the world or the Blackwell experiment actually performed.
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restriction on the DM’s testing capacity. He can only perform one test from that set. A menu

of test is a subset of the feasible tests, M ⊆ T .

The timing of the game is as follows. For a menu M ⊆ T ,

1. The agent learns his type θ.

2. The agent chooses a test from the menu, denoted by σ : Θ → ∆M.

3. A signal x is drawn according to πt(·|θ).

4. The DM chooses an action based on the realised test choice and outcome, the accep-

tance probability denoted by α : M×X → [0, 1].

Beliefs of the DM are µ̃ : M × X → ∆Θ, a probability distribution over types given an

observed test and signal realisation.

The solution concept is DM-preferred Perfect Bayesian Equilibrium.

I write (α, σ) ∈ PBE(M) if there is a belief µ̃ where (α, σ, µ̃) is a PBE when the menu is M.

The optimal design of menu solves

V = max
M⊆T

max
σ,α

∑
θ∈A

µ(θ)
∑
t∈M

σ(t|θ)
∑
x

α(t, x)πt(x|θ)−
∑
θ∈R

µ(θ)
∑
t∈M

σ(t|θ)
∑
x

α(t, x)πt(x|θ)

s.t. (α, σ) ∈ PBE(M)

The inner maximisation problem selects, for a fixed menu, the DM and agent strategy to

maximise the DM’s payoff for a fixed menu, under the constraint that they are equilibrium

strategies. The outer maximisation problem selects the best possible menu for the DM.

Notation: For any α, denote the probability of type θ to be accepted in test t by pt(α; θ) ≡∑
x α(t, x)πt(x|θ).
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Off-path beliefs: The results would exactly the same if I would take DM-preferred Sequen-

tial Equilibrium (Kreps and Wilson, 1982) as my solution concept. I comment on this in more

detail in the discussion of Theorem 1.

Test restriction: The exogenous set of tests T can capture different constraints on DM’s

testing capacity. It could be a purely technological constraint, e.g., when choosing amongst

standardised test, universities can only choose from an exogenously given set of tests (SAT,

ACT, GRE, etc.). The constraint can also be on some properties of the tests that can be used,

e.g., T ⊂ {π : π has the MLRP}. Finally, it could come from a capacity constraint in the

information processing/acquisition abilities of the DM, e.g., a limited number of sample sizes

a researcher can collect or there could be a cost function associated with each experiment

C : Π → R and a maximum cost the DM can pay c ∈ R, T ⊂ {π : c ≥ C(π)}.

2.1 Example: Opting out of SAT

Suppose a university uses some standardised test for university admission and that there are

three types of students: A = {A1, A2} and R = {R1}. Consider the testing set T = {t, ∅}

where ∅ is an uninformative test. The test t is described by X = {x0, x1} and

πt(x|A1) =


1/2 if x = x0

1/2 if x = x1

πt(x|R1) =


1/3 if x = x0

2/3 if x = x1

πt(x|A2) =


0 if x = x0

1 if x = x1

Furthermore, suppose that µ(A1) < 2
3
µ(R1) < µ(A2).

This example can be interpreted as follows. The test t is a standardised test a university uses
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to get information about students, like the SAT or GRE. The signal x1 represents a high grade

and x0 a low grade. A common concern about these tests is that they can be too easily gamed

or fail to identify good students in some categories of the population (see e.g., Hubler, 2020).

The parametrisation of the test t captures this phenomenon. While A2 and R1 are naturally

ordered, in the sense that A2 is more likely to have a good grade than R1, A1 corresponds

to a type of student that the university wants to accept but generates a lower grade than R1.

Adding ∅ to the menu allows the student to opt out from the standardised test.

When only t is offered: The information structure and prior deliver the following best re-

sponse when only t is offered,

α(x, t) =


0 if x = x0

1 if x = x1

The acceptance probabilities of each types are then

pt(α;R1) = 2/3 pt(α;A1) = 1/2 pt(α;A2) = 1

When both t and ∅ are offered: Consider the equilibrium with the following strategies of the

agent:

σ(∅|R1) =
µ(A1)

µ(R1)
σ(∅|A1) = 1 σ(t|A2) = 1

The student R1 mixes between the two tests, t and ∅, whereas A1 chooses ∅ with probability

one and A2 chooses t with probability one. Note that if all types play a pure strategy, it is not

possible to maintain an equilibrium where both tests are chosen. If it is the case, there is a test

that is only chosen by an A-type and in equilibrium the DM must accept with probability one
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after any signal in that test. Thus R1 mixes in equilibrium to make the menu {t, ∅} credible.

Given the agent’s strategy, the DM’s strategy after t remains the same as before. When the

DM observes ∅, he is indifferent between accepting and rejecting. He then mixes in a way that

makes R1 indifferent between ∅ and t: α(x, ∅) = 2/3. The resulting acceptance probabilities

are

E[p(α;R1)] = 2/3 p∅(α;A1) = 2/3 pt(α;A2) = 1

Types R1 and A2 have the same acceptance probabilities as before but A1 is accepted with

strictly higher probability. Therefore, allowing to opt out strictly increases the DM’s payoffs.

2.2 Discussion

Effort: The outcome of the test is independent of the agent’s action. The model would go

unchanged if effort is costless and observable as it could be deterred with off-path beliefs. If

the effort is costless but unobservable the results would generally change. However, if signals

are ordered and the DM uses a cutoff strategy, as in many natural applications, a reasonable

assumption on effort would be that the higher the effort, the likelier a high signal. In this

case, the agent would always have an incentive to provide high effort. See Deb and Stewart

(2018) and Ball and Kattwinkel (2022) for models that takes into account both asymmetric

information and moral hazard in a model of testing.

Relation to models with evidence: The model can be interpreted as a generalisation of

models with evidence. The idea of these models is that each type is endowed with a set of

messages that only a subset of types can send. Formally, an evidence structure is a correspon-

dence E : Θ ⇒ M for some finite set of messages M . Thus type θ can only send messages
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in E(θ). We can capture these models in the following way. The set of feasible test has

X = {x1, x0} and for all m ∈ M , πm(x1|θ) = 1 ⇔ θ ∈ E−1(m). Thus a test m perfectly

reveals whether θ is in E−1(m) or in Θ \ E−1(m). In a model with evidence, a type θ can

never reveal he is in Θ \ E−1(m) for a message m /∈ E(θ). However, in the testing model,

we can always incentivise any type to not choose such a test by setting α(x0,m) = 0 for all

m. This strategy could be justified because (x0,m) would always be off-path. Alternatively,

we can set this restriction on α directly and Theorem 1 would still hold.

3 Characterisation of the optimal menu

In this section, I show that the value of the optimal menu is characterised by an equilibrium

of a zero-sum game. I provide a sketch of the proof of Theorem 1 in Section 3.1.

Let s : A → ∆T and m : R → ∆A and abusing notation, let α : T ×X → [0, 1] and

v(α, s,m) ≡
∑
θ∈A

∑
t∈T

s(t|θ)
[
µ(θ)pt(α; θ)−

∑
θ′∈R

µ(θ′)m(θ|θ′)pt(α; θ′)
]

(1)

=
∑
θ∈A

∑
t∈T

µ(θ)s(t|θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)
∑
θ∈A

m(θ|θ′)
∑
t∈T

s(t|θ)pt(α; θ′)

The function s can be interpreted as A-types choosing a test, m as R-types choosing an

A-type to mimic, α as the DM accepting the agent after a test and signal realisation. The

function v is then the DM’s expected payoffs from a distribution over tests induced by the

pair (s,m). I explain these objects in more detail in the discussion of Theorem 1.

Theorem 1. The value of an optimal menu is

V = max
α,s

min
m

v(α, s,m) = min
m

max
α,s

v(α, s,m)

14



A saddle point
(
(α, s),m

)
of v such that s(·|θ) is in pure strategies for all θ ∈ A exists and

characterises an optimal menu, M = ∪θ∈A supp s(·|θ), and strategies

• for θ ∈ A : σ(t|θ) = s(t|θ)

• for θ′ ∈ R : σ(t|θ′) =
∑

θ∈A m(θ|θ′)s(t|θ)

• the DM’s strategy is α.

Moreover, the DM does not benefit from committing to α.

All proofs are relegated to the appendix.

Theorem 1 provides a characterisation of the optimal menu in terms of an auxiliary zero-sum

game. The fact that an optimal menu is an equilibrium of a game gives us a powerful tool

to test equilibria. Indeed, it is not necessary to compare equilibria across menus to establish

that a menu is not optimal. It is enough to find that (α̃, s̃) such that

min
m

v(α, s,m) < min
m

v(α̃, s̃,m)

to show that (α, s,m) does not constitute an optimal menu without having to worry whether

(α̃, s̃) is optimal.

To understand the structure of this game better, consider the zero-sum game for a fixed α.

This is a normal form game where player one, the A-types, chooses s : A → ∆T and player

two, the R-types, chooses m : R → ∆A. Consider the payoffs of a given A-type θ choosing
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test t and a given R-type, θ′, choosing an A-type θ̃:

for θ ∈ A choosing t, µ(θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)m(θ|θ′)pt(α; θ′)

for θ′ ∈ R choosing θ̃, µ(θ′)
∑
t

s(t|θ̃)pt(α; θ′)−
∑
θ∈A,t

µ(θ)s(t|θ)pt(α; θ)

Note that in the payoffs of the R-type, his strategy, the choice of θ̃, only affects the first part of

the payoffs. So the R-type is effectively trying to maximise his probability of being accepted.

On the other hand, the A-type maximise a modified version of their utility where they max-

imise their probability of being accepted while being penalised every time a R-type mimics

them and is accepted. The A-types’ utility is thus modified to align it with the DM’s payoffs.

The strategies of the zero-sum game induce a distribution over tests for each type. The A-

types get the distribution over test they choose and the R-types the distribution of the A-types

they choose to mimic. Theorem 1 shows that this distributions are actually the equilibrium

strategies of the optimal menu game. Moreover, the A-types play a pure strategy.

To understand why choosing test t for type θ ∈ A in the zero-sum game delivers the right

equilibrium behaviour in the original game, consider the following interpretation of the game.

The payoffs of a type θ ∈ A can be understood as a gross payoff

µ(θ)pt(α; θ),

corresponding to the payoffs in the original game and a net payoff

µ(θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)m(θ|θ′)pt(α; θ′).

The equilibrium behaviour of R-types means that the test they choose in equilibrium carries

16



the largest negative term because they would choose a type θ ∈ A only if it maximises

their probability of being accepted. That is, assuming a pure strategy from the A-types, if

m(θ|θ′) > 0, then pt(α; θ
′) ≥ pt′(α; θ

′) for any t′ chosen by some other A-type. Let’s

consider a deviation of that A-type θ to test t′ when the equilibrium is (s,m). Equilibrium

behaviour gives us

µ(θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)m(θ|θ′)pt(α; θ′) ≥ µ(θ)pt′(α; θ)−
∑
θ′∈R

µ(θ′)m(θ|θ′)pt′(α; θ′)

⇒ µ(θ)
(
pt(α; θ)− pt′(α; θ)

)
≥

∑
θ′∈R

µ(θ′)m(θ|θ′)
(
pt(α; θ

′)− pt′(α; θ
′)
)
≥ 0

where the last inequality comes from the equilibrium behaviour of the R-types. Thus the

A-types choose the test that maximise their probability of being accepted. Intuitively, the test

chosen in equilibrium is “the most expensive” amongst all the tests. This means that the gross

payoffs from it must be the largest.

Theorem 1 also shows that commitment has no value. I interpret this result as a hierarchy

over sources of learning. The DM has two sources of information, the “hard information”

from the test results and the endogenously created information from the choice of test. When

the DM can commit to a strategy, he can “sacrifice” payoffs from the test result by not best

replying, in order to create separation of types through the test choice. By showing that the

DM always best replies, even when he can commit, I show that he should always prioritise

the hard information over creating endogenous information through the test choice.

That commitment has no value in this game comes from the zero-sum structure of the char-

acterisation. Because a minimax theorem holds,5 this implies that the order of moves do not

matter in this game: the DM has the same payoffs if he moves first or last.

5Note that classic minimax theorems like Von Neumann’s or Sion’s do not hold here. Instead, I rely on an
equilibrium existence result in non-quasiconcave games (Baye et al., 1993) to show that the max-min equality
holds.
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Note that if the solution concept is DM-preferred Sequential Equilibrium (SE) (Kreps and

Wilson, 1982), Theorem 1 would also hold. If all tests have full support, then all signals are

on-path and the PBE and SE coincide. If some tests do not have full support, then I can always

assume that the trembling of R-types is more likely than the trembling of A-types. Then, the

DM’s off-path beliefs after the pair (t, x) are that the type is an A-type if the support of A-

and R-types do not coincide and that the type is an R-type otherwise. This guarantees that if

an A-type finds it profitable to deviate in the menu game, he would also find it profitable in

the zero-sum game as no R-type would have an incentive to mimic him.

Finally, Theorem 1 gives an upper bound on the number of tests needed in an optimal menu.

If A-types are playing a pure strategy and R-types only use tests A-types use, then the number

of tests used is at most |A|.

Corollary 1. The number of tests used in the optimal menu is at most |A|.

An immediate corollary is also that if there is only one type the DM would like to accept an

optimal menu is to use only one test. In particular, this results shows that in a binary state

environment, the optimal mechanism uses only one test, no matter what the available set of

test is.

Corollary 2. Suppose |A| = 1. Then for any T , there is an optimal menu that uses only one

test.

3.1 Sketch of proof Theorem 1

To prove Theorem 1, I will first need to introduce mechanisms. A (direct) mechanism is

a mapping σ̃ : Θ → ∆T , a function from types to distribution over tests. Suppose there

is a designer that could design σ̃ to maximise the DM payoffs. The DM only observes the
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realised test and signal, thus the definition of his strategy is unchanged. The agent’s strategy

is now to report a type into the mechanism. The solution concept is still DM-preferred PBE.

Standard arguments show that without loss of generality we can restrict attention to direct

truthful mechanism. The designer’s problem is

Ṽ = max
σ̃,α

∑
θ∈A

µ(θ)
∑
t

σ̃(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
t

σ̃(t|θ)pt(α; θ)

s.t.
∑
t

(σ̃(t|θ)− σ̃(t|θ′))pt(α; θ) ≥ 0 for all θ, θ′

∑
t

σ̃(t|θ) = 1 for all θ

α ∈ BR(σ̃)

where the first constraint is the agent’s incentive compatibility constraint, the second is a fea-

sibility constraint and α ∈ BR(σ̃) means that the strategy α is a best-response to some beliefs

consistent with the mechanism. We have Ṽ ≥ V , i.e., the value of the optimal mechanism is

larger than the value of the optimal menu, as imposing a menu is simply restricting the class

of mechanism the designer could use.

The first part of the proof shows that Ṽ = maxα,sminm v(α, s,m). The second part shows

that the optimal mechanism can be implemented by posting a menu of tests.

To show that Ṽ = maxα,s minm v(α, s,m), I characterise the optimal mechanism when the
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DM commits to α. The designer’s problem becomes

Ṽ (α) = max
σ̃

∑
θ∈A

µ(θ)
∑
t

σ̃(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
t

σ̃(t|θ)pt(α; θ)

s.t.
∑
t

(σ̃(t|θ)− σ̃(t|θ′))pt(α; θ) ≥ 0 for all θ, θ′

∑
t

σ̃(t|θ) = 1 for all θ

The notation Ṽ (α) indicates the designer’s problem when the DM has committed to the

strategy α.

This is a linear program and verifying complementary slackness conditions shows that Ṽ (α) =

maxsminm v(α, s,m). As in the statement of the theorem, the pair (s,m) characterises an

optimal mechanism σ̃ by setting σ̃(t|θ) = s(t|θ) for θ ∈ A and σ̃(t|θ′) =
∑

θ∈A s(t|θ)m(θ|θ′).

The value of the DM if he could commit to α is maxα Ṽ (α). Now notice that

max
α

Ṽ (α) = max
α

max
s

min
m

v(α, s,m) = max
α,s

min
m

v(α, s,m).

Using a result from Baye et al. (1993) on the existence of Nash equilibrium in non-quasiconcave

games, maxα Ṽ (α) is attained by (α∗, s∗,m∗) such that

v(α, s,m∗) ≤ v(α∗, s∗,m∗) ≤ v(α∗, s∗,m) for all α, s,m

This in turn implies that α∗ is a best-response to the mechanism implied by (s∗,m∗) as

v(α∗, s∗,m∗) ≥ v(α, s∗,m∗) for all α. Therefore the best-response constraint of the orig-

inal problem would be satisfied if we would not impose it. This proves that the DM would

not benefit from committing to α if he could offer a mechanism.
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The second part shows that the optimal mechanism can be implemented by posting a menu of

tests. The way the proof proceeds is by showing that there is (α∗, s∗) ∈ argmaxminm v(α, s,m),

where s∗ is a pure strategy for all θ ∈ A. If this is the case, then we can take the menu of

tests as the support of tests in the optimal mechanism. Each type θ ∈ A is better off choos-

ing “his” test as choosing another one would violate the incentive compatibility constraints.

Types θ′ ∈ R possibly have a randomised allocation but they are indifferent between any tests

they are allocated to. Indeed, their randomised allocation corresponds to a mixed strategy in

the auxiliary game where they are maximising their probability of being accepted, just like in

the menu-game.

To understand why s∗ must be a pure strategy, note that given m∗, the DM and types in θ ∈ A

must choose α and s to maximise v(α, s,m∗). If the A-types are willing to mix, they must be

indifferent between all the tests in the support for a fixed α∗. This α∗ is itself a best-response

to (s∗,m∗). Choosing a pure strategy in the support of s∗ allows then the DM to re-optimise

over α and get a higher payoff for both the DM and the A-types.

4 Applications

4.1 Optimal menu with Blackwell dominant test

It is common in applications that the DM has access to a most informative test. This can be

because the choice is simply between a test and opting out of the test like in the SAT example.

It can also come from the structure of the constraints. For example, the DM could have a time

budget to conduct an interview. The more time the interview takes, the more informative it

is. Another possibility is that the DM can easily make a test less informative by simply not

conducting part of the test. If a test is composed of a series of questions, the DM can ignore

21



some of them.

I will use Blackwell (1953)’s notion of informativeness.

Definition 1 (Blackwell (1953)). A test t is more informative than t′, t ⪰ t′, if there is function

β : X × X → [0, 1] such that for all x′ ∈ X ,
∑

x β(x, x
′)πt(x|θ) = πt′(x

′|θ) for all θ ∈ Θ

and for all x ∈ X ,
∑

x′ β(x, x′) = 1.

I call a test t a dominant test if t ⪰ t′ for all t′ ∈ T . If a test is more informative than

another then in any decision problem, i.e., a pair of utility function and a prior, using the

more informative test yields higher expected utility. A first important fact we will record here

is that if there is a most informative test, then it is part of an optimal menu.

Lemma 1. If there is t ∈ T such that t ⪰ t′ for all t′ ∈ T , then there is an optimal menu that

includes t.

This lemma follows from the zero-sum characterisation of Theorem 1 and the properties of

dominant test. Indeed, if we find a menu where the dominant test t is not included, we can

modify the DM’s strategy such that one A-type is accepted with higher probability than the

test he is choosing, say t′, and all R-types are accepted with lower probability than in t′. Then

this A-type has a profitable deviation to t.

As we have seen in the SAT example in Section 2.1, it can be optimal to add a strictly less

informative in the optimal menu. I first focus on binary signals environment, X = {x0, x1}.

Let t be the most informative test in T . When signals are binary, we can order the types by

their likelihood of generating signal x1: θ ≥t θ
′ ⇔ πt(x1|θ) ≥ πt(x1|θ′).6 I characterise the

optimal menu for different payoff function of the DM.

Definition 2. The DM’s preferences are single-peaked given the order ≥ on Θ if there is

θ1, θ2 ∈ A such that A = {θ : θ1 ≤ θ ≤ θ2}.

6Note that given that tests are binary, this is equivalent to ordering type by the likelihood ratio, π(x1|θ)
π(x0|θ) .
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Preferences are single-peaked if the DM only wants to either only accept high types, only low

types or only intermediate types, where the order is determined by the performance of types

on the test. Preferences are not single-peaked whenever it is possible to find A1, A2 ∈ A and

R1 ∈ R such that A1 <t R1 <t A2. This was for example the case in the SAT example in

Section 2.1.

We get the following characterisation.

Proposition 1. Let X = {x0, x1}. Suppose there is t ∈ T such that t ⪰ t′ for all t′ ∈ T and

let ≥t on Θ be the order implied by t.

The singleton menu {t} is optimal for any µ⇔ the DM’s preferences are single-peaked given

≥t.

From Lemma 1, the most informative test is part of the optimal menu. Whenever the DM’s

preferences are single-peaked, if the most informative test is included in the menu, the unique

resulting equilibrium is one where all types choose the most informative test. The key argu-

ment in the analysis is noting that pt(α; θ) − pt′(α; θ) is single-crossing in θ with respect to

the order ≥t, for any α. When preferences are single-peaked, we can use the single-crossing

condition and properties of tests satisfying the monotone likelihood ratio property to show

that there is a unique equilibrium where only t is chosen.

On the other hand, if the preferences are not single-peaked, there is a prior where offering

even a completely uninformative test with the most informative test is strictly better for the

DM. To illustrate, consider three types A1, A2 ∈ A and R1 ∈ R such that A1 <t R1 <t A2.

Suppose the prior is such that if only t is offered, the DM accepts after x1 and rejects after x0.

The DM can then offer an uninformative test where the probability of being accepted makes

R1 indifferent but is strictly preferred by A1. This constitutes a deviation in the zero-sum

game. This reasoning can be used to show that including a less informative test is always
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beneficial whenever the DM’s payoff is enclosed: there is θ1, θ2 ∈ A such that θ1 <t θ <t θ2

for any θ ̸= θ1, θ2.

Proposition 2. Let X = {x0, x1}. Suppose there is t ∈ T such that t ⪰ t′ for all t′ ∈ T and

let ≥t on Θ be the order implied by t.

If the DM’s preferences are enclosed given ≥t ⇔ the DM’s payoffs are higher in the menu

{t, t′} than in {t} for any µ and t′ ∈ T .

The ideas of Proposition 1 and Proposition 2 can be partially extended to more than two

signals. First, if all tests satisfy the monotone likelihood ratio property and the DM only wants

to accept types above a threshold, the optimal menu is to only offer the most informative test.

Proposition 3. Suppose Θ, X ⊂ R, A = {θ : θ > θ} for some θ and all tests in T have

full-support and the monotone likelihood ratio property: for θ > θ′,

πt(x|θ)
πt(x|θ′)

is increasing in x.

If there is t ⪰ t′ for all t′ ∈ T , then, the menu {t} is optimal.

Again this result holds by showing a single-crossing difference property on the acceptance

probability. Intuitively, the reason is that more informative tests send relatively higher signals

for higher types. So if a low type chooses the most informative test, the higher types must

also choose that one. This prevents any pooling of A-types and R-types on two different

tests. Combined with Lemma 1 that guarantees the inclusion of the dominant test, we get our

result. Note also that this result would hold using weaker information order like Lehmann

(1988) or some weakening of it. The key property delivering the result is the single-crossing

condition described above.

If it is possible to find two signals, x, x′, two A-types A1, A2 and one R-type, R1 such that
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πt(x|A1)
πt(x′|A1)

< πt(x|R1)
πt(x′|R1)

< πt(x|A2)
πt(x′|A2)

, then there is a test t′ strictly less informative than t and a prior

such that offering {t, t′} is better for the DM than just offering {t}.

Proposition 4. Let t be a test. Suppose there are two signals x, x′ ∈ X , types A1, A2 ∈ A

and R1 ∈ R such that
πt(x|A1)

πt(x′|A1)
<

πt(x|R1)

πt(x′|R1)
<

πt(x|A2)

πt(x′|A2)
.

There is a prior µ and a test t′ ≺ t such that the DM’s payoffs are higher in the menu {t, t′}

than in {t}.

Intuitively, if we interpret x as a high signal, the A-type A1 sends relatively low signals.

Suppose that the prior is such that, if only t is offered, x is accepted and x′ is not. In a sense,

it means that in the test t, type R1 performing better than A1 on the signals x, x′. It is then

beneficial for the DM to include a test that pools signals x, x′ together. In that new test, type

A1 can choose the coarsened test where the superior performance of type R1 is less important

than in the original test.

The proof of Proposition 4 actually uses the following criterion to determine whether a less

informative is part of the optimal menu. It gives condition to include coarsened version of a

test.

Definition 3. A test t is a coarsening of test t′ if there is a partition of X , {Xi}, such that for

all θ ∈ Θ,

πt(xi|θ) =
∑
x∈Xi

πt′(x|θ) for some xi ∈ Xi

πt(x
′|θ) = 0 for all x′ ∈ Xi, x

′ ̸= xi

The idea of a coarsening is that it pools all the signal in one element of the partition Xi on one

signal xi. The test t′ is more informative than t as any strategy under t can be implemented
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under t′. I say that a test pools signals in X ′ if the partition is {X ′, {x} : x /∈ X ′}. Let

z+ = max{0, z}.

Proposition 5. Let α(x, t) be the optimal strategy when only test t is used. If there is α̃ ∈

[0, 1] and X ′ ⊆ X such that

∑
θ∈A

∑
x∈X′

µ(θ)
[
(α̃− α(x, t))πt(x|θ)

]+ ≥
∑
θ′∈R

∑
x∈X′

µ(θ′)
[
(α̃− α(x, t))πt(x|θ′)

]+
then it is optimal to include a coarsened version of t that pools signals in X ′.

This result is a direct application of the zero-sum game of Theorem 1. It considers using the

same strategy as in test t for the coarsened test but for the coarsened signal in X ′ where it

uses α̃. The condition then boils down to checking for a profitable deviation. The intuition

for Proposition 5 is the same as in Proposition 4. The set X ′ identifies a set of signals where

some A-types are performing worse than R-types. Offering a test that coarsens signals in X ′

creates a profitable deviation for these A-types.

4.2 Optimal menu with tests ordered by their difficulty

In many economic environments, the DM does not necessarily have access to a most informa-

tive test but can vary the difficulty to pass a test. This is for example the case for a regulator

that can decide how demanding a certification test is. Like in Proposition 1 and Proposition 3,

I show that the optimal menu is a singleton.

I first formalise the notion of more difficult test as follows.

Definition 4 (Difficulty environment). An environment is a Difficulty environment if Θ ∈ R,

A = {θ : θ > θ} for some θ, X = {x0, x1}, T ⊂ R, all tests have full-support, satisfy the
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monotone likelihood ratio property and for all t > t′, and θ > θ′,

πt(x1|θ)
πt(x1|θ′)

≥ πt′(x1|θ)
πt′(x1|θ′)

and
πt(x0|θ)
πt(x0|θ′)

≥ πt′(x0|θ)
πt′(x0|θ′)

If t > t′, I will say that t is harder than t′. To understand the last condition better, let µ(·|x, t)

be a posterior belief after observing signal x in test t. The monotone likelihood ratio property

implies µ(·|t, x1) ⪰FOSD µ(·|t, x0), a higher signal is “good news” about the type (Milgrom,

1981). The last property in the definition further implies µ(·|t, x) ⪰FOSD µ(·|t′, x). That

means that a pass grade shifts beliefs more towards higher type in a harder test and a fail

grade shifts more beliefs towards lower types in an easy test. Or put differently, the harder a

test the more informative it is about a high type when there is a pass-grade whereas an easier

test is informative about the low types when the test is failed. As an example, if Θ ⊂ (0, 1)

and πt(x1|θ) = θt we are in a Difficulty environment.

Proposition 6. In a Difficulty environment, a singleton menu is optimal.

Like Proposition 1 and Proposition 3, Proposition 6 illustrates how incentive constraints

shape the size of the optimal menu. In the case of the single-peaked preferences with dom-

inant test, the equilibrium when the most informative test is offered is unique and only that

test is chosen. Here, it is possible to construct an equilibrium where more than one test is

chosen in equilibrium. However, the DM strategy needed to sustain that equilibrium is such

that he is better off offering only one test.

The proof proceeds in two steps. First, I show that there are at most two tests in the optimal

menu and if there are two tests, the harder test must be more lenient that the easy test. In

particular, I show that after the hard test, the DM must accept with some probability after a

fail signal and in the easy test, reject with positive probability after a pass grade.

This means that to maintain incentives to select both tests, the DM only reacts to the least
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informative signal from the test: in the hard test after a fail grade, in the easy test after a pass

grade. This in turn implies that it would be better for the DM to use only one test and reject

after a fail grade and accept after a pass grade.

4.3 Bidimensional environment

In this subsection, I apply the tools of Theorem 1 to study environments with bidimensional

types. The analysis here can be easily extended to more than two dimensions. I assume that

the DM has access to tests that can only reveal one dimension and the preference of the DM

have some monotonicity along each dimension.

Definition 5. An environment is bidimensional if Θ = Θ1 × Θ2 ⊂ R2, X ⊂ R and T =

{t1, t2} such that for i = 1, 2,

• if θ ∈ A, then for all θ′ ≥ θ, θ′ ∈ A

• ti has full support and for all θi > θ′i,

πti(x|θi, θj)
πti(x|θ′i, θj)

is strictly increasing in x for any θj ∈ Θj

• πti(x|θi, θj) = πti(x|θi, θ′j) for all θj, θ′j ∈ Θj and x ∈ X

The first condition captures the idea that a higher type is always better for the DM. The second

and third condition captures the idea that each test is only informative about one dimension

and that a higher signal corresponds to a higher type in that dimension.

In this environment, whether the DM wants to offer a menu depends crucially on his prefer-

ences. In particular, I give a necessary and sufficient condition on the preferences such that a

menu is optimal for any prior. Let θi = maxΘi.
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(a) Full menu always optimal. (b) Full menu not always optimal.

Figure 1: Illustration of DM’s preferences for Proposition 7.

Proposition 7. Suppose we are in a bidimensional environment. Offering a menu {t1, t2} is

strictly optimal for any prior if and only if

for i = 1, 2, (θi, θj) ∈ A, for all θj ∈ Θj. (2)

The proof of Proposition 7 works by showing that a deviation from a single test menu is

always profitable when condition (2) is satisfied and constructs a prior under which there are

no profitable deviations when the condition is not satisfied.

Figure 1 illustrates the condition of Proposition 7 with Θ ⊂ [0, 1]2. In Figure 1a, the DM

wants the agent’s type to be high enough in at least one dimension. Then the DM always

prefers to offer a full menu to the agent. On the other hand, in Figure 1b, the DM does not

want to accept a type that is high in only one dimension. In this case, for some prior, the DM

only wants to offer one test. This happens when after any deviation from the singleton menu

any A-type is mimicked by too many R-types that cannot be distinguished from him.
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5 Sufficient conditions for test inclusion

In this section, I study in more details the notion of efficient allocation of tests to the agent’s

types. I show that a sufficient condition to include a test in the optimal menu is if it is good at

differentiating one A-type from all the R-types. This captures a notion of a test tailored for

the A-type.

Definition 6. Fix θ ∈ A. Test t θ-dominates t′, t ⪰θ t′, if there is β : X ×X → [0, 1] such

that for all x′ ∈ X

∑
x

β(x, x′)πt(x|θ) ≤ πt′(x
′|θ)

for all θ′ ∈ R,
∑
x

β(x, x′)πt(x|θ′) ≥ πt′(x
′|θ′)

for all x ∈ X,
∑
x′

β(x, x′) ≤ 1

To understand this definition better, compare it to Blackwell (1953)’s informativeness order.

It requires the existence of a function β such that for all x′ ∈ X ,
∑

x β(x, x
′)πt(x|θ) =

πt′(x
′|θ) for all θ ∈ Θ and for all x ∈ X ,

∑
x′ β(x, x′) = 1. The key difference is that we

restrict attention to one A-type and all the R-types. This captures the idea the test θ-dominant

test is tailored to differentiate θ from each R-type. The second difference is that it requires

only inequalities whereas the Blackwell order requires equalities. This is because we are

fixing the utility function we are interested in, unlike in Blackwell (1953).

If a type θ ∈ A has a ⪰θ-dominant test, then this test is used in an optimal menu. This shows

that an important property of tests is not so much how good they are at differentiating types,

but how good they are at differentiating one type the DM wants to accept from all the types

he wants to reject.
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Proposition 8. Suppose there is t ∈ T and θ ∈ A such that t ⪰θ t′ for all t′ ∈ T , then t is

part of an optimal menu.

The stronger notion of a test able to differentiate some θ ∈ A from all R-types is if suppπt(·|θ)∩(
∪θ′∈R supp πt(·|θ′)

)
= ∅. If each type in A has such a test, then the principal never makes

a mistake. This condition is also necessary.

Proposition 9. The principal’s expected payoff is
∑

θ∈A µ(θ) if and only if for all θ ∈ A,

there exists t ∈ T such that

supp πt(·|θ) ∩
(
∪θ′∈R supp πt(·|θ′)

)
= ∅

Here, the principal just needs for each type he wants to accept a test where he can discriminate

between that type and the R-types. Then he can offer a menu of tests where each A-type self

selects into the test that discriminates him from the R-types. The actual learning only happens

by observing the test selected and the testing technology serves as a detriment to deviations

from R-types. The argument is then similar to an unravelling argument à la Milgrom (1981)

and Grossman (1981). These are not fully revealing tests but tests that allow to perfectly

discriminate one A-type from all the R-types. But it could be a very noisy tests for the other

A-types.

6 Extension: Communication

I consider here the possibility of adding a communication channel on top of the test choice.

I will also relate my results to those of Glazer and Rubinstein (2004) and Carroll and Egorov

(2019). There is now a finite set C of output messages with |C| ≥ |A| and a strategy is a

mapping σ : Θ → ∆(T × C). Note that all the results from the previous sections go through
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as from any finite set T one can create another T ′ that duplicate each test |C| times. I call this

variant of the model the menu game with communication.

In line with Theorem 1, each A-type chooses a message-test pair deterministically and each

R-type mixes over some A-types message-test pair. Moreover, I show that when communi-

cation is added, each type in A announces his type, thus maximally differentiating himself,

and each R-type pretends to be an A-type.

Theorem 2. If communication is allowed, the same construction as Theorem 1 holds. More-

over, there is a DM-preferred equilibrium where each A-type reports his own type.

Proof. See appendix.

Theorem 2 shows that the results extend naturally to an environment where communication

is allowed. Because the DM could commit to a strategy, he can always guarantee each A-type

at least as much as he would have if he would pool with another A-type. This guarantees that

there is an equilibrium where he separates from the other A-types.

Note that because each A-type uses a different message and does not mix over tests, the

test chosen does not contain any information: µ(θ|c, t) = µ(θ|c). Thus all the information

revealed by the test is through the signal realisations and not the test choice.

In the remainder of this section, I will connect the results developed in this model to the

existing literature, and in particular to Glazer and Rubinstein (2004). Consider the following

model generalising the one of Glazer and Rubinstein (2004). They consider a model of

persuasion and verification where the agent sends a message and the DM chooses a test

and a decision based on the message. Formally, the DM designs a mechanism defined by

τ : C → ∆(T × [0, 1]X), that is a mechanism commits to a test and a decision for each

test and signal realisation for each message. A strategy for the agent is δ : Θ → ∆C. The
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solution concept is weak Perfect Bayesian Equilibrium. In Glazer and Rubinstein (2004), the

state space is some multidimensional set and each test in T perfectly reveals one dimension.

I will call the mechanism τ a GR-mechanism.

One of the results of Glazer and Rubinstein (2004) is that the outcome of the optimal mecha-

nism τ can be implemented without commitment in a PBE of the following game: the agent

chooses a message in C, based on the message, the DM chooses a test and based on the sig-

nal realisation and test, the DM accepts or rejects the agent. If the outcome of the optimal

GR-mechanism is the same as the one of the game above, I will say that it is credible. I will

call that game a GR-game.

The fundamental difference between the Glazer and Rubinstein (2004) model and the one we

have studied so far is that it is now the DM that chooses the test and not the agent. But as we

will see, if we allow for communication in the menu of test model, this distinction does not

matter anymore.

Proposition 10. The outcome of an optimal GR-mechanism is credible for any T . Moreover,

its outcome coincides with the optimal menu game with communication.

This proposition generalises the commitment result of Glazer and Rubinstein (2004) to an

arbitrary testing technology and type structure. Moreover, it shows that when there is com-

munication, who chooses the test is not important. To understand this better, let us first note

the dual role of test choice in the model without communication. In this case, the test is

used both to communicate to the DM and to provide evidence which type the agent is. When

we add communication on top of the menu of test, all the communication is through the

cheap-talk message and the test is only used to provide evidence about the type.

Now consider the zero-sum game characterisation of the optimal menu, and in particular the

payoffs of the A-types. Remember that in the zero-sum game, the A-types were maximising
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the DM’s payoffs. Combined with the fact that the test choice does not carry additional

information, we can let the DM choose it. If it was optimal for A-types to choose test t after

message c, it will also be for the DM.

Carroll and Egorov (2019) study a similar model as Glazer and Rubinstein (2004), multidi-

mensional types with the testing technology revealing one dimension, but with a different

agent payoff function. They study under which condition on the agent’s payoffs there is full

information revelation. They show that when there is full information revelation and some

technical conditions are satisfied, the mechanism can be implemented by having the agent

choosing the test, a parallel result to Proposition 10. Thus I show that the equivalence result

they have also applies to other environments and is not a feature of full information revelation

and their testing technology.

7 Conclusion

I study the design of optimal menus of tests. Menus allow the DM to have an additional

dimension for information revelation as well as allow for a more efficient allocation of tests

to the agent’s types. I provide a characterisation of the optimal menu in terms of an auxiliary

zero-sum game. One advantage of this characterisation is that it does not rely on any structure

on types or tests. While proving this result, I also show that the characterisation holds for a

general class of mechanisms allocating agent to tests.

In applications, I show that using a menu can be a powerful tool, and even a dominated test, in

the Blackwell sense, can be part of the optimal menu. However, this channel also has limits

and I show that in some natural economic environments the optimal menu is a singleton.

All the results also hold when the DM can commit to an action. I interpreted this result as

a hierarchy over information sources: even when the DM can use a suboptimal strategy to
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“artificially” incentivise the agent to choose different tests, he is better off using a menu only

when he can best reply to the information revealed.

Results for the optimality of the inclusion of some tests, like Proposition 5 and Proposition 8,

reveal an interesting asymmetry between types. They are comparing properties of a test or

acceptance probability of one or some A-type to those of all the R-types. This asymmetry

between the R-types and the A-types is due to their different incentives to separate as reflected

by their strategy in the auxiliary zero-sum game. While an A-type wants to be singled-out

by choosing a different test, the R-types want to “hide behind” A-types and only choose to

mimic them. Proposition 5 and Proposition 8 provide conditions under which an A-type is

better off deviating to a new test while providing limited incentives to the R-types to mimic

him.

Finally, I show that adding a communication channel links the current model to existing

models in the literature and generalises their results. Adding the communication highlights

the role of tests when there is no communication. Without communication, the tests also

serve as a communication channel. When communication is allowed, the test choice does

not add any information beyond the test results. The DM is thus as well off choosing the test

himself following the cheap-talk message.
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A Omitted proofs

A.1 Proof of Theorem 1

The plan of the proof is the following. First, I characterise the optimal mechanism, where a

mechanism maps an input message to a distribution over tests. Because an equilibrium of the

menu game can be implemented by a mechanism, the payoffs from the optimal mechanism

are weakly greater than the payoffs from any optimal menu. In the second part of the proof, I

show that the optimal mechanism can be implemented by posting a menu. In the proof, I will

refer to a distribution over test as an allocation.

By standard arguments, a direct truthful mechanism is without loss of generality. A direct

mechanism is a mapping σ̃ : Θ → ∆T . The designer’s problem is

Ṽ = max
σ̃,α

∑
θ∈A

µ(θ)
∑
t

σ̃(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
t

σ̃(t|θ)pt(α; θ)

s.t.
∑
t

(σ̃(t|θ)− σ̃(t|θ′))pt(α; θ) ≥ 0 for all θ, θ′

∑
t

σ̃(t|θ) = 1 for all θ

α ∈ BR(σ̃)

The first constraint is the incentive compatibility constraint of type θ deviating to θ′, the

second guarantees that an allocation is well-defined and the last constraint ensures that the

DM best replies to the information revealed by the output of the mechanism.

Note that any equilibrium in the menu game is incentive compatible and therefore a solution

to Ṽ gives weakly higher expected payoffs to the DM.
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If the DM could commit over a strategy α, his problem would be

Ṽ (α) = max
σ̃

∑
θ∈A

µ(θ)
∑
t

σ̃(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
t

σ̃(t|θ)pt(α; θ)

s.t.
∑
t

(σ̃(t|θ)− σ̃(t|θ′))pt(α; θ) ≥ 0 for all θ, θ′

∑
t

σ̃(t|θ) = 1 for all θ

We have that maxα ˜V (α) ≥ Ṽ as the DM could always commit to the strategy used to get Ṽ .

Show that Ṽ (α) = maxs minm v(α, s,m) where v is defined in (1).

The dual problem of Ṽ (α) is

min
yθ,θ′ ,zθ

∑
θ

zθ

s.t. for θ ∈ A, t : −pt(α; θ)
∑
θ′

yθ,θ′ +
∑
θ′

pt(α; θ
′)yθ′,θ + zθ ≥ µ(θ)pt(αθ)

for θ ∈ R, t : −pt(α; θ)
∑
θ′

yθ,θ′ +
∑
θ′

pt(α; θ
′)yθ′,θ + zθ ≥ −µ(θ)pt(αθ)

yθ,θ′ ≥ 0, zθ ∈ R

Note that yθ,θ′ is the dual variable associated to the IC constraint of type θ deviating to θ′ and

zθ the dual variable associated with the feasibility constraint of type θ.

I will show that for any α, the solution to Ṽ (α) can be characterised by an equilibrium of

the zero-sum game by verifying that this solution is feasible and satisfy the complementary

slackness conditions. To this end I will

1. Guess values for σ̃, y, z.
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2. Verify that the guessed variables satisfy the constraints of their respective problem, i.e.,

are feasible.

3. Verify complementary slackness conditions.

If variables are feasible and satisfy complementary slackness then they are optimal (see e.g.,

Bertsimas and Tsitsiklis, 1997, Theorem 4.5).

Take an equilibrium of the zero-sum game fixing α, (s,m), i.e., s ∈ argmaxminm v(α, s̃,m)

and m ∈ argminmaxs v(α, s,m
′).

Guess

• yθ,θ′ = 0 for θ ∈ A

• yθ′,θ = 0 for θ′, θ ∈ R

• yθ′,θ = µ(θ′)m(θ|θ′) for θ′ ∈ R, θ ∈ A

• zθ′ = 0 for θ′ ∈ R

• zθ = µ(θ)πtθ(α; θ)−
∑

θ′∈R µ(θ′)m(θ|θ′)πtθ(α; θ
′) for some tθ ∈ supp s(·|θ) for θ ∈ A

• σ̃(t|θ) = s(t|θ) for θ ∈ A

• σ̃(t|θ′) =
∑

θ∈Am(θ|θ′)s(t|θ) for θ′ ∈ R

Feasibility in the dual problem: Plugging in these guessed values in the constraints of the

dual problem, we get for the constraints (θ ∈ R, t),

−pt(α; θ)
∑
θ′∈A

µ(θ)m(θ′|θ) ≥ −µ(θ)pt(α; θ)

which holds with equality because
∑

θ′∈Am(θ′|θ) = 1.
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For the constraints (θ ∈ A, t), plugging in the guessed values gives

µ(θ)πtθ(α; θ)−
∑
θ′∈R

µ(θ′)m(θ|θ′)πtθ(α; θ
′) ≥ µ(θ)pt(α; θ)−

∑
θ′∈R

µ(θ′)m(θ|θ′)pt(α; θ′)

which holds because (s,m) is an equilibrium of the zero-sum game and thus tθ maximises

this expression.

Feasibility in the primal problem: The solution σ̃ is positive and satisfies
∑

t σ̃(t|θ) = 1 for

all θ. We are left to check that it satisfies the IC constraints. Note that any allocation is either

the allocation of an A-type or a convex combination of allocations of A-types.

First, I show that the IC constraints of A-types are satisfied. Because (s,m) is an equilibrium

of the auxiliary game, any θ ∈ A must be weakly worse off mimicking another A-type, θ̃, in

the auxiliary game:

∑
t

s(t|θ)
[
µ(θ)pt(α; θ)−

∑
θ′∈R

µ(θ′)m(θ|θ′)pt(α; θ′)
]
≥

∑
t

s(t|θ̃)
[
µ(θ)pt(α; θ)−

∑
θ′∈R

µ(θ′)m(θ|θ′)pt(α; θ′)
]

⇔ µ(θ)
∑
t

(s(t|θ)− s(t|θ̃))pt(α; θ) ≥
∑
θ′∈R

µ(θ′)m(θ|θ′)
∑
t

(s(t|θ)− s(t|θ̃))pt(α; θ′)

Note that the LHS is the IC constraint of θ deviating to θ̃ and the RHS is positive. Indeed,

whenever
∑

t(s(t|θ) − s(t|θ̃))pt(α; θ′) < 0, we have m(θ|θ′) = 0. Therefore the IC con-

straints of an A-type deviating to an A-type are satisfied. Because the σ̃(t|θ′) for θ′ ∈ R is a

convex combination of A-type allocation, all the IC constraints of A-types are satisfied.

For the IC constraint of R-types, note that any R-type is indifferent between reporting his

type and reporting an A-type he is mimicking in the zero-sum game. He also weakly prefers

reporting his own type over an A-type he is not mimicking. Thus there are no deviations to

A-types. Because any other allocation of an R-type is a convex combination of allocation of

A-types, no R-type is willing to report another R-type.
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Complementary slackness conditions: Complementary slackness conditions are: if a variable

in the primal or dual problem is strictly positive, then the corresponding constraint must be

binding.

The dual variables y is strictly positive if and only if θ ∈ A, θ′ ∈ R and m(θ|θ′) > 0. The

corresponding IC constraint is θ′ deviating to θ. But in that case the IC constraint binds as

mimicking θ maximises the probability of being accepted in the zero-sum game and thus θ′

gets the same expected probability of being as if he would get θ’s distribution.

On the other hand the dual constraints are only slack for (θ ∈ A, t) such that

µ(θ)πtθ(α; θ)−
∑
θ′∈R

µ(θ′)m(θ|θ′)ptθ(α; θ′) > µ(θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)m(θ|θ′)pt(α; θ′)

In this case σ̃(t|θ) = 0 as s(t|θ) = 0. Therefore, the complementary slackness conditions are

satisfied and we have characterised an optimal mechanism when the DM commits to α.

Remember that v(α, s,m) =
∑

t

∑
θ∈A s(t|θ)

[
µ(θ)pt(α; θ) −

∑
θ′∈R µ(θ′)m(θ|θ′)pt(α; θ′)

]
and note that it is the DM’s payoff in the induced mechanism. Thus, we can express the

value of an optimal mechanism with commitment to α, Ṽ (α) = maxsminm v(α, s,m). The

optimal value of the DM, when he can commit is therefore maxαmaxs minm v(α, s,m) =

maxα,s minm v(α, s,m).

Show that a saddle-point of v exists and the DM does not benefit from commitment in

the optimal mechanism.

Consider the two-players game where player one chooses (s, α) to maximise v and player

two chooses m to maximise −v. This game satisfies the condition for the existence of a

NE in Baye et al. (1993). Indeed, a sufficient condition for the existence of NE is that (1)

strategy spaces are a subset of Rm, (2) v is continuous in all arguments, (3) v is linear in one

45



player’s strategy and (4) there are two players. Condition (2) guarantees diagonal transfer

continuity (see Proposition 2 in Baye et al., 1993), conditions (2) and (3) guarantee diagonal

transfer quasi-concavity (see Proposition 1(e) in Baye et al., 1993). Together this implies the

conditions stated in Theorem 1 in Baye et al. (1993). (For complete definitions see the paper.)

Therefore there is (α∗, s∗,m∗) such that

v(α, s,m∗) ≤ v(α∗, s∗,m∗) ≤ v(α∗, s∗,m)

for all α, s,m and v(α∗, s∗,m∗) = maxα,s minm v(α, s,m).

Notice that v(α, s∗,m∗) ≤ v(α∗, s∗,m∗) for all α. Because v is the DM’s expected utility

and s∗,m∗ induce the optimal mechanism, α∗ ∈ BR(σ̃∗) where σ̃∗ is the mechanism induced

by (s∗,m∗).

Show that an optimal mechanism can be implemented by posting a menu.

Lemma 2. Take a saddle-point of v,
(
(α, s),m

)
. If s(·|θ) is in pure strategy for all θ ∈ A,

then the optimal mechanism σ̃ with DM strategy α is implementable by posting a menu where

the strategies are

• for θ ∈ A : σ(t|θ) = s(t|θ)

• for θ′ ∈ R : σ(t|θ′) =
∑

θ∈Am(θ|θ′)s(t|θ)

• the DM’s strategy is α.

Moreover, the DM does not benefit from committing to α.

Proof. Note that the strategies σ are the same as the outcome of the optimal mechanism σ̃

when the DM strategy is α.
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Optimal mechanism is implementable with a menu.

The menu posted by the DM is M = ∪θ∈A supp s(·|θ). To prove the result, we simply need

to show that the pair (σ, α) is a PBE in the game when the menu M is posted. Let tθ be the

test chosen by type θ ∈ A.

The incentive compatibility constraint of type θ ∈ A deviating to θ̃ ∈ A in the optimal

mechanism implies

ptθ(α; θ) ≥ ptθ̃(α; θ)

for any θ̃ ∈ A. Thus θ ∈ A prefers tθ to any other t′ ∈ M.

The incentive compatibility constraint of type θ′ ∈ R deviating to θ̃ ∈ A in the optimal

mechanism implies

∑
t

σ(t|θ′)pt(α; θ′) =
∑
t

∑
θ∈A

m(θ|θ′)s(t|θ)pt(α; θ′) ≥ ptθ̃(α; θ)

which again implies that
∑

t σ(t|θ′)pt(α; θ′) ≥ pt′(α; θ
′) for all t′ ∈ M.

Because
(
(α, s),m

)
is a saddle-point of v,

v(α, s,m) ≥ v(α′, s,m)

for all α′. Because v is the DM’s payoffs and (s,m) induce the strategies in the equilibrium

of the menu game, the DM’s strategy is a best-reply. Note that this holds on- and off-path.

On-path, beliefs are pinned down by the strategy σ, the tests πt and the prior. Off-path, we

can choose a belief µ̃(·|t, x) such that α(t, x) is a best-reply to µ̃.

This conclude the description of the PBE.

No benefit to commitment.
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This follows from the fact that the DM does not benefit from commitment in the optimal

mechanism and that the payoffs from the optimal menu without commitment are the same as

in the optimal mechanism with commitment. Given that the payoffs from the optimal mech-

anism with commitment are always weakly higher than the optimal menu with commitment,

the DM does not benefit from commitment to α in the optimal menu.

Lemma 3. For any α, there is s∗ ∈ argmaxsminm v(α, s,m) such that s∗(·|θ) is in pure

strategy for all θ ∈ A.

Proof. Suppose there is s∗ ∈ argmaxs minm v(α, s,m) such that for some θ ∈ A, and

t, t′ ∈ T , s∗(t|θ), s∗(t′|θ) > 0.

Assume first that for any t, t′, and Z ⊆ R,

µ(θ)pt(α; θ)−
∑
θ′∈Z

µ(θ′)pt(α; θ
′) ̸= µ(θ)pt′(α; θ)−

∑
θ′∈Z

µ(θ′)pt′(α; θ
′) (3)

Note that if s∗ ∈ argmaxs minm v(α, s,m), it has to be optimal for any selection of argminm v(α, s,m).

Take the selection, for all θ′ ∈ R,

m(θ|θ′) = 1 ⇔
∑
t

s(t|θ)pt(α; θ′) ≥
∑
t

s(t|θ̃)pt(α; θ′), for all θ̃ ∈ A

that is, whenever mimicking θ is a best-reply for θ′ ∈ R, that type mimics θ with probability

one. Because payoffs are linear, this is a best-reply. Now note that when θ evaluates his

payoffs with respect to that selection, any θ′ ∈ R that does not mimic him, striclty prefers

another type. Moreover, by condition (3), type θ strictly benefits from putting ϵ > 0 more

weight on either t or t′ for ϵ small enough. Indeed by changing the weight a little bit, he can

increase his payoff and if ϵ is small enough no new type θ′ ∈ R wants to mimic him. So this

is a profitable deviation.
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Now note that any payoffs satisfying condition (3) defines a dense subset of the payoff space,

(pt(α; θ)t∈T,θ∈Θ), using the usual metric for Rn. Indeed, condition (3) is a finite system of

inequalities and perturbation to pt(α; θ) upsets any equality. Take a sequence in the payoff

space such that for any member of the sequence, condition (3) is satisfied such that the se-

quence converges to an element of the payoff space where condition (3) is not satisfied. Take

an associated sequence of s∗,n ∈ argmaxsminm vn(α, s,m) where n indexes the sequence.

(s∗,n) is a bounded sequence in a closed subset of Rn so it admits a converging subsequence.

This subsequence contains only pure strategies so it must converge to a pure strategy. By up-

per hemicontinuity of the Nash Equilibrium correspondence, the limit is a Nash Equilibrium

and thus there is s∗ ∈ argmaxs minm v(α, s,m) in pure strategy for any payoff.

A.2 Proof of Lemma 1

Because t ⪰ t′ implies t ⪰θ t′ for some θ ∈ A, Lemma 1 is a corollary of Proposition 8

proven below.

A.3 Proof of Proposition 1 and Proposition 2

Suppose the DM’s preferences are single-peaked given ≥t. Suppose there is a menu with

both t, t′. Take A1, A2 ∈ A with A1 < A2 and without loss of generality, suppose A1 chooses

t′ and A2 chooses t in some equilibrium. Let α denote the DM equilibrium strategy in this

equilibrium.

Because t ⪰ t′, there is β : X × X → [0, 1] such that pt′(x̃|θ) = β(x, x̃)πt(x|θ) +
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β(x′, x̃)πt(x
′|θ) and

∑
x β(x̃, x) = 1 for x̃ = x, x′. Type θ ∈ Θ prefers test t′ over t if

α(x1, t
′)
(
β(x1, x1)πt(x1|θ) + β(x0, x1)πt(x0|θ)

)
+α(x0, t

′)
(
β(x1, x0)πt(x1|θ)+β(x0, x0)πt(x0|θ)

)
−α(x1, t)πt(x1|θ)−α(x0, t)πt(x0|θ) ≥ 0

Note that this expression is monotonic in θ. Indeed, if πt(x0|θ) > 0, then dividing by πt(x0|θ)

gives

α(x1, t
′)
(
β(x1, x1)

πt(x1|θ)
πt(x0|θ)

+ β(x0, x1)
)
+ α(x0, t

′)
(
β(x1, x0)

πt(x1|θ)
πt(x0|θ)

+ β(x0, x0)
)

− α(x1, t)
πt(x1|θ)
πt(x0|θ)

− α(x0, t)

which is linear in πt(x1|θ)
πt(x0|θ) , an increasing function of θ. If πt(x0|θ) = 0, then πt(x0|θ′) = 0 for

all θ′ >t θ and the expression is constant.

To have A1 choose t′ and A2 choose t, it must be strictly decreasing7 in θ, i.e.,

α(x1, t
′)β(x1, x1) + α(x0, t

′)β(x1, x0)− α(x1, t) < 0 (4)

A necessary condition for (4) to hold is that α(x1, t) > 0. Note the strict monotonicity also

implies that there is θ ∈ A such that any θ > θ prefers t and any θ ≤ θ prefers t′. Let

A+ = {θ ∈ A : θ >t θ} and R+ = {θ ∈ R : θ >t θ
′, for all θ′ ∈ A}. But because only types

in A+ ∪ R+ choose t, the likelihood ratios πt(x1|θ)
πt(x1|θ′) <

πt(x0|θ)
πt(x0|θ′) for any θ ∈ A+, θ′ ∈ R+ and

α(x1, t) > 0 imply that α(x0, t) = 1 (Milgrom, 1981).

7If all types are indifferent between t and t′ then it is also an equilibrium to offer only t and the DM’s
payoffs are the same.
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But then no type ever prefer t′ over t. Indeed, the condition to prefer t′ over t,

(
α(x1, t

′)β(x1, x1) + α(x0, t
′)β(x1, x0)− α(x1, t)

)
πt(x1|θ)

≥
(
1− α(x1, t

′)β(x0, x1)− α(x0, t
′)β(x0, x0)

)
πt(x0|θ)

is never satisfied as the LHS is strictly negative because (4) must hold and the RHS is positive

because β(x0, x1) + β(x0, x0) = 1 and α(x̃, t′) ≤ 1, x̃ = x1, x0.

Thus there cannot be an equilibrium where another test than t is chosen.

Suppose the DM’s preferences are enclosed given ≥t.

Suppose (α̃, s̃) ∈ argmaxminm v(α, s,m) with s̃(t|θ) = 1 for all θ ∈ A.

Suppose the prior is such that when only t is offered, x0 is rejected and x1 is accepted. Let

θ = min{θ ∈ R} where the min is taken with respect to ≥t.

Then consider the following deviation: take some t′ ̸= t and let α(x, t′) = πt(x1|θ) for all

x ∈ X and α = α̃ otherwise. Because preferences are single-dipped, there is θ ∈ A such that

πt(x1|θ) < πt(x1|θ) and for all θ′ ∈ R, πt(x1|θ′) ≥ πt(x1|θ). Let s(t′|θ) = 1 for that type and

s = s̃ otherwise. This deviation is strictly profitable, i.e., minm v(α̃, s̃) < minm v(α, s,m).

Suppose the prior is such that α̃(x1, t) = α̃(x0, t) ∈ {0, 1} when only t is offered. This

means that the DM does not react to information. Let α(x, t′) = α̃(x, t) for some t′ ̸= t and

s(t′|θ) = 1 for some θ ∈ A and s = s̃ otherwise. We get minm v(α̃, s̃) = minm v(α, s,m),

so it is also an equilibrium.

Suppose that the DM’s preferences are not single-peaked given ≥t.

In this case, it is possible to find A1, A2 ∈ A and R1 ∈ R such that A1 <t R1 <t A2. Let

µ(θ) ≈ 0 for θ ̸= A1, A2, R1 and be such that x0 is rejected and and x1 is accepted when only
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t is offered. Because t is informative, there is always such prior. Then from the reasoning

above the menu {t, t′} is strictly better for the DM than {t} when only focusing on A1, A2, R1

have positive probability. But because µ(θ) ≈ 0 for θ ̸= A1, A2, R1, then the menu {t, t′}

remains strictly better than {t} whatever the behaviour of the other types.

Suppose that the DM’s preferences are not enclosed given ≥t.

If the DM’s preferences are not enclosed, then suppose without loss of generality that there is

R1 ∈ R such that R1 ≤t θ for any θ ∈ Θ (otherwise, simply change the roles of x1 and x0).

If for all θ ∈ A, θ =t R1, then preferences are single-peaked and only offering t is optimal.

Suppose it is not the case and take some A1, A2 ∈ A such that A1 ≥t A1 ≥t R1, with at least

one strict inequality. Suppose that for θ ̸= A1, A2, R1, µ(θ) ≈ 0. An argument analogue to

the proof that single-peakness implies that only t is chosen in equilibrium holds.

A.4 Proof of Proposition 5

Proof. Suppose the DM only uses t and let t′ be the coarsened version of t that pools signals

in X ′. Let T = {t, t′}. Let πt′(x
′|θ) =

∑
x∈X′ πt(x|θ) for some x′ ∈ X ′.

Consider the deviation, (α̃, s̃): α̃(x′, t′) = α̃ and α̃(x, t̃) = α(x, t̃) for x ̸= x′, t̃ = t, t′ and

s̃(t′|θ) = 1 if
∑

x∈X′ α̃πt(x|θ) >
∑

x∈X′ α(x, t)πt(x|θ)and s̃(·|θ) = s(·|θ) otherwise. We

want to show that

min
m

v(α̃, s̃,m) ≥ min
m

v(α, s,m)

⇔
∑
θ∈A

∑
x∈X′

µ(θ)
[
(α̃− α(x, t))πt(x|θ)

]+ ≥
∑
θ′∈R

∑
x∈X′

µ(θ′)
[
(α̃− α(x, t))πt(x|θ′)

]+
which is exactly the condition in Proposition 5. Note that the strategy of the R-types is to
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mimick a type choosing t′ iff
∑

x∈X′ α̃πt(x|θ′) >
∑

x∈X′ α(x, t)πt(x|θ′).

A.5 Proof of Proposition 3

Proof. Note that in an MLRP environment, the strategy of the DM takes the form of a cutoff

strategy. For each test t, there is xt ∈ X such that α(x, t) = 0 for x < xt, α(x, t) = 1 for x >

xt and α(xt, t) ∈ [0, 1]. From Lemma 1, we know that there is an optimal menu containing

the Blackwell most informative test. Because all tests are MLRP and the DM’s payoffs satisfy

single-crossing condition, the Lehmann order is well-defined and the Blackwell order implies

the Lehmann order (Lehmann, 1988; Persico, 2000). Let ⪰a denote the Lehmann order.

The Lehmann order is defined on continuous information structure. But as outlined in Lehmann

(1988), we can always make our conditional probabilities continuous by adding independent

uniform between each signal. Let’s assume, without loss of generality, that X = {1, ..., n}.

The new distribution over signal is ỹ|θ = x̃|θ − u where u ∼U[0, 1]. Denote by Ft the cdf

associated with the new information structure.

We have that t ⪰a t′ if y∗(θ, y) ≡ Ft(y
∗|θ) = Ft′(y|θ) is nondecreasing in θ for all y

(Lehmann, 1988). In particular, this condition implies that if Ft(y|θ′) ≤ (<)Ft′(y
′|θ′) then

Ft(y|θ) ≤ (<)Ft′(y
′|θ) for all θ > θ′.

Let α be the optimal strategy and xt be the cutoff signal associated to each test. To each(
α(·, t), xt

)
we can associate a yt ≡ xt − α(xt, t).

If t is part of an optimal menu, it must be that there is some θ′ ∈ R such that pt(α; θ′) ≥

pt′(α; θ
′) for all t′. Or put differently, Ft(yt|θ′) ≤ Ft′(yt′|θ′) for all t′. But then Ft(yt|θ) ≤

Ft′(yt′|θ) for all t′ and all θ > θ′, in particular all θ ∈ A. Therefore all type in A prefer test t

as well and there is an equilibrium of the zero-sum game where all types in θ ∈ A choose t.

(If there is an A-type that is indifferent between t and t′ then all types in R must be indifferent
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or prefer t′ so choosing t is an equilibrium strategy for such A-type.)

A.6 Proof of Proposition 6

I first show that if t > t′, then µ(·|t, x) ⪰FOSD µ(·|t′, x) where ⪰FOSD denotes first-order

stochastic dominance.

Proof. The proof is similar to the one in Milgrom (1981). Denote by Gt(·|x) the cdf of

posterior beliefs after signal x in test t. For all θ > θ′,

µ(θ)
πt(x|θ)
πt(x|θ′)

≥ µ(θ)
πt′(x|θ)
πt′(x|θ′)

Take some θ∗ ≥ θ′. Summing over θ, we get

∑
θ>θ∗

µ(θ)
πt(x|θ)
πt(x|θ′)

≥
∑
θ>θ∗

µ(θ)
πt′(x|θ)
πt′(x|θ′)

Inverting and summing over θ′, we get

∑
θ∗≥θ′ µ(θ

′)πt(x|θ′)∑
θ>θ∗ µ(θ)πt(x|θ)

≤
∑

θ∗≥θ′ µ(θ
′)πt′(x|θ′)∑

θ>θ∗ µ(θ)πt′(x|θ)

which implies

Gt(θ
∗|x)

1−Gt(θ∗|x)
≤ Gt′(θ

∗|x)
1−Gt′(θ∗|x)

⇒ Gt(θ
∗|x) ≤ Gt′(θ

∗|x)

The way this proof proceeds is by fixing a menu and dividing tests in two categories: (1)

those for which α(x0, t̃) ∈ (0, 1) and α(x1, t̃) = 1 and (2) α(x0, t̃) = 0 and α(x1, t̃) ∈ (0, 1].
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I exclude the possibility that the DM always accepts or rejects after any signal as it would

either be the only test chosen in equilibrium or never chosen. Then, I show that within each

category, it is without loss of optimality to have at most one test. It is thus optimal to have

at most two tests in the menu. The last part of the proof shows that the resulting menu is

dominated by having only one test.

If there are two tests, t > t′ such that α(x0, t̃) = 0 and α(x1, t̃) ∈ (0, 1], I will show that,

pt(α; θ
′) ≥ pt′(α; θ

′) ⇒ pt(α; θ) ≥ pt′(α; θ) for all θ > θ′

Take two tests such that α(x0, t̃) = 0, t > t′. Let α, α′ denote their respective probability

of accepting after x1. Define α(θ) ≡ α(θ)πt(x1|θ) − α′πt′(x1|θ) = 0. Rearranging, α(θ) =

α′ πt′ (x1|θ)
πt(x1|θ) . From our assumption on the difficulty environment, α(θ) is decreasing in θ. If

pt(α; θ
′) ≥ pt′(α; θ

′) for some θ′ then α ≥ α(θ′). Then α ≥ α(θ) for all θ > θ′.

In equilibrium, we must have that there is one θ′ ∈ R that chooses t and thus for all θ ∈ A,

pt(α; θ) ≥ pt′(α; θ). Then there is an equilibrium of the zero-sum game where t′ is never

chosen.

A similar argument can be made for all tests where α(x0, t̃) > 0.

Thus we conclude that it is without loss of optimality that the optimal menu has at most two

tests.

Suppose the optimal menu uses two tests, t > t′. I will now show that it must be that

α(x0, t) ∈ (0, 1) and α(x1, t
′) ∈ (0, 1), i.e., the DM must accept in the hard test when there

is a fail grade and only accept in the easy test if there is a pass grade. Suppose it is not the

case and denote by α, α′ their respective mixing probabilities. Define α(θ) ≡ α(θ)πt(x1|θ)−

α′πt′(x0|θ)−πt′(x1|θ) = 0, which is equivalent to α(θ) = α′ 1
πt(x1|θ) +(1−α′)

πt′ (x1|θ)
πt(x1|θ) . Again

55



from our assumptions, this is decreasing in θ. A type θ chooses t if α ≥ α(θ). Thus if one

θ ∈ A chooses t all θ ∈ R choose t and there is no pooling of A and R-types on t′, or it

is payoff equivalent to just offering t. Therefore, α(x0, t) ∈ (0, 1) and α(x1, t
′) ∈ (0, 1) for

t > t′.

If the DM mixes, he must be indifferent and thus we have

∑
θ∈A

µ(θ)σ(t|θ)πt(x0|θ)−
∑
θ′∈R

µ(θ′)σ(t|θ′)πt(x0|θ′) = 0

∑
θ∈A

µ(θ)σ(t′|θ)πt′(x1|θ)−
∑
θ′∈R

µ(θ′)σ(t′|θ′)πt′(x1|θ′) = 0

In the easy test, because the DM rejects with positive probability after x1 and rejects for sure

after x0 (as he uses a cutoff strategy), his payoffs from t′ is 0, i.e., he does as well as rejecting

for sure.

In the hard test, he accepts with some probability after x0 and thus his payoffs are

∑
θ∈A

µ(θ)σ(t|θ)−
∑
θ′∈R

µ(θ′)σ(t|θ′)

that is the payoffs he would get from accepting all types choosing t. Thus the overall payoffs

from the menu is
∑

θ∈A µ(θ)σ(t|θ) −
∑

θ′∈R µ(θ′)σ(t|θ′). Offering a menu is better than a

singleton menu if this value is strictly greater than offering t and following the signal

∑
θ∈A

µ(θ)σ(t|θ)−
∑
θ′∈R

µ(θ′)σ(t|θ′) >
∑
θ∈A

µ(θ)πt(x1|θ)−
∑
θ′∈R

µ(θ′)πt(x1|θ′)

=
∑
θ∈A

σ(t|θ)µ(θ)πt(x1|θ) +
∑
θ∈A

σ(t′|θ)µ(θ)πt(x1|θ)

−
∑
θ′∈R

σ(t|θ′)µ(θ′)πt(x1|θ′)−
∑
θ′∈R

σ(t′|θ′)µ(θ)πt(x1|θ′)
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We can rearrange and use the indifference condition at (x0, t) to get

0 >
∑
θ∈A

σ(t′|θ)µ(θ)πt(x1|θ)−
∑
θ′∈R

σ(t′|θ′)µ(θ)πt(x1|θ′)

Using the indifference condition at (x1, t
′), we can replace 0 on the LHS and get

∑
θ∈A

µ(θ)σ(t′|θ)πt′(x1|θ)−
∑
θ′∈R

µ(θ′)σ(t′|θ′)πt′(x1|θ′)

>
∑
θ∈A

σ(t′|θ)µ(θ)πt(x1|θ)−
∑
θ′∈R

σ(t′|θ′)µ(θ)πt(x1|θ′)

But from the definition of the environment, for all θ > θ′,

πt(x1|θ)
πt(x1|θ′)

≥ πt′(x1|θ)
πt′(x1|θ′)

which implies that µ(θ|x1, t) ⪰FOSD µ(θ|x1, t
′). Thus we get a contradiction.

A.7 Proof of Proposition 7

Suppose condition (2) holds. Suppose (α, s) ∈ argmaxminm v(α, s,m) and s(tj|θ) = 1 for

all θ ∈ A. Take (θ̃i, θ̃j) ∈ argminθ∈A ptj(α; θ). Because ptj(α; θi, θj) is constant in θi, we

have (θi, θ̃j) ∈ argminθ∈Θ ptj(α; θ) as well and from condition (2), (θi, θ̃j) ∈ A. Consider

the deviation to (α̃, s̃) such that for ti,

• α̃(·, ti) is set so that it has a cutoff structure and pti(α̃|θi, θ̃j) = ptj(α; θi, θ̃j) and

α̃(·, tj) = α(·, tj) otherwise.

• s̃(ti|θi, θ̃j) = 1 and s̃(·|θ) = s(·|θ) otherwise.

Because the test ti has the strict MLRP when restricting attention to dimension i, for all θi <
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θi, minθ∈Θ ptj(α; θ) ≥ pti(α̃|θi, θj) > pti(α̃|θi, θj). This means that mimicking (θi, θ̃j) is

weakly dominated and (θi, θ̃j) has the probability of being accepted. Thus minm v(α, s,m) ≤

minm v(α̃, s̃,m).

Suppose condition (2) does not hold.

If condition (2) is not satisfied, then there a dimension, say 1, and θ̃2 ∈ Θ2 such that (θ1, θ̃2) ∈

R. By the definition of the bidimensional environment, this implies that (θ1, θ̃2) ∈ R for all

θ1 ∈ Θ1. Moreover, for all θ2 < θ̃2 and all θ1 ∈ Θ1, (θ1, θ2) ∈ R.

Now suppose µ is such that µ(θ1, θ̃2) >
∑

θ′2 ̸=θ2
µ(θ1, θ

′
2) for all θ1 ∈ Θ1. And that µ(θ1, θ2) ≈

0 for all (θ1, θ2) ∈ R such that θ2 > θ̃2.

I am going to show that {t2} is optimal when t1 fully reveals dimension 1. Because this test

can replicate the strategies of any t1, it is enough to prove our claim.

Suppose there is an optimal menu {t1, t2}. From our assumptions on µ, the DM follows a

cutoff strategy after t2. That’s because his payoff is monotone along that dimension, ignoring

(θ1, θ2) ∈ R such that θ2 > θ̃2 whose prior probability is close to zero. So it does not upset

the cutoff structure of the best-response. This implies that pt2(α; θ1, θ2) > pt2(α; θ1, θ̃2) for

all θ2 > θ̃2 because the likelihood ratio is strictly increasing.

Suppose that some (θ1, θ̃2) chooses t1 with probability 1 in equilibrium. Because µ(θ1, θ̃2) >∑
θ′2 ̸=θ2

µ(θ1, θ
′
2) for all θ1 ∈ Θ1, it must be that the best-response is α(x = θ1, t1) = 0 (recall

that t1 fully reveals θ1). Thus pt2(α; θ1, θ2) = 0 for all θ2 ∈ Θ2, otherwise there is a profitable

deviation. Either this contradicts the fact that the DM best replies or in equilibrium the DM

rejects after all signals in every test. But then he is weakly better off only offering t2.

Thus to have {t1, t2} strictly better, it must be that all (θ1, θ̃2) choosing t1 mix in equilibrium.

This means that pt1(α; θ1, θ̃2) = pt1(α; θ1, θ̃2). But by the cutoff structure of α(·, t2), we have
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pt2(α; θ1, θ2) ≥ pt2(α; θ1, θ̃2) for all θ2 > θ̃2 and pt2(α; θ1, θ2) ≤ pt2(α; θ1, θ̃2) for all θ2 < θ̃2.

Thus t1 is weakly dominated in the auxiliary game for all (θ1, θ2) ∈ A. Thus choosing only

{t2} is an optimal menu.

A.8 Proof of Proposition 8

Proof. I will first prove the following lemma. This result already exists in the literature and I

provide a proof for completeness.

Lemma 4. For any t ⪰ t′ and α(·, t′), there is α(·, t) such that

∑
x

α(x, t)πt(x|θ) ≥
∑
x

α(x, t′)πt′(x|θ)

for all θ′ ∈ R,
∑
x

α(x, t)πt(x|θ′) ≤
∑
x

α(x, t′)πt′(x|θ′)

Proof. We can prove this lemma by using a theorem of the alternative (see e.g., Rockafellar

(2015) Section 22). Only one of the following statement is true:

• There exists α(·, t) such that

∑
x

α(x, t)πt(x|θ) ≥
∑
x

α(x, t′)πt′(x|θ)

for all θ′ ∈ R,
∑
x

α(x, t)πt(x|θ′) ≤
∑
x

α(x, t′)πt′(x|θ′)

for all x ∈ X, α(x, t) ≤ 1

for all x ∈ X, α(x, t) ≥ 0
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• There exists z, y ≥ 0 such that

for all x ∈ X, − zθπt(x|θ) +
∑
θ′∈R

zθ′πt(x|θ′) + yx ≥ 0 (5)

− zθ
∑
x′

α(x′, t′)πt′(x
′|θ) +

∑
θ′∈R

zθ′
∑
x′

α(x′, t′)πt′(x
′|θ′) +

∑
x′

yx′ < 0

(6)

Take inequality (5) from the second alternative and multiply by β(x, x′) as described in Def-

inition 6 and sum over x ∈ X:

−zθ
∑
x

β(x, x′)πt(x|θ) +
∑
θ′∈R

zθ′
∑
x

β(x, x′)πt(x|θ′) +
∑
x

β(x, x′)yx ≥ 0

Because t ⪰θ t
′, we get for all x′ ∈ X ,

−zθπt′(x
′|θ) +

∑
θ′∈R

zθ′πt′(x
′|θ′) +

∑
x

β(x, x′)yx ≥ 0

We can then multiply by α(x′, t′) and sum over x′ ∈ X:

−zθ
∑
x′

α(x′, t′)πt(x
′|θ) +

∑
θ′∈R

zθ′
∑
x′

α(x′, t′)πt′(x
′|θ′) +

∑
x,x′

α(x′, t′)β(x, x′)yx ≥ 0 (7)

Because
∑

x′ β(x, x′) ≤ 1 and α(x′, t′) ≤ 1 for all x′ ∈ X , we have
∑

x,x′ α(x′, t′)β(x, x′)yx ≤∑
x yx. Therefore, the inequality (6) cannot hold and the first alternative holds.

With this result in hand, we can now prove our result. Suppose that t is not part of the optimal

menu. Thus we can find an equilibrium of the zero-sum game of Theorem 1, (α, s,m) with

s(t|θ) = 0 for all θ ∈ A. Take a test t′ used in equilibrium by some θ ∈ A. Then from
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Lemma 4, we can construct a α̃ such that

pt(α̃; θ) ≥ pt′(α; θ)

for all θ′ ∈ R, pt(α̃; θ
′) ≤ pt′(α; θ

′)

If the first inequality is strict or the second such that m(θ′|θ) > 0 is strict then we have a

strict profitable deviation. Otherwise, we have constructed a new equilibrium of the zero-

sum game.

A.9 Proof of Proposition 9

Proof. (⇐) For each θ ∈ A, let tθ such that

supp πt(·|θ) ∩
(
∪θ′∈R suppπt(·|θ′)

)
= ∅

Then posting a menu (tθ)θ∈A is optimal (eliminating duplicates if there are some). Each θ ∈ A

chooses tθ. For any strategy of θ′ ∈ R, the DM accepts after any (x, t) ∈ ∪θ:σ(t|θ)=1 supp πt(·|θ)

and rejects otherwise. This gives the DM and the A-types maximal payoffs and the R-types

get rejected for any strategy they follow.

(⇒) Suppose the DM’s payoffs are maximal and there is θ ∈ A and for all t ∈ T there is

θ′ ∈ R and x ∈ X such that πt(x|θ), πt(x|θ′) > 0. Then when θ chooses t out of the menu

of tests, if θ′ chooses t as well, at x, either the DM accepts θ′ or rejects θ. Therefore, payoffs

cannot be maximal.
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A.10 Proof of Theorem 2

The only thing we need prove is that it is optimal to have a different message for each type

θ ∈ A, the rest follows from Theorem 1. Suppose it is not the case and take a saddle-point

(α, s,m) of the zero-sum game.

There is θ1, θ2 ∈ A and (t, c) ∈ T × C such that s(t, c|θ1) = s(t, c|θ2) = 1 (if they use a

different test then we can also change the message and nothing is changed). Then consider the

alternative strategy α′ where, for some unused (t, c′) in the original mechanism, α′(t, c′, x) =

α(t, c, x) for all x ∈ X and α′(t′′, c′′, x) = α′(t′′, c′′, x) for all other (t′′, c′′) ∈ T × C and

all x ∈ X otherwise. The new strategy α′ is thus the same as α but makes sure that if the

pair (t, c′) is chosen, it uses the same actions as (t, c). Now consider the following strategy

s̃(·|θ) for θ ∈ A in the auxiliary game, s̃(·|θ) = s(·|θ) for θ ̸= θ1 and s̃(t, c′|θ1) = 1. In

the zero-sum game under the strategy α′, the payoffs are the same than under (α, s,m) for

all types. Moreover, any deviations under α′ gives the same payoff than under α. Therefore,

(α′, s̃,m) is an equilibrium of the zero-sum game and v(α, s,m) = v(α′, s̃,m). Either α′ is

a best response to (s̃, m), (α′, s̃,m) is saddle-point of v and characterises an optimal menu.

Or, α′ is not a best-response and there is α̃ such that v(α̃, s̃,m) > v(α′, s̃,m) = v(α, s,m).

This would contradict that (α, s,m) is a saddle point of v.

A.11 Proof of Proposition 10

The way this proof proceed is by first arguing that an optimal mechanism σ̃ : Θ → ∆(T ×C)

does weakly better than an optimal GR-mechanism, τ . Then I will show that the outcome of

the optimal mechanism σ̃ can be implemented by a GR-game.

To see the first part, note that a GR-mechanism can be rewritten as a mechanism τ̃ : C →

∆(T ) and a DM-strategy α̃ : C × T ×X → [0, 1]. Then we can implement any equilibrium

62



outcome of (τ̃, α̃, δ), where δ is the agent’s strategy by a mechanism and strategy of the DM,

(σ̃, α) by setting σ̃ = τ̃ ◦ δ, the composition of the GR-mechanism and the agent’s strategy

and α = α̃. This does not change the outcome so all the agent’s incentives are preserved.

I will now show that the outcome of the menu game with communication can be implemented

in a GR-game.

Remember that we have established that in the zero-sum game, all the A-types play a pure

strategy and send a different message (Theorem 2). This implies that it is without loss of

optimality to decompose the A-types’ strategy s in choosing a message c ∈ C, call it ϕ :

A → C and a test for each message, call it ρ : C → T .

Abusing notation define

pt(α; θ, c) =
∑
x

α(t, x, c)πt(x|θ)

v(α, ϕ, ρ,m) =
∑
c

1
[
(t, θ) : t = ρ(c), c = ϕ(θ)

][
µ(θ)pt(α; θ, c)

−
∑
θ′∈R

µ(θ′)m(θ|θ′)pt(α; θ′, c)
]

To understand the new version of v, we sum over all messages and for each message, we

select the the test associated with it and the A-type choosing that message.

We get,

min
m

max
α,s

v(α, s,m) = max
α,s

min
m

v(α, s,m) = max
α,ϕ,ρ

min
m

v(α, ϕ, ρ,m) = min
m

max
α,ϕ,ρ

v(α, ϕ, ρ,m)

But now observe that we could equivalently interpret ρ as being chosen by the DM as it

maximises his payoffs. We are left to check that ϕ and m generate equilibrium strategies.

As before the R-types select an A-type’s strategy. Because they are playing a pure strategy,
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this is equivalent to choosing an on-path c taking into account that the test will be t = ϕ(c)

to maximise pt=ϕ(c)(α; θ
′, c). The A-types choose c if

µ(θ)pϕ(c)(α; θ, c)−
∑
θ′∈R

µ(θ′)m(θ|θ′)pϕ(c)(α; θ′, c) ≥ µ(θ)pϕ(c′)(α; θ, c
′)

−
∑
θ′∈R

µ(θ′)m(θ|θ′)pϕ(c′)(α; θ′, c′)

⇔ µ(θ)
[
pϕ(c)(α; θ, c)−pϕ(c′)(α; θ, c

′)
]
≥

∑
θ′∈R

µ(θ′)m(θ|θ′)
(
pϕ(c)(α; θ

′, c)−pϕ(c′)(α; θ
′, c′)

)
≥ 0

where the last line uses the equilibrium behaviour of R-types to get that m(θ|θ′) implies

pϕ(c)(α; θ
′, c)− pϕ(c′)(α; θ

′, c′) ≥ 0.
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