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Abstract

We study choice between bets on the colors of two balls, where one
ball is drawn from each of two urns. Though you are told the same
about each urn, you are told very little, so that you are not given any
reason to be certain that the compositions are identical. We iden-
tify choices that reveal an aversion to ambiguity about the relation
between urns, thus identifying a source of uncertainty di¤erent from
the usual Knightian distinction between risk and ambiguity. Choice
behavior is studied in a controlled high-stakes laboratory experiment,
and the ability of new and existing models to rationalize the experi-
mental �ndings is examined.
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1 Introduction

We study choice between bets on the colors of two balls, where one ball is
drawn from each of two urns. Though you are told the same about each
urn, you are told very little; for example, you may be told only that each
urn contains ten balls that are either red or blue. Accordingly, you are
not given any reason to be certain that the compositions are identical, nor
are you given any reason for being con�dent that the urn compositions are
unrelated or related in any particular way. The following four questions are
addressed. Is there behavior that intuitively reveals such a lack of con�dence?
Do subjects exhibit such behavior in a laboratory setting? How is the noted
behavior associated with aversion to ambiguity as demonstrated by the two-
urn Ellsberg experiment? How can the behavior that we identify be modeled?
The relation to the familiar two-urn Ellsberg experiment provides per-

spective. There you are given di¤erent information about the two urns: you
are told the exact color composition for one, the risky urn, and nothing at all
about the composition of the other one, the ambiguous urn. Then you are
asked to choose between betting on a single draw from the risky urn or from
the ambiguous urn. It has been shown that for many people the lack of in-
formation about the ambiguous urn is re�ected in choice between such bets.
Here, in contrast, the information about each urn�s composition is imprecise
and it is symmetric in the two urns, that is, both urns are ambiguous and
they are indistinguishable (though not necessarily identical). We consider
bets that pay according to the colors of balls drawn from both urns, and
we argue that the choice between di¤erent bets of this sort reveals the sub-
jects�attitude towards another dimension in which information is lacking�the
relation between urns�compositions. Thus just as Ellsberg gives behavioral
meaning to one kind of ambiguity and provides a litmus test for related mod-
els, we strive to do the same for a setting with "repeated random events"�
aversion to ambiguity about heterogeneity.
Below we often refer to "repeated experiments" rather than to "repeated

random events." Thus "experiment" is used in two senses: either as the real-
ization of a stock return or another economically relevant random variable,
or in reference to a laboratory experiment on choice behavior. However, the
meaning should be clear from the context; in particular, we will never need
to refer to repeated laboratory experiments. Note also that just as the draws
from the two urns are made simultaneously, repeated experiments should be
understood to be cross-sectional rather than ordered in time.
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The choice behavior that we identify is then tested in a controlled labora-
tory experiment where high monetary stakes are used to incentivize subjects�
choices between bets. The �ndings suggest that many subjects are averse to
the lack of information concerning the relation between the urns�composi-
tions, and that this aversion is associated with (but distinct from!) Knightian
ambiguity aversion as measured in the standard Ellsberg experiment. They
also re�ect on, and discriminate between, some preference models that have
been studied in the literature on repeated experiments.
The most popular model of preference in a setting with repeated exper-

iments is the exchangeable Bayesian model, which is the specialization of
subjective expected utility due to de Finetti (1937). The model has three
important (indeed, de�ning) features. First, it implies indi¤erence between
any two bets on the outcomes of experiments that di¤er only in a reorder-
ing of experiments; refer to such indi¤erence as symmetry, or, following de
Finetti, as exchangeability. Such symmetry is intuitive in the case of our urns
where the information given provides no reason for distinguishing between
them, and it is natural more generally as illustrated in the less contrived
examples described shortly. A second feature is that preference over bets
(or acts) is probabilistically sophisticated (Machina and Schmeidler, 1992),
which means, roughly speaking, that beliefs are probabilistic (can be rep-
resented by a probability measure). Probabilistic sophistication does not
require the expected utility functional form, but the latter is the third note-
worthy component of the exchangeable Bayesian model. Not surprisingly in
light of the literature surrounding the Ellsberg paradox, the latter model is
inconsistent with the behavior that we identify as revealing aversion to am-
biguity about how the urns di¤er. Indeed, the contradiction is more basic
because the behavior contradicts probabilistic sophistication even without
the expected utility functional form. For all of the above reasons, in our
discussion of models (Section 4) we explore �rst generalizations of the de
Finetti model that retain exchangeability (or symmetry) but not probabilis-
tic sophistication.
We show that one of these generalized models can account for the mar-

ginal distribution of observed choices. However, they struggle with the asso-
ciations present in the data. This motivates us to outline (see Section 4.2) an
alternative to the de Finetti-style model that centers on multiple "sources"
(Tversky and Fox, 1995; Tversky and Wakker, 1995) or "issues" and that
translates objects of choice into multistage lotteries which are evaluated re-
cursively (see, for example, Segal (1987), Ergin and Gul (2009), Amarante,
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Halevy and Ozdenoren (2013)). In our case, there are three issues�risk, bias
(the composition of each urn), and uncertain di¤erences between urns�and
accordingly objects of choice are translated into three-stage lotteries. The
resulting model retains a Bayesian prior over each source, yet has su¢ cient
�exibility to rationalize the observed behavior, overcoming the strict restric-
tions imposed on the associations by the various generalizations of the de
Finetti model.

1.1 Economic signi�cance

Betting on the draws from a sequence of urns is intended as a canonical
example of choice problems where payo¤s to an action depend on the real-
ization of multiple random events. Suppose, for example, that the outcome
si of the i-th experiment is given by an equation of the form

si = � � xi + �i, i = 1; 2; :::; I. (1.1)

Experiments may di¤er and the vectors xi describe the observable hetero-
geneity.1 The key issue is the decision maker�s model of the residuals or un-
observed heterogeneity �i, which are the source of the uncertainty she faces.
If all sources of heterogeneity of which she is aware are included in the xis,
then it is natural that she be indi¤erent between any two bets on the realiza-
tion of residuals that di¤er only in a reordering of experiments. However, the
individual may not be con�dent that the xis describe all relevant di¤erences
between experiments, in which case she may not be certain that residuals are
identical, or that they are related in any particular way. Though she may not
be able to describe further forms of heterogeneity, she may be worried that
there are gaps in her understanding that could be important and thus she
may wish to take into account their possible existence when making choices.
A number of studies have argued for the importance of the noted lack

of con�dence. They serve also to illustrate decision making with repeated
experiments in economic settings; in the �rst three examples, the decision
maker can be thought of as a policy maker. In the context of the cross-
country growth literature where an experiment corresponds to a country
and the outcome is its growth rate, Brock and Durlauf (2001) point to the
open-endedness of growth theories as a reason for skepticism that all possible

1In the urns context, there is no observable heterogeneity
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di¤erences between countries can be accounted for (p. 231), and they em-
phasize the importance of "heterogeneity uncertainty." King (2001) makes
a similar critique in an international relations context where an experiment
corresponds to a pair of countries and the outcome is con�ict or lack of
con�ict; he refers to "unmeasured heterogeneity."2 This paper complements
these critiques by translating them into behavioral terms and thus giving
more precise meaning to a concern with "heterogeneity uncertainty" or "un-
measured heterogeneity."
The applied IO literature provides an example of a di¤erent sort.3 Here

there is a cross section of markets in each of which an entry game is played.
Thus an experiment is a market and an outcome is the number and iden-
tity of entrants in a pure strategy Nash equilibrium. The di¢ culty faced by
the policy maker is that there may be multiple equilibria and she has little
understanding of how equilibria are selected, and accordingly how selection
mechanisms may di¤er or be related across markets. A fourth example arises
in repeated English auctions when, as in Haile and Tamer (2003), because of
the free-form nature of most English auctions in practice, one makes weak
assumptions about bidders�behavior. Then equilibrium behavior in each auc-
tion is multiple-valued and can be narrowed down and related across auctions
only via heroic and often unjusti�able assumptions. This has implications for
an auctioneer who is choosing reserve prices (Aryal and Kim, 2013). Though
our laboratory experiment does not investigate behavior in the above speci�c
settings, the results lend support to the hypothesis that decision-makers care
about poorly understood di¤erences across markets or auctions.
Finally, as a motivating example involving a more standard individual

decision problem, consider the problem of optimal (static) portfolio choice.
There are I securities available and the individual�s model of returns is a
linear factor model as in arbitrage pricing theory (APT). That is, the ith
return si is as in (1.1), which in more natural notation takes the form

si = �i �X + �i, i = 1; 2; :::; I;

the vector X gives factor returns and �i gives the betas or factor loadings

2He writes (p. 498) that �in international con�ict data are neither powerful nor even
adequate summaries of our qualitative knowledge�, so that the common assumption of
exchangeability is usually violated.

3We are referring to the literature on entry games and partial identi�cation (see Tamer
(2010) and the references therein). For an explicit choice-theoretic perspective, see Epstein
and Seo (2013).
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of security i. APT typically adopts strong assumptions on the idiosyncratic
terms �i, say that they are i.i.d., which are suspect intuitively as explained
in connection with (1.1). It is well known that ambiguity about returns can
have substantial e¤ects on the nature of optimal portfolios (Garlappi, Uppal
and Wang, 2007), on participation decisions (Dow and Werlang, 1992), and
on equilibrium pricing and uncertainty premia. In the presence of multiple
securities, ambiguity implies that gains from diversi�cation are limited and,
on the pricing side, that idiosyncratic uncertainty can have a positive price
in equilibrium even in the limit as I goes to in�nity (Epstein and Schneider,
2010). These latter implications are contrary to the intuition based on the
classic Law of Large Numbers (LLN). However, the latter does not apply
when there is ambiguity about heterogeneity of security returns (that is, of
the �is) of the sort studied here. Thus our experimental �ndings are relevant
(albeit indirectly) to important issues in the theories of portfolio choice and
asset pricing.

2 A Thought Experiment

Two urns, numbered 1 and 2, each contain 10 red or blue balls. A ball is to
be drawn from each urn simultaneously. Beforehand, a subject is asked to
choose between speci�ed bets (or Savage acts depending) on the colors of the
two balls. The draw from urn i yields an outcome in Si = fRi; Big, i = 1; 2,
and the two draws together yield an outcome in

S1 � S2 = fR1B2; B1R2; R1R2; B1B2g .
Denote by R1B2 both the obvious event and the corresponding bet that yields
the prize 100 if that event is realized and the prize 0 otherwise; similarly for
other events and bets. Prizes are denominated in dollars. Both the event and
the bet fR1B2; R1R2g are sometimes denoted simply R1. More generally, the
individual is asked to choose between acts over the state space S1�S2 having
dollar outcomes. Any such act can be represented in the form

f =

2664
f (R1B2) R1B2
f (B1R2) B1R2
f (R1R2) R1R2
f (B1B2) B1B2

3775
Let � be a preference relation on the set of acts. We assume symmetry

of information about the two urns, which in behavioral terms means that
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the individual is indi¤erent between any f and the act obtained by switching
the prizes on R1B2 and B1R2.4 Two immediate implications are that the
individual is indi¤erent between the bets R1B2 and B1R2, and also between
the bets R1 and R2 and between the bets B1 and B2. We interpret this
indi¤erence as re�ecting the lack of observable di¤erences between urns.
We assume further that the description of urns is symmetric in colors

and thus that there is indi¤erence between f and the act obtained if the
prizes on R1R2 and B1B2 are reversed. This assumption is made solely for
concreteness and simplicity. Together, the two symmetry assumptions imply

R1B2 � B1R2, Ri � Bi, i = 1; 2, and R1R2 � B1B2. (2.1)

We restrict attention throughout to preferences satisfying these indi¤erences,
even where not stated explicitly.
Consider two choice problems and behaviors for this setting. The �rst,

that we term One vs Two, o¤ers the individual the choice between betting
on the color drawn from one urn as opposed to betting on the colors drawn
from both urns. More precisely, denote by Same and Diff the bets that
the two draws yield the same color and di¤erent colors respectively. (Thus
Same = fR1R2; B1B2g and Diff = fR1B2; B1R2g.) Then consider the
choice between R1 and Same, and also between R1 and Diff . Consider in
particular the following rankings, abbreviated below by One � Two:

R1 � Same and R1 � Diff . (2.2)

The �rst thing to note about these rankings is that they contradict prob-
abilistic sophistication. To see this, if P is any predictive prior on the state
space fR1B2; B1R2; R1R2; B1B2g representing beliefs, then the two rankings
imply

P (R1) > P (fR1R2; B1B2g) and P (R1) > P (fR1B2; B1R2g) .

But P (R1) = P (B1) by the symmetry in (2.1). It follows that R1 has higher
probability than Same and that the complement of R1 has higher probabil-
ity than the complement of Same, which is impossible. A contradiction is
obtained similarly if both strict rankings in (2.2) are reversed, or if there is
indi¤erence in exactly one of them.

4In the terminology of Chew and Sagi (2006), R1B2 and B1R2 are exchangeable events.
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Remark 2.1 We emphasize that the contradiction is with the reliance on
any single prior rather than with a speci�c prior. As a result, treating omit-
ted variables as "nuisance parameters" and integrating them out does not
resolve the con�ict unless this is done in such a way as to violate probabilis-
tic sophistication. The parallel with the Ellsberg paradox is that if uncertainty
about the true composition of an urn is modeled solely via a prior over prob-
ability laws, then, as Savage noted, merely integrating over this uncertainty
leaves the individual with the "mean" predictive prior, and still precludes the
intuitive ambiguity averse behavior pointed to by Ellsberg.

Given that (2.2) contradicts probabilistic sophistication, why would an
individual make these choices? The intuition is that only the bets on both
draws are subject to ambiguity about how urns di¤er or are related, which
may, depending on the degree of aversion to such ambiguity, lead to the
preference for R1. To elaborate, consider the bet Same. This is an attractive
bet if it is believed that the compositions of the two urns are similar, which
would make "positive correlation" between draws likely. Since you are not
told anything to the contrary, this belief is plausible but no more so than
the belief that the two compositions are di¤erent�one urn is biased towards
red and the other towards blue�which would make "negative correlation"
between draws more likely and render Same an unattractive bet. Given a
conservative attitude, this uncertainty would act against choosing Same. Of
course, there is also reason for a conservative individual to discount the bet
R1 because the composition of each urn is ambiguous. Therefore, speaking
informally, we interpret the preference for R1 as indicating a greater aversion
to ambiguity about di¤erences between urns than to ambiguity about the
bias of any single urn. Similarly for the interpretation of the preference for
R1 over Diff . When both rankings in (2.2) are reversed strictly, (as for
the model in Appendix B), a greater aversion to ambiguity about bias is
indicated.
An alternative response to the problem of One vs Two is to choose

either Same � R1 � Diff , or Diff � R1 � Same. (2.3)

These choices do not indicate an aversion to ambiguity because both cases
are consistent with probabilistic sophistication. For example, the �rst is
rationalized by any probability measure satisfying

P (B1B2) = P (R1R2) � P (R1B2) = P (B1R2) .
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A Bayesian with an i.i.d. prior uniform within each urn would be indi¤erent
between all three bets indicated.

Next we describe another choice, this time between nonbinary acts, that
violates Savage�s Sure-Thing-Principle (STP) and that can be understood as
revealing an aversion to ambiguity about heterogeneity. Consider the follow-
ing choice pattern that we term the Correlation Certainty E¤ect (CCE):

f0 �

2664
100 R1B2
0 B1R2
0 R1R2
0 B1B2

3775 �
2664
x R1B2
x B1R2
0 R1R2
0 B1B2

3775 � g0 and (2.4)

f1 �

2664
100 R1B2
0 B1R2
x R1R2
x B1B2

3775 �
2664
x R1B2
x B1R2
x R1R2
x B1B2

3775 � g1 (2.5)

The indi¤erence f0 � g0 indicates that x is a conditional certainty equivalent
for the bet on R1B2, where conditioning is on the two draws yielding di¤erent
colors. Because the pair f1 and g1 is obtained from f0 and g0 by a change in
common outcomes, (from 0 to x on the event fR1R2; B1B2g), the STP would
require that f1 and g1 be indi¤erent. However, there is intuition that aversion
to ambiguity about heterogeneity can lead to g1 being strictly preferable.
For the indi¤erence f0 � g0 to obtain the individual might require a large
value of x to compensate for the fact that the event where di¤erent colors
are drawn is ambiguous. However, that ambiguity is completely eliminated
when outcomes are changed as indicated which means that the individual
is left with what now seems like an exceedingly large constant payo¤. Put
another way, ambiguity about the correlation between urns means that there
is "complementarity" between what happens on fR1B2; B1R2g and on its
complement, contrary to the weak separability required by STP. The change
in common outcomes also improves f1 relative to f0 but the e¤ect is plausibly
smaller there.
There is an alternative interpretation of CCE that is unrelated to am-

biguity. The individual could be probabilistically sophisticated but, after
using her predictive prior to translate acts into lotteries, she does not use
vNM expected utility theory to evaluate the induced lotteries; for example,
she may behave as in the Allais paradox. The experimental design (Section
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3.1) permits us to separate between the two possible interpretations at the
individual level. Since choices made in the Ellsberg problem and One vs Two
could unambiguously indicate lack of probabilistic sophistication, we will use
the choices made in these two problems to suggest whether a subject who
exhibits CCE does so due to ambiguity or Allais-type behavior. Hence, if the
subject is not probabilistically sophisticated in at least one of these choice
problems, (for example, if she exhibits One � Two), then we are on stronger
ground in interpreting CCE as being due to her aversion to ambiguity about
the relation between the two urns.
We turn now to describing our experimental investigation of One vs Two

and CCE.

3 A Laboratory Experiment

3.1 Design

Subjects were recruited from UBC�s Vancouver School of Economics subject
pool using ORSEE (Greiner, 2003) to an experiment that promised partici-
pants a chance to earn up to $111 during a one hour experiment in decision
making (including a show-up fee of $10). After consent forms were signed,
the instructions were read aloud. Subjects were presented with two urns
which contained ten red or blue balls, (the language in the experiment used
jars and marbles that were blue or green), and then they were asked to make
binary choices between bets in each of ten questions (or choice problems).
Complete instructions may be found in Appendix E.
The �rst eight questions were organized in pairs, which allowed us to infer

strict preference from choices by slightly varying the prizes. For example, the
�rst question asked the subject to choose between a bet paying $100 if the
ball drawn from urn 1 is red and a bet paying $101 if the balls drawn from
the two urns are of the same color. Question 2 was similar except that the
two winning prizes were switched ($101 if red is drawn from urn 1 and $100
if the same color is drawn from both urns). The choice to bet on the single
urn in question 1 implies a strict preference also when the two prizes are
equal; and similarly if the choice in question 2 is to bet on the two colors
being the same. Choice of both bets that pay $100 is inconsistent with
monotone preferences (assuming transitivity). Choice of both bets that pay
$101 is consistent with indi¤erence between the bets. The rationale behind
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this design was explained to subjects before they answered any questions.
The design establishes an upper (lower) bound on the indi¤erence (strict
preference) class.5 In the description of results below, indi¤erence should be
interpreted as the absence of evidence for strict preference.
This design of questions, which we have not seen used previously, allows

us to identify a strict ordinal ranking without using a cardinal valuation.
Methods based on elicitation of cardinal valuations of bets, such as Becker-
DeGroot-Marschak (1964) used in Halevy (2007) or a discrete version using
a choice list used in Abdellaoui, Baillon, Placido and Wakker (2011), rely
for incentive compatibility on separability of preferences, which often is not
satis�ed by non-expected utility models (Karni and Safra, 1987). In addition,
cardinal elicitation is cognitively taxing, leading to possible errors in the
elicitation procedure.
All subjects were presented with the following ten choice problems.

One vs Di¤erent : Choose between a bet on a color of a ball drawn
from a single urn and a bet that pays if the balls drawn from the two
urns have di¤erent colors (questions 1 and 2).

One vs Same: Choose between a bet on a color of a ball drawn from
a single urn and a bet that pays if the balls drawn from the two urns
have the same color (questions 3 and 4).

Same vs Di¤erent : Choose between a bet that pays if the balls drawn
from the two urns have the same color, or a bet that pays if they have
di¤erent colors (questions 5 and 6).

Standard Ellsberg: Questions 7 and 8 asked the subjects to choose
between a bet on the color of the ball drawn from one of the two urns
and a bet on a color of a ball drawn from a third urn that contained
�ve red and �ve blue balls (a risky urn as in Ellsberg).

Correlation Certainty E¤ect (CCE): In question 9 the subject was pre-
sented with a choice list in which she was asked to choose between a bet
paying $100 if the colors of the balls drawn are red from urn i and blue

5As noted above, the choice of the two bets paying $101 in both questions is consistent
with indi¤erence. However, it could be that lowering the higher prize to $100 + " (for
example, $100:1) in both questions might cause a subject to choose the same bet (with a
prize of $100 and $100 + ") in both questions, thus revealing strict preference.
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from urn j (i and j, i 6= j, were chosen by the subject ex-ante), and $x
if the two balls are of di¤erent colors. The choice list varied x between 1
and 100, permitting elicitation of an approximate conditional certainty
equivalent. Denote by x the highest value of x for which the subject
preferred the $100 bet. After answering this question, x was inserted
into question 10, which was not revealed to the subject beforehand,
and the subject was asked to choose between receiving $x for sure and
a bet paying: $100 ($0) if the colors of the balls drawn from urns i and
j are red and blue, and $x if the two balls have the same color.

To sum up, questions (1-4) correspond to One vs Two, questions (9-10)
correspond to CCE, and questions (7-8) correspond to the standard two-
urn Ellsberg choice problem. Questions (5-6) elicit the preference between
betting on the two draws yielding the same as opposed to di¤erent colors; as
explained in the sequel, these questions permit identifying inconsistencies in
answering questions (1-4).
Payment was determined by randomly choosing one question before sub-

jects made their choices. This version of the Random Incentive System (RIS)
is theoretically incentive compatible in eliciting ambiguity attitudes (Baillon,
Halevy and Li, 2013), because the order suggests that choices are between
lotteries over Savage acts wherein ambiguity cannot be hedged. In the stan-
dard implementation of the RIS (where the randomization is performed after
choices have been made), the mechanism induces a choice problem in which
the subject faces Anscombe-Aumann acts and thus where she can hedge
ambiguity. It is important to note however that the randomization order in
which the subject evaluates her options is determined cognitively and requires
more empirical investigation.6 The experimental implementation employed
two subjects who wrote the random question�s number on notes that were
put into sealed envelopes and distributed among the subjects. The envelopes
were opened only after all choices were made and the balls were drawn from
the urns.
Before subjects made any payo¤ relevant choices, they were presented

with four pairs of bets which demonstrated the natural symmetry between
urns and between colors in this experiment. Then every subject was asked
whether she agreed with the four indi¤erences in (2.1). This question was

6The empirical question whether subjects hedged in spite of our implementation is
discussed further below in Section 3.2.5.
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not incentivized.7

In order to eliminate a potential suspicion that the experimenter could
manipulate the composition of the urns, each subject was asked to choose at
the beginning of the experiment an urn (1 or 2) and a color (red or blue) to
bet on in the bets that involve a single urn. Similarly, for the CCE questions
(numbers 9 and 10), the subjects chose the urns to determine if she will be
paid $100 in R1B2 or B1R2: To simplify exposition of the results, we proceed
as though all individuals chose urn 1 and the color red. Thus, for example,
the bet on a single urn is represented by R1, the bet on drawing red from
urn 1.

3.2 Results

A total of 80 subjects participated in 4 sessions, which took approximately
one hour each. Subjects were paid a total of CA$4,851 (an average of just
over $60 per subject). Out of the 80 subjects, a total of 24 were removed from
the analysis. 11 subjects were removed due to non-monotone choices (assum-
ing transitivity, choosing in at least one pair of questions two lotteries with
prizes of $100), 7 due to non-transitive choices (assuming monotonicity, for
example: revealing that Same � R1 � Diff in questions 1-4 but choosing
consistently with Same � Diff in questions 5-6), and 4 for disagreeing with
the symmetry over colors and urns expressed in (2.1).8 This leaves 56 subjects
whose choices are analyzed below.9 We consider this retention rate to be high
when taking into account both the many dimensions along which choices are
measured, and the strong consistency (transitivity and monotonicity) that
we imposed.10 We attribute this rate to the high stakes (more than $100)
employed in the experiment, which provided subjects su¢ cient incentive to

7For the most part our interpretations of experimental results presume the symmetry
expressed in (2.1). However, as explained in Remark 3.1, the experimental design also per-
mits (in principle) identi�cation of failure of probabilistic sophistication without reliance
on symmetry.

8Two mores subjects in the �rst session were caught cheating and their choices were
excluded from the analysis (one of these subjects had non-transitive choices, so her/his
answers would be removed in any case).

9As explained in the sequel, 7 more subjects are removed from the analysis of CCE.
10Two less stringent alternatives are to analyze aggregate responses, or to remove only

problematic questions instead of omitting the problematic subject completely. However,
our retained sample size is su¢ ciently large to give us very reliable answers about tenden-
cies and associations in the population. See also Appendix D.
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minimize arbitrariness and to consider their choices seriously.11 Appendix
D presents results with less strict retention criteria that include 77 subjects;
the main �ndings reported below are found in the larger set as well.

Ellsbergian One vs Two Total
Ambiguity One�Two One�Two One6�Two
Averse 19 9 9 37
Neutral 3 10 2 15
Seeking 1 1 2 4
Total 23 20 13 56
Fisher exact test p-value=0.03<0.05

Table 3.1: Ellsbergian ambguity and One vs Two

Table 3.1 displays the distribution of choices in the two problems that
tested probabilistic sophistication: Ellsberg�s two-urn classic problem and
One vs Two. The notation One�Two denotes the two weak rankings in
(2.2), when at least one ranking is strict. We write One6�Two if at least
one of these weak rankings is violated, and One�Two if there is no strict
preference between a bet on the color of a ball drawn from a single urn and
the two bets (Same and Diff) that depend on the colors of the balls drawn
from the two urns. Table 3.1 is discussed further below.

3.2.1 Ellsbergian Ambiguity

Out of 56 subjects, two thirds (37 subjects) exhibited strict Ellsbergian ambi-
guity aversion when asked to choose between a bet on a color of a ball drawn
from the risky urn (which contained 5 red and 5 blue balls) and a bet on a
chosen color from one of the urns with unknown composition. Slightly more
than a quarter of the subjects chose in a way that does not reveal ambiguity
aversion or seeking and the remaining 4 subjects exhibited ambiguity seeking.
That is, about 73% of the subjects are not probabilistically sophisticated in
a standard Ellsberg experiment. This proportion is consistent with existing

11Subjects found the high stakes very motivating. As an illustration, two subjects in the
�rst session changed the color of the ball they chose to bet on after the balls were drawn
from the urns; both were excluded from the analysis (only one�s choices were consistent
elsewhere). We made sure that in later sessions subjects did not have such an opportunity.
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studies that use certainty equivalent elicitation or choice data.12 ;13

3.2.2 One versus Two

There were 23 subjects (41% of 56 subjects) who exhibited One�Two, and
4 subjects out of the 13 classi�ed under One6�Two exhibited Two�One
(one of them was ambiguity averse and one was ambiguity seeking). These
27 subjects (48% of 56) violated probabilistic sophistication. The choices
of the remaining 29 subjects (52% of the 56 subjects) can be rationalized
by probabilistic beliefs. Out of the remaining 9 subjects classi�ed under
One6�Two, 2 subjects exhibited Same � R1 � Diff (one of them was
ambiguity averse and one was ambiguity seeking), and 7 subjects exhibited
Diff � R1 � Same (all exhibited Ellsbergian ambiguity aversion).
Combining both the Ellsberg and One vs Two choice problems, we �nd

that only 10 out of the 56 subjects made choices that are consistent with
probabilistic beliefs (see Table 3.1). That is, more than 82% were not prob-
abilistically sophisticated in at least one of the choices. Moreover, the as-
sociation between these two measures of attitude to uncertainty concerning
di¤erent dimensions of the environment is highly signi�cant (p-value Fisher
exact test 0.03< 0.05). For example, out of 15 subjects that were neutral to
ambiguity in the Ellsberg problem, 10 did not exhibit either One�Two or
Two�One; and out of 23 subjects that exhibited One�Two, 19 were ambi-
guity averse in the Ellsberg problem.

Remark 3.1 The above statements rely on the assumption of symmetry in
urns and colors expressed in (2.1). However, the experimental design per-
mits us to identify failure of probabilistic sophistication even without this
assumption. For example, suppose that R1 � Same and R1 � Diff . Under
probabilistic sophistication, it would follow that the subjective probability of

12Recent experimental studies that use probability equivalents �nd a much larger pro-
portion of ambiguity neutral subjects. This substantial di¤erence between elicitation
modes deserves separate experimental and theoretical attention. We view binary choice
data (questions 1-8 in the current study) as the experimental �gold standard�, and we
leave to proponents of the probability equivalent elicitation method to account for the
di¤erence.

13Note that this is an upper bound on the number of ambiguity neutral subjects; that
is, the proportion of ambiguity neutral subjects may be even smaller since the increment
of $1 used in the experiment to detect strict preference may have been too big for some
subjects.
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drawing red is greater than 0.5, which would imply the preference to bet on
drawing red from the ambiguous urn in the two-urn Ellsberg problem. Thus
the choices indicated by the preceding rankings, together with the preference
for betting on red in the risky urn rather than in the ambiguous urn, are
inconsistent with probabilistic sophistication even without reliance on any
symmetry assumption. Accordingly, the 19 subjects, more than one third of
the total, who exhibited One�Two and simultaneously were ambiguity averse
in the Ellsberg problem cannot be probabilistically sophisticated even if (2.1)
is not satis�ed.

One substantial di¤erence between the two noted behaviors is that the
proportion of subjects whose choices are consistent with the existence of
probabilistic beliefs in One vs Two is almost double that found in the stan-
dard Ellsberg problem. This di¤erence can be understood in light of the
di¤erences between the two choice problems. The choice of the risky urn
in the classic Ellsberg problem leaves the subject with a purely risky bet
in which the probability of winning is 50%. Thus the preference to bet on
the risky urn, and hence violation of probabilistic sophistication, arises given
only aversion to uncertainty about the bias of the ambiguous urn. In con-
trast, in the choice problem One vs Two all alternatives are ambiguous: the
bet on a single urn is subject to ambiguity about the uncertain composition
of the urn and the bets Same and Diff are ambiguous because of ambi-
guity about how urns di¤er or are related. The intuition for the preference
to bet on one urn rather than on both is that the latter ambiguity is per-
ceived to be more important. For some subjects ambiguity about bias could
have been more important, and this might have led to the ranking Two�One
which also contradicts probabilistic sophistication. However, there is another
possibility�namely one of the rankings in (2.3). The bets Same and Diff
could be viewed as relatively unambiguous because of a strong belief about
how the urns were constructed. As an extreme example, suppose that the
subject�s hypothesis is that the experimenter drew two balls without replace-
ment from an auxiliary urn containing one red and one blue ball, and if a red
(blue) ball was drawn �rst, then urn 1 was �lled with 10 red (blue) balls; the
composition of urn 2 was determined in a similar fashion. Then it is certain
that the balls drawn from urns 1 and 2 have di¤erent colors and thus Diff
pays 100 and Same pays 0, each with certainty, so that R1 is ranked between
them.14 The latter might arise also more generally from the feeling that

14Seven subjects exhibitedDiff � R1 � Same, and two exhibited the reverse rankings.
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"there are only so many red balls to go around," say because the urns are
thought to have been constructed by drawing without replacement from an
auxiliary urn containing n � 10 balls of each color. The description of urns
given to the subjects does not suggest this perception but there is no reason
to rule it out. Probabilistic sophistication is consistent also with the ranking
Same � R1 � Diff , which might arise if urns are perceived to have a com-
mon component, so that a red draw from urn 1 indicates that a red draw is
more likely also from urn 2. (The preference for Same over Diff is intuitive
if the preceding construction is modi�ed so that draws from the auxiliary urn
are made with replacement; it is also an implication of exchangeable models
as described in the next section.) The point is that there is more scope for
probabilistically sophisticated behavior in One vs Two than in Ellsberg, even
for a subject who dislikes (or alternatively likes) ambiguity. Given the sym-
metry conditions (2.1), violation of probabilistic sophistication involves two
rankings (R1 versus Same and R1 versus Diff), while in Ellsberg it depends
only on the single comparison between R1 and the bet on red from the risky
urn.15 Finally, even in the special case where Same and Diff are indi¤erent
(consistent with the choices made by 27 subjects), it is important to note
that such indi¤erence does not imply that these bets are unambiguous. It
could very well be that they are both very ambiguous and equally so with the
bias of each urn, consistent with R1 � Same � Diff and hence also with
probabilistic sophistication. The analogous Ellsberg-style experiment would
have two urns, or sources, with each ambiguous and where their description
would leave "equally ambiguous" at least plausible.

15There is a similarity with a modi�ed Ellsberg experiment where information about
the colors is not symmetric. Then an individual might choose to bet on one color from the
ambiguous urn and on the other color from the risky urn. Though she may dislike ambi-
guity, these two binary choices are consistent with beliefs represented by an asymmetric
single prior.
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3.2.3 Correlation Certainty E¤ect

The analysis of CCE is based on 49 subjects.16 As indicated in Table 3.2, 28
subjects (57%) exhibited the CCE. The remainder chose consistently with
the Sure Thing Principle.17

CCE not CCE Total
# of subjects 28 21 49
% of subjects 57.1% 42.9% 100

Table 3.2: Correlation Certainty E¤ect

As explained in Section 2, CCE is consistent with both lack of prob-
abilistic sophistication and with probabilistically sophisticated preferences
combined with non-expected utility risk preferences. This is re�ected in the
results: 9 out of the 49 subjects are probabilistically sophisticated (based on
their choices in the standard Ellsberg problem and in One vs Two) and 7 of
them exhibit CCE. Of the remaining 40, all of whom are not probabilisti-
cally sophisticated, 21 exhibit the CCE. Therefore, both interpretations have
support in the data. Indeed, CCE is not signi�cantly associated with prob-
abilistic sophistication as re�ected in Ellsberg standard problem and One vs
Two.18 However, since the great majority of subjects are not probabilistically
sophisticated, 75% of the subjects who exhibit CCE violate probabilistic so-
phistication. This lends support to the interpretation that most occurrences
of CCE result from subjects�attitude towards ambiguity about the relation
between urns.

16Out of 56 subjects, the answers of 7 subjects to questions 9 and 10 were omitted.
For two of them there was an error by the research assistants in inserting the conditional
certainty equivalents in question 10 based on the responses to the previous question, and
the rest had extremely low (0 or 1) or extremely high (99 or 100) switching points, which
we thought did not make any economic sense. Since the �rst of the CCE questions involved
a price list, while the rest of the questions involved only binary choices, we believe these
choices resulted from a misunderstanding of the experimental protocol in this question
and did not re�ect on other questions.

17Note that 57% is a lower bound on the proportion of subjects exhibiting CCE, since
the approximate conditional certainty equivalent used in question 10 is the largest integer
x such that, for example: (100; fR1B2g) % (x; fR1B2; B1R2g), and does not necessarily
re�ect indi¤erence.

18CCE behavior is not associated with Ellsbergian ambiguity and with choices in One
vs Two, measured separately.
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3.2.4 Same versus Di¤erent

Though not the main focus of the experiment, we asked subjects to rank the
bets Same and Diff . Combining the latter ranking with the choices in One
vs Two provides a way to test for nontransitivity (assuming monotonicity).
For example, revealing that Same � R1 � Diff in questions 1-4 but choos-
ing consistently with Same � Diff in questions 5-6, contradicts transitive
preference. Due to the complexity of the experiment, we felt that it was im-
portant to verify that the rankings obtained in One vs Two are not arbitrary.
A second rationale for the inclusion of these questions is that the de Finetti
exchangeable model and some generalizations described in the next section
imply the (weak) preference for Same over Diff . Therefore, the experimen-
tally observed rankings re�ect on these and other models examined below.
A third rationale (discussed in subsection 3.2.5) for including this question is
that it serves as a simple test whether the implementation of the RIS (using
lotteries before balls are draws from the urns) eliminates potential hedging
through the randomization used to incentivize subjects.
We �nd that slightly less than half of the subjects (27 subjects) were

indi¤erent between the two bets, and another 7 subjects strictly preferred
Same. The remaining 22 subjects (39%) strictly preferred Diff .
Furthermore, the association between the ranking of Same and Diff

and measures of probabilistic sophistication (PS) is very tight.19 Table 3.3
reports the association between probabilistic sophistication in the Ellsberg
questions and the preference between Same and Diff .
Out of the 15 subjects whose choices in the Ellsberg choice problem

were consistent with probabilistic sophistication, 13 were indi¤erent between
Same and Diff , and out of 29 subjects that exhibited strict preference
between Same and Diff ,20 only 2 were consistent with probabilistic sophis-
tication in the Ellsberg choice problem (p-value Fisher exact test = 0.00067
< 0.01). Though intuitively and also at a theoretical level, the ranking of

19The fact that indi¤erence between Same and Diff and probabilistic sophistication
in One vs Two are strongly associated is not surprising. The most frequent way to be
consistent with probabilistic sophistication in the One vs Two problem, is not to exhibit
strict preference between R1 and each of Same and Diff . But this implies that Same
and Diff will most likely not be ranked by strict preference as well, and hence the tight
association (p-value Fisher exact test = 0.0372). The reason for the quali�cation "most
likely" is that we do not observe indi¤erence, only the lack of strict preference.

20More than 75% of those who exhibited strict preference between Same and Diff;
strictly preferred the latter.
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Same vs Ellsberg Total
Di¤erent PS notPS
Same � Di� 13 14 27
Same � Di� 2 27 29
Total 15 41 56
p-value Fisher exact test = 0.00067

Table 3.3: Ellsbergian ambiguity and Same versus Di¤erent

Same and Diff does not seem connected to probabilistic sophistication (or
its violation), empirically subjects who are not indi¤erent between Same and
Diff are for the most part the same subjects who are not probabilistically
sophisticated. This connection is one of the empirical facts confronting the
models presented in the next section.

3.2.5 RIS and Hedging

As discussed earlier, the usage of RIS in ambiguity experiments is prob-
lematic, since it could provide the subject with an opportunity to hedge the
uncertainty using the randomization device employed in the incentive system.
For this reason we performed the randomization before subjects made their
choices. It is an empirical question whether subjects conformed with this
order when evaluating lotteries, and if they did not, whether they hedged.
Hedging might be revealed in di¤erent ways. For example, consider the

two choices comprising One vs Two, and suppose, for simplicity, that the
individual attaches probability 1=2 to payo¤s being dependent on each of
these questions. Then, a subject who is ambiguity averse and acts as if the
randomization occurs after the balls are drawn, could choose Same over R1
in one question and Diff over R1 in another, and be left with the same
state-independent payo¤ (in expected utility units) that she would obtain
from betting on drawing red from Ellsberg�s risky urn. Accordingly, if she
is ambiguity averse in the Ellsberg problem, the preceding combined choices
would be preferable to R1, and thus we would observe Two � One. However,
as discussed above, the latter is observed for only 4 subjects, and only one
of these is ambiguity averse in the Ellsberg problem.
Similarly, in the questions that compare Same to Diff directly, hedging

would imply the absence of a strict preference between Same andDiff . This
follows since if the subject had perceived the problem as if the randomization
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used for incentives occurred after the balls are drawn from the urns, then
choosing the bet with a prize of $101 in each of the two questions would leave
the subject with a lottery that pays $101 with probability 1=2 independently
of the state, thus completely hedging the ambiguity. However, empirically
more than half of the subjects exhibit a strict preference in these questions
and, as indicated in Table 3.3, these include the large majority of subjects
who are ambiguity averse (and thus might wish to hedge).
We conclude that we do not �nd empirical evidence that subjects used

the RIS to hedge ambiguity.

4 Can This Behavior Be Modeled?

The results of the experiment argue against subjective expected utility theory
and also against probabilistic sophistication. Expected utility maximization
implies indi¤erence in the Ellsberg problem, the rankings (2.3) in One vs
Two, and is inconsistent with the CCE. Out of 49 subjects who completed
all the questions, only 2 subjects were consistent with these predictions. If
one considers probabilistically sophisticated preferences that need not be
SEU, then 7 more subjects who exhibited CCE are added (a total of 18.4%).
In the larger group of the 56 subjects whose choices in the Ellsberg and One
vs Two problems were consistent with monotonicity and transitivity, only
10 (less than 18%) were probabilistically sophisticated. Consequently, we
consider models of preferences that are not probabilistically sophisticated.

4.1 De Finetti-Based Models

Because it is the most commonly used model of preference for a setting with
repeated experiments, we begin by taking the exchangeable Bayesian model
as a benchmark and we consider how it and some generalizations perform.
The exchangeable Bayesian model is de�ned by expected utility maxi-

mization with predictive prior P on S1 � S2 having the well known "condi-
tionally i.i.d." form

P =

Z
�(fR;Bg)

(`
 `) d� (`) . (4.1)

Here ` is a generic probability law on S describing a single urn, and � is a
prior over these laws. Because it is probabilistically sophisticated, this model
is inconsistent with One vs Two (2.2). Further, it implies indi¤erence in (2.5)
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in contradiction to CCE, ambiguity neutrality in the Ellsberg choices, and
also

Same � R1 � Diff

There are only two subjects who made choices consistent with these predic-
tions.
Thus we turn next to two generalizations that have been studied. Epstein

and Seo (2010) study preference between uncertain prospects in a framework
of repeated experiments. Like this paper, they o¤er behavioral critiques of
the Bayesian exchangeable model. Their main contribution is to provide ax-
iomatic characterizations of two alternative generalizations; see also Epstein
and Seo (2013). A major di¤erence from this paper is that they adopt an
Anscombe-Aumann framework (where prizes are lotteries over money, for ex-
ample), which is commonly used in axiomatic work because of the analytical
power that it delivers, but which is also widely acknowledged as being less
satisfactory than a Savage domain (where prizes can be amounts of money).
One reason that is particularly pertinent is that typical applications of the
Anscombe-Aumann domain, including by Epstein and Seo, assume that the
decision-maker is an expected utility maximizer when ranking lotteries (risk),
which limits the descriptive scope of the analysis. In contrast, we adopt a
Savage domain and avoid comparably severe a priori restrictions on prefer-
ences. In part because of this di¤erence in frameworks, the new behaviors
that we introduce here, One�Two and CCE, do not have obvious counter-
parts in the previous work.

Multiplicity in priors (MP):21 Replace the single prior � in (4.1) by a
setM� �(� (fR;Bg)) of prior beliefs about the composition of each urn.
Each such prior � induces a predictive prior over the two urns via (4.1).
Denote by PMP the set of predictive priors generated in this way, that is,

PMP =

�Z
�(fR;Bg)

(`
 `)d� (`) : � 2M
�
. (4.2)

Importantly, each P in PMP is exchangeable.
The utility of any act f is computed in two stages. First, its certainty

equivalent is computed using an expected utility calculation for each P in

21For axiomatic treatments of models of this sort see Epstein and Seo (2010, Model 1),
Al Najjar and De Castro (2010), and Cerreia-Vioglio et al (2013).
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PMP , and second these certainty equivalents are aggregated, where the ag-
gregator can be very general. More precisely, for any act f , utility is de�ned
by

U (f) =W

 
u�1 �

�Z
S1�S2

u (f) dP

�
P2PMP

!
, (4.3)

where u is a �xed strictly increasing vNM index, and W is an aggregator,
restricted to be increasing so thatZ




u (f 0) dP >

Z



u (f) dP for all P 2 PMP =)

U (f 0) > U (f) .

For some purposes below we restrict attention to speci�cations that imply
ambiguity aversion in Ellsberg�s two-urn experiment. One could adopt for
W any of the functional forms studied in the ambiguity literature and moti-
vated by Ellsberg�s experiments, including maxmin (Gilboa and Schmeidler,
1989), the smooth model (Nau, 2006; Klibano¤ et al, 2005; Seo, 2009), and
variational utility (Maccheroni et al, 2006). Each implies a di¤erent ranking
of bets on a single urn, but, as shown below, they have in common the inabil-
ity to model the behaviors One vs Two and CCE that are centered on the
relation between urns. The reason is that though W is very general above,
the set of predictive priors PMP is limiting because it consists exclusively of
exchangeable measures.22

In the �rst two special cases noted, utility functions have the respective
forms

u � U (f) = min
P2PMP

�Z
S1�S2

u (f) dP

�
(4.4)

= min
�2M

Z
�(S)

�Z
S1�S2

u (f) d(`
 `)
�
d� (`) , and

U (f) =

Z
PMP

' � u�1
�Z

S1�S2
u (f) dP

�
dm (P ) (4.5)

=

Z
�(�(S))

' � u�1
�Z

�(S)

�Z
S1�S2

u (f) d(`
 `)
�
d�

�
dm (�) ,

22Conditions on PMP and W that imply symmetry with respect to colors as in (2.1)
are readily speci�ed. Note, however, that the MP model contradicts One � Two and CCE
even without imposing such symmetry.
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for some probability measurem on�(� (S)). The former implies Ellsbergian
ambiguity aversion, as does the latter if ' is concave.

Multiplicity in likelihoods (ML): This model is based on Dempster
(1967,8), where the building block "belief functions" are introduced, and on
Epstein and Seo (2013), which provides a decision-theoretic axiomatization
for the case of repeated experiments. We concentrate on a special case of the
model that su¢ ces to make the point.23

Utility is a special case of Gilboa and Schmeidler�s (1989) maxmin utility
with the set of predictive priors PML constructed as follows. Think of the
perception that there is a subset of balls that is �xed across urns such that the
probability of drawing red from this common component in either urn equals
p < 1

2
, and similarly for blue. The remaining proportion � = 1 � 2p > 0 of

each urn is idiosyncratic and not understood at all. Thus the perception is
that the proportion of each color in each urn lies in the interval [p; 1� p]. In
particular, though the same interval applies to each urn, the compositions
of these idiosyncratic components may di¤er across urns and therefore, the
two compositions may di¤er. The perception is further that a draw from urn
i reveals nothing about the idiosyncratic part of urn j, and any pattern of
correlation across idiosyncratic components of urns is considered conceivable.
More precisely, the set PML of predictive priors on fR1; B1g � fR2; B2g is
given by

PML = p2 [� (R1R2) + � (B1B2) + � (R1B2) + � (B1R2)]

+p��(R1 � fR2; B2g) + p��(B1 � fR2; B2g) (4.6)

+p��(fR1; B1g �R2) + p��(fR1; B1g �B2)
+�2�((fR1; B1g � fR2; B2g))

Each term admits a simple interpretation along the lines of the above informal
description. For example, the set �(R1 � fR2; B2g) re�ects ignorance about
the composition of the idiosyncratic component of the second urn conditional
on drawing red from the the subset of red balls in urn 1 that are common
to both urns; this term has weight p� equal to the probability that the draw
from the �rst urn is from the common component and the draw from the
second urn is from its idiosyncratic component. Similarly, the �nal term

23See Appendix B for an outline of a di¤erent model that features multiple likelihoods
and yet has di¤erent predictions regarding One vs Two.
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expresses complete ignorance about the idiosyncratic components including
about how they are connected across urns.
A number of features of this speci�cation should be noted. First, the

symmetry conditions (2.1) are implied. Second, PML contains both non-
identical product measures and also many nonproduct measures, re�ecting
that the individual is not con�dent either that the urns are identical or
that they are uncorrelated. In the limiting case � = 0, the two urns are
purely risky and i.i.d. with common proportion p = 1

2
for both red and

blue. Also for � > 0, there is a sense in which PML models "independence"
of the two urns: The implied utility function satis�es the "product rule"
UML (f1 � f2) = UML (f1)UML (f2) for any acts fi over urn i, where f1 � f2 is
the pointwise product of f1 and f2 and hence is an act over S1 � S2.24

Table 4.1 describes some of the relevant predictions of both the MP and
ML models and juxtaposes them with the associated experimental �ndings.25

One�Two CCE Ellsbergian Same�Di¤
ambiguity
aversion

% subjects 41% 57% 66% 61%
(36 indi¤erent) (out of 49)

MP X (*) X
p
(*)

p

ML
p p p p

(indi¤)
*refers to the Ellsberg (weakly) ambiguity averse special case

Table 4.1: Marginal frequencies and predictions of the MP and ML models

In the table, an X (
p
) indicates that the model cannot accommodate

(implies) the indicated property. For example, MP cannot rationalize CCE.
The table focusses on the special case of the MP model that exhibits Ells-
bergian ambiguity aversion (in the weak sense, including neutrality). Where
this assumption is necessary to derive an implication we indicate it by an
asterisk. With that restriction, MP cannot accommodate One�Two either.
As a result, it accommodates only 2 more subjects beyond the Bayesian ex-
changeable model. In contrast, ML implies all three behaviors (given � > 0).

24Epstein and Seo (2013) refer to such a utility function as an IID utility function.
The reader is referred to their papers (2010, 2013) and also to Cuoso et al (1999) for
elaboration.

25See Appendix A for proofs.
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Thus, looking at each of these behaviors separately, ML seems to perform
well and much better than MP. This relative performance is intuitive: con-
cern with poorly understood heterogeneity is about robustness to likelihoods,
not to priors.
However, on closer examination the ML model fails in accounting for the

associations between the behaviors. It is important to note that for the ML
model, the three properties being discussed are tied together: One is satis�ed
if and only if each of the others is satis�ed.26 However, this tight connection is
not observed in the experiment: Only 10 subjects satis�ed One �Two, CCE
and Ellsbergian ambiguity aversion.27 That is, together with the 2 subjects
whose choices are rationalized by the Bayesian exchangeable model, the ML
model can rationalize the choices of only 12 subjects out of 49 (less than 25%
of the subjects). This limitation of the model in part motivates consideration
of a di¤erent kind of model in the next subsection.
The other limitation of ML that has been ignored to this point relates

to the �nal column of Table 4.1. The ML model as we have de�ned it
implies indi¤erence between betting on Same andDiff , which was exhibited
by slightly less than 50% of subjects, while roughly another 12% strictly
preferred Same and the remaining 39% strictly preferred to bet on Diff .
Though the choice between Same andDiff was not our motivating behavior,
it is nevertheless related to One vs Two and the experimentally observed
rankings provide another measuring stick for candidate models. For the
ML model, two alternative generalizations can accommodate the observed
heterogeneity in rankings.
As ML is de�ned above, there is certainty about the value of p. Thus

the model generalizes the Bayesian i.i.d. model rather than de Finetti�s
exchangeable model. More generally, the individual might be uncertain about
p and have beliefs represented by ��, a measure over [0; 1

2
], the set of possible

values of p. For simplicity let �� have �nite support, say fp1; :::; pNg. Her
set P�ML of predictive priors would then be the mixture

P�ML = �
N
i=1�

� (pi)P iML,

where P iML corresponds to pi. This is an exchangeable version of ML that
is closer to the general model axiomatized in Epstein and Seo (2013). It is

26This can be seen from the proofs in Appendix A.
27As noted above, the MP performs even worse as there are only 2 subjects who are

Ellsbergian ambiguity averse, indi¤erent between One and Two (or exhibit Same � R1 �
Diff) and do not exhibit CCE.
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readily veri�ed that with this extension ML implies a weak preference for
Same, where the preference is strict except for knife-edge cases.28 This can
be understood by noting the parallel with the Bayesian exchangeable model,
wherein the i.i.d. special case implies indi¤erence between Same and Diff ,
while the exchangeable extension implies that experiments are viewed as
being positively correlated. The preceding are direct analogues for the ML
model.29

Out of 56 subjects, 22 strictly preferred Diff to Same. A Bayesian
exhibits such a ranking if, for example, her predictive prior is P compl, where

P compl (R1B2) = P
compl (B1R2) =

1
2
,

which can be understood in terms such as "there are only so many red balls
to go around", or "regression to the ex-ante mean." This prior is symmetric
across urns (it satis�es P (R1B2) = P (B1R2)), though it cannot be expressed
in the form (4.1). The reason is that de Finetti�s celebrated theorem char-
acterizing exchangeability assumes in�nitely many experiments.30 Thus use
of (4.1) presumes that the individual behaves as if she sees the two urns as
part of an in�nite sequence of symmetric urns, which appears contradicted
by the experimental �ndings. However, the strict preference for Diff can be
accommodated by extending the ML model to permit the individual to at-
tach positive probability (no matter how small) to complementarity between
urns as above. For example, consider the set P��ML of predictive priors given
by

P��ML = (1� �)PML + �fP complg,
where � > 0 is a �xed parameter. Then Diff � Same and, for su¢ ciently
small �, the implications of ML for One vs Two, CCE and Ellsberg aversion
remain intact (by continuity).
Conclude that the ML model, including both the original formulation

and also the two extensions just described, can, if one allows preference
heterogeneity, rationalize all rankings of Same vs Diff without a¤ecting

28Moreover, Ellsbergian aversion, One � Two and CCE are still implied.
29Similarly, the MP model implies that Same is weakly preferred, because it can be

understood as aggregating a number of di¤erent exchangeable Bayesian selves each of
whom prefers Same.

30He also provides a representation result when there are only �nitely many experi-
ments. However, that result has not yet been extended to nonprobabilistically sophisti-
cated preferences.
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the explanatory power with regard to the other three behaviors in Table 4.1.
Thus the inability to model the imperfect connections between the latter
properties that one observes in the experimental results remains the central
challenge for this model.

Remark 4.1 The ML model and its extensions assume more than just maxmin
plus symmetry, and it is to be expected that a broader framework, given also
preference heterogeneity, would provide added �exibility. For example, con-
sider the maxmin model with set of predictive priors consisting of all measures
P of the form

P (R1B2) = P (B1R2) =
1
4
+ � and P (R1R2) = P (B1B2) = 1

4
� �,

where � varies over [�a; a] and a is a �xed parameter, 0 < a < 1
4
. Then

P (Ri) = P (Bi) =
1
2
for each urn i = 1; 2, which implies indi¤erence between

betting on R1 and on the risky Ellsberg urn. But the measures P disagree
about the joint distributions across the two urns, which leads to the preference
One � Two. Thus maxmin can rationalize Ellsbergian ambiguity neutrality
simultaneously with a strict preference for One over Two. The example im-
plies also the indi¤erence f1 � x in (2.5), thus violating CCE and predicting
a pattern of behavior exhibited by only two subjects.31 See Appendix B for
more on what can be done within the maxmin framework to rationalize ob-
served rankings if one allows preference heterogeneity.

4.2 A Source-Based Model

This model acknowledges that there are three sources of uncertainty, or is-
sues, in the experiment. Two of them are familiar: risk�when the compo-
sition of the urn is known, and bias�when the composition of the urn is
unknown; they have been studied extensively both theoretically and empiri-
cally since Ellsberg proposed his thought experiments. The contrast between
them has become synonymous with "Knightian uncertainty" and the distinc-
tion between risk and ambiguity. The new issue, which to the best of our
knowledge has not been studied before, is the heterogeneity and relation be-
tween urns. Note that the latter issue is excluded a priori in an Ellsberg-style

31A similar example is given in Epstein and Seo (2010, Example 4.3), where it is
shown that it violates an axiom, Orthogonal Independence, that is central to their main
representation result (Theorem 5.2).
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risk-versus-ambiguity experiment because the composition of one of the urns
is known and hence the draw from this urn is naturally taken to be com-
pletely independent of the draw from the ambiguous urn. However, when
the decision-maker faces two ambiguous urns, her choice between bets on the
draws from both urns may depend on and reveal her concern with how they
may di¤er and be related to one another.
We outline a streamlined model that relates to our speci�c experiment;

readers will see that the model can be generalized in a number of directions.
First, we elaborate on the three issues; Figure 4.1 provides a diagrammatic
representation. Notationally, the composition of a single urn is described by
a probability vector of the form (p; 1� p), where p denotes the proportion of
red, and the joint composition of the two urns is described by a probability
vector of the form (pRB; pBR; pRR; pBB). If urns 1 and 2 are described by
(p; 1� p) and (q; 1� q) respectively, then (p; 1� p) 
 (q; 1� q) denotes the
joint distribution given by the product measure,

(p; 1� p)
 (q; 1� q) � (p(1� q); q (1� p) ; pq; (1� p) (1� q)) .

Figure 4.1: Hierarchical beliefs on the two ambiguous urns

Issue 1 Uncertainty about the relation between urns takes the form of two alter-
native hypotheses. One possibility entertained by the decision-maker is
that the urns are i.i.d. according to (p; 1� p) for some (unspeci�ed) p 2�
k
10
: k = 0; :::; 10

	
, that is, the two urns can be described by a measure

in the set P ident =
�
(p; 1� p)
 (p; 1� p) : p = 0; 1

10
; :::; 1

	
. The alter-

native is that the urns are "complementary" in the sense that their joint
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distribution lies in the set Pcompl=
�
(p; 1� p)
 (1� p; p) : p = 0; 1

10
; :::; 1

	
.

This hypothesis is justi�ed, for example, by the following perception of
how the urns are constructed: there are 20 balls that are either red or
blue�ten are drawn without replacement to �ll urn 1 and the remain-
ing ten are put into urn 2. The two hypotheses are assigned subjective
probabilities � and 1� � respectively.

Issue 2 Conditioning on either of the above hypotheses, the composition, or
bias, of each urn is uncertain. Thus the decision-maker forms (proba-
bilistic) beliefs about p. Conditional on each hypothesis, she uses the
cdf F over possible values of p.

Issue 3 After conditioning on both the relation between urns and on the bias
(through p), there remains uncertainty about the colors of the two
drawn balls. However, resolution of Issues 1 and 2 implies a unique
probability distribution over fR1B2; B1R2; R1R2; B1B2g. Thus the last
issue concerns risk.

Each bet (or act) f associates a (dollar) payo¤ to each terminal node,
depending on the colors of the two balls drawn. Thus it induces a 3-stage
lottery, denoted Df . A utility function 	 over such lotteries is the �nal
component de�ning preference over bets; more speci�cally, the utility of f is
given by

U (f) = 	 (Df ) .

The utility of a bet on Ellsberg�s risky urn can also be computed using
	. Such a bet involves only risk. Therefore, evaluate it via the induced
(single-stage) lottery that the bet induces, using the restriction of 	 to
single-stage lotteries that are resolved completely at the third stage. For
example, the bet on drawing red from the risky urn has utility 	(Q1), where
Q1 2 �(� (� (R))) is the three-stage lottery given by Q3 =

�
100; 1

2
; 0; 1

2

�
,

Q2 (Q3) = 1 and Q1 (Q2) = 1.
Importantly, by not insisting that multistage lotteries be reduced accord-

ing to the usual probability calculus, the model permits a (partial) disen-
tangling of attitudes towards the three issues. We assume a functional form
for 	 along the lines of Kreps and Porteus (1978), with an expected utility
function at each stage, but with di¤erent utility indices for di¤erent issues,
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and with compound lotteries evaluated recursively.32

To de�ne utility precisely, let u1, u2 and u3 be strictly increasing vNM
indices that will apply to the three sources respectively. For any act f over
S1�S2, its utility (in certainty equivalent units) is computed recursively by:

U (f) = u�11 (�u1(V2 (f)) + (1� �)u1(W2 (f))) ,

V2 (f) = u
�1
2

�Z
p

u2 (V3 (f ; p)) dF

�
, W2 (f) = u

�1
2

�Z
p

u2 (W3 (f ; p)) dF

�
,

V3 (f ; p) = u�13

�Z
S1�S2

u3 (f) d [(p; 1� p)
 (p; 1� p)]
�
, and

W3 (f ; p) = u�13

�Z
S1�S2

u3 (f) d [(p; 1� p)
 (1� p; p)]
�
.

Recall the behavioral expression of symmetry in (2.1). Symmetry in urns
is built into the model, and symmetry in colors is implied if we assume, as we
do, that F is suitably symmetric (the compositions (p; 1� p) and (1� p; p)
are equally likely). For the other behaviors of interest, note that several
relevant bets depend only on subsets of issues. For example, Ellsbergian
ambiguity aversion in this framework requires that the decision-maker prefer
a multi-stage lottery that resolves at the last stage (risk) over a lottery that
resolves over the second (uncertainty about bias) and last (risk) stages. This
is true if and only if u2 is more concave than u3. In comparing One vs Two,
the bet R1 is subject to uncertainty about the bias; its payo¤does not depend
on the �rst issue because R1 is a bet on only one urn, but the payo¤s to both
Same and Diff depend on the relation between urns. This suggests that
the ranking of One vs Two depends on both the relative curvatures of u1
and u2 and on the magnitude of �. A characterization in complete generality
is not available, nor for CCE. However, a special case that we outline next
su¢ ces to demonstrate the �exibility of this model in separating behaviors.
(See Appendix C for supporting details.)
Specialize the model �rst by assuming that the cdf F is given by

F =

8<:
1=3 0 � p < 1

2

2=3 1
2
� p < 1

1 p = 1
(4.7)

32An alternative, following Segal (1987,1990), would be to use non-expected utility
functions at each stage.
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Ellsberg One vs Two Total CCE
Yes No

Averse One � Two 15
0 < �2 < �1

10
0 < �2 < �1 < 2

y
5

0 < �2 � �y1

Averse One � Two 9
0 < �1 = �2

8
0 < �1 = �2 < 2

y
1

/9�1; �2

Neutral One 6� Two 5
0 = �2 6= �1

1
0 = �2 < �1 < 2

y
4

0 = �2 � �y1

Neutral One � Two 9
�1 = �2 = 0

7
/9�1; �2

2
�1 = �2 = 0

Table 4.2: Empirical frequencies of the main behavioral patterns and corre-
sponding su¢ cient parametric restrictions in the source-based model

that is, each urn contains either 10 red balls, 10 blue balls, or 5 of each
color, and each possibility is equally likely. Second, let � = 1

2
, which can

be shown to imply (indeed, characterize) indi¤erence between Same and
Diff ;33 we relax this restriction below. With regard to utility indices, let u3
be linear (risk neutrality) and adopt the normalization u3 (1) = 1, u3 (0) =
0.34 Finally, let u1 and u2 be isoelastic:

ui (x) =

�
x1��i
1��i if �i 6= 1
log x �i = 1

, i = 1; 2,

where �i is positive and measures the concavity of ui (or aversion to the
uncertainty in issue i). For the calculations that follow, we assume also that

�2 < 1:

Under these assumptions, elementary calculations (Appendix C) show
that One � Two if �1 > �2. We use the special case more fully in Table
4.2 to describe how the model can relax the tight connections imposed by de
Finetti-based models, and thus can accommodate several behavioral patterns
found in the data.

33Similarly, Same is strictly preferred if and only if � > 1
2 .

34Under risk aversion we suspect that some of the �ndings below generalize if concavity
of each of u1 and u2 is measured relative to the concavity of u3; but this remains a
conjecture.

32



The parameter restrictions marked with y are based in part on Figure C.1
in Appendix C. Accordingly, �2 � �1 means that the pair (�1; �2) lies in
the lightly shaded region, which is the region where CCE is violated. The
reader will see from Figure C.1 that some parameter restrictions in the Table
(such as �1 < 2) can be relaxed; we opted for greater simplicity instead of
generality.
The results reported in Table 4.2 are based on the assumption that � = 1

2
,

which, as noted, implies indi¤erence between Same and Diff . But about
one half of subjects violate this indi¤erence. To accommodate also this di-
mension of behavior, note that by increasing � slightly above 1

2
, the model

can rationalize the strict preference for Same, while at the same time (by
continuity) not changing any of the other strict rankings indicated, such as
Ellsbergian aversion, One � Two, or CCE.35 The strict preference for Diff
can be accommodated analogously by taking � slightly smaller than 1

2
. In

this way, the model can rationalize the most commonly observed behavioral
patterns found in the data.
The two rankings36

Same � R1 � Diff , or Diff � R1 � Same.

cannot be rationalized by small perturbations of � about 1
2
. However, the

model can rationalize these choice patterns if we take � su¢ ciently di¤erent
from 1

2
. For example, if � is su¢ ciently close to 0, then the individual is

extremely con�dent that the urns are complementary and this leads to the
ranking Diff � R1 � Same; moreover, this ranking can prevail even though
she may be ambiguity averse in the Ellsbergian sense and regardless of the
relative magnitudes of �1 and �2. In the same way, the ranking Same �
R1 � Diff can be rationalized if � is su¢ ciently close to 1.
Another behavioral pattern that is not accommodated in Table 4.2 is the

combination of Ellsberg neutrality, One�Two and CCE. As noted earlier,
these rankings may be rationalized by probabilistically sophisticated prefer-
ences exhibiting the Allais certainty e¤ect.

35We used a similar perturbation for the de Finetti-based models. Note also that
ambiguity neutrality is una¤ected by the value of �, and that One � Two means that
R1 is indi¤erent to both Same and Diff and therefore that it can be exhibited only if
Same � Diff , and thus � = 1

2 .
36Two subjects chose according to the former while 7 chose according to the latter.
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5 Concluding Remarks

The literature stimulated by Ellsberg, particularly the experimental litera-
ture, has focussed on the two-fold distinction between risk and ambiguity,
or �Knightian uncertainty.� In Ellsberg�s two-urn experiment, the latter is
embodied in the uncertain bias (or composition) of the unknown urn. In
a setting with repeated experiments, or multiple ambiguous urns, we have
introduced a second source of ambiguity�correlation between experiments.
Thus we have studied at a behavioral level the three-fold distinction between
risk, bias and correlation.
There are other thought and laboratory experiments in the literature us-

ing multiple urns or sources of ambiguity. The most prominent, of course,
is Ellsberg�s classic two-urn experiment which we have already contrasted
with ours. Eliaz and Ortoleva (2012) and Eichberger et al. (2012) conduct
experiments where there are multiple dimensions of ambiguity (for exam-
ple, an ambiguous probability of winning and an ambiguous winning prize).
They also investigate the association between (ambiguity averse) behaviors
in di¤erent dimensions, but they do not have counterparts of our behavioral
hypotheses. Multiple urns are used in experiments exploring learning and
dynamic consistency. These issues are not involved in our study because we
consider only ex ante choice.
An experiment that has not been conducted but that is potentially use-

ful for evaluating the arguments or interpretations proposed in the current
paper is worth mentioning. We have interpreted the preference One � Two
as re�ecting (an aversion to) ambiguity about how urns are related. An al-
ternative explanation is that subjects may simply dislike bets that depend
on two draws relative to bets that depend only on a single draw. To explore
this hypothesis, one might consider behavior in the extreme case where the
two draws are made (with replacement) from a single ambiguous urn. The
�nding that R1 � Same where the two draws come from the same urn would
challenge our interpretation of the results in the current study.

A Proofs for Table 4.1

This appendix provides proofs for the assertions in Table 4.1. Here and in
the next appendix, it is without loss of generality to adopt the normalization

u (0) = 0 and u (100) = 1.
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MP model:
(MP.i) MP violates One � Two if it exhibits weak Ellsberg ambiguity

aversion: Because p2 + (1� p)2 � 1
2
for all p in [0; 1], infer that

P (Same) =

Z �
(` (R))2 + (` (B))2

�
d� (`) � 1

2

for every exchangeable P . But PML contains only exchangeable measures
and W is increasing. Therefore, Same is weakly preferred to betting on red
in a 50-50 urn. If weakly Ellsberg averse, then Same � R1, contrary to One
� Two.
(MP.ii) MP violates CCE: Because every predictive prior P is exchange-

able and W is increasing,2664
1 R1B2
0 B1R2
0 R1R2
0 B1B2

3775 �

2664
x R1B2
x B1R2
0 R1R2
0 B1B2

3775() u (x) =
1

2
=)

Z
S1�S2

u (f1) dP =

Z
S1�S2

u (g1) dP for every P =)2664
1 R1B2
0 B1R2
x R1R2
x B1B2

3775 �

2664
x R1B2
x B1R2
x R1R2
x B1B2

3775 .
(MP.iii) MP implies Same � Diff : For any P =

R
�(S)

(`
 `)d� (`),

P (Same) = P (R1R2) + P (B1B2) =

Z �
(` (R))2 + (` (B))2

�
d� (`)

� 2

Z
` (R) ` (B) d� (`) = P (R1B2) + P (B1R2) = P (Diff) .

Since this inequality is satis�ed by every P in PML, and sinceW is increasing,
U (Same) � U (Diff).

ML model:
(ML.i) ML implies One � Two: Proof is by straightforward calculation

of minima over PML given by (4.6). The latter is a mixture of sets, and it is
important to note that minimization can be performed over each component
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set separately. Thus, for example, when computing the utility of Same,
one contribution to this utility is through the minimum probability of Same
as one varies over �(R1 � fR2; B2g), which minimum equals 0. In contrast,
when evaluating R1, the minimum probability over �(R1 � fR2; B2g) equals
1. This "explains" why the bet on one urn is strictly preferred. Similarly
when comparing R1 with Diff . More speci�cally, calculate that

UML (fR1B2; B1R2g) = UML (fR1R2; B1B2g) = 2p2 < 2p2 + p� = UML (R1) .

(ML.ii) ML implies CCE: Compute that UML (f0) = UML (g0) =)
u (x) = 1=2 > UML (f1) = p.
(ML.iii) ML implies that Same � Diff : As noted above, both have

utility equal to 2p2.

B A Di¤erent Multiple-Likelihood Model

We describe an alternative model using multiple likelihoods, (see Walley and
Fine (1982), and Epstein and Seo (2010)), and we show that while it accom-
modates CCE, it cannot rationalize One � Two. Therefore, the behaviors
we study discriminate also between two models that both feature multiple
likelihoods.
Utility is a special case of Gilboa and Schmeidler�s (1989) maxmin utility

having the set of predictive priors Pprod constructed as follows. Fix 0 < p < 1
2

and, as in the ML model, suppose that for each urn the probability of red is
thought to lie in the interval [p; 1� p]; within the interval there is ignorance.
The di¤erence fromML is that the individual entertains only probability laws
that are (nonidentical) products of measures on each urn. More precisely,
Pprod consists of all product measures on S1�S2 of the form `1
`2 such that
each `i is a measure on S such that p � `i (R) � 1� p. If we abuse notation
and denote this set of measures by [p; 1� p], then one might write

Pprod = [p; 1� p]
 [p; 1� p] :

The set Pprod contains many nonidentical product measures, which suggests
the capacity to capture the possibility that the urns di¤er from one another.
However, as is readily veri�ed,

Pprod � PML,
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which is interpretable as the present model implying less ambiguity (aversion)
about how experiments di¤er and/or are related than the ML model. This
di¤erence is responsible for their di¤ering predictions described next.
The two multiple likelihood models have in common that they predict

Ellsberg ambiguity aversion and CCE, but they di¤er in their predictions
regarding One vs Two. For the present model, we have

Same � Diff � R1.
Following the discussion of One vs Two in Section 2, we interpret the strict
inferiority of R1 as indicating a greater aversion to ambiguity about the bias
of any single urn than to ambiguity about di¤erences between urns.
Here is a sketch of the elementary proof:

CCE is satis�ed: Compute that f0 � g0 i¤

u (x) = 1
2

p

1� p <
1
2
.

It remains therefore to show that

Uprod

0BB@
2664
1 R1B2
0 B1R2
x R1R2
x B1B2

3775
1CCA < u (x) = 1

2

p

1� p .

Compute

min
p1;p2

[p1 (1� p2) + u (x) (p1p2 + (1� p1) (1� p2))]

= min
p1;p2

[p1 (1� p2) + u (x) (2p1p2 � p1 � p2) + u (x)] .

Therefore, the behavior is rationalized i¤

min
p1;p2

[p1 (1� p2) + u (x) (2p1p2 � p1 � p2)] < 0.

But LHS is no greater than (taking p1 = 1� p2 = p)�
p2 + u (x) (2p(1� p)� p� (1� p))

�
= p2 � u (x) (2p2 � 2p+ 1)
= p2 � 1

2

p

1� p(2p
2 � 2p+ 1)

= p

�
p� 1

2

1

1� p(2p
2 � 2p+ 1)

�
< 0

() � (2p� 1)2 < 0.
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Same � Diff � R1:

Uprod (fR1R2; B1B2g) = Uprod (fB1R2; R1B2g) =
2p(1� p) > p = U (R1) :

No subjects exhibit Ellsbergian aversion, CCE and the strict preference
for betting on both urns rather than on one. However, besides illustrat-
ing that the connection between "multiple likelihoods" and the ranking One
�Two is complex, the model just described can play a role also in ratio-
nalizing the more common behavior (exhibited by 8 subjects) consisting of
Ellsbergian ambiguity aversion, CCE and One � Two.
To see this, de�ne a new set of predictive priors by

P = 1
2
PML +

1
2
Pprod,

which yields the maxmin utility function U given by

U = 1
2
UML +

1
2
Uprod.

An interpretation is that the individual is certain that the proportion of red
balls in each urn lies in [p; 1� p], (which interval is common to both UML

and Uprod), but is uncertain about which utility or set of priors describes the
relation between urns, and she attaches equal probability to each.37 Then
U is ambiguity averse in the Ellsbergian sense (because both UML and Uprod
are), satis�es CCE (as can be veri�ed), and U implies indi¤erence between
betting on one urn or on two; more precisely,

Same � Diff � R1.

(The "explanation" is that the opposite rankings implied by UML and Uprod
perfectly o¤set one another.38)

Remark B.1 Like the basic ML model, both Uprod and U assume certainty
about the correct value of p, and as a result generalizes the Bayesian i.i.d.
model. Extensions analogous to those described at the end of Section 4.1 can
be formulated also here for Uprod and/or U so as to accommodate any desired
ranking of Same versus Di¤ without a¤ecting the other behaviors described
above.

37This is a special case of the axiomatic model in Epstein and Seo (2010, Thm. 5.2)
which is formulated for the case of in�nitely many urns or experiments.

38Compute that UML (R1) = Uprod (R1) = p, UML (Same) = UML (Diff) =
2p (1� p) > p, and Uprod (Same) = Uprod (Diff) = 2p2.
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C Utilities in the Source-Based Model

We provide some details here supporting the discussion of the source-based
model (Section 4.2), particularly for Table 4.2. Assume u3 linear through-
out, and for later calculations consider the special case, including concave
isoelastic utility indices.
The utility of the bet R3 on drawing red from the risky Ellsberg urn is

given by
U (R3) = u

�1
3

�
1
2

�
= 1

2
,

and the utility of the bet R1 on drawing red from a single ambiguous urn is

U (R1) = u
�1
2

�Z
p

u2 (p) dF

�
.

Thus R3 is preferred if u2 is concave.
For the bets Same and Diff , compute that u1 � U (Same) and u1 �

U (Diff) are given respectively by

�u1 � u�12
�Z

p

u2 (1� 2p (1� p)) dF
�
+ (1� �)u1 � u�12

�Z
p

u2 (2p (1� p)) dF
�
,

�u1 � u�12
�Z

p

u2 (2p (1� p)) dF
�
+ (1� �)u1 � u�12

�Z
p

u2 (1� 2p (1� p)) dF
�
.

Since 1 � 2p (1� p) � 2p (1� p) for all p, it follows that Same is preferred
if and only if � > 1

2
and that they are indi¤erent if � = 1

2
.

Focus now on the special case, including the speci�cation (4.7) for F ,
isoelastic utilities, �2 < 1 and � = 1

2
. Then One � Two is implied if �1 > �2.

For example,

u1 � U (Same) = 1
2
u1 � u�12

�
2
3
u2 (1) +

1
3
u2
�
1
2

��
+ 1

2
u1 � u�12

�
2
3
u2 (0) +

1
3
u2
�
1
2

��
� u1 � u�12

�
1
2

�
2
3
u2 (1) +

1
3
u2
�
1
2

��
+ 1

2

�
2
3
u2 (0) +

1
3
u2
�
1
2

���
= u1 � u�12

�
1
3
u2 (0) +

1
3
u2
�
1
2

�
+ 1

3
u2 (1)

�
= u1 � U (R1) .

Finally, examine CCE ((2.4) and (2.5)). Compute that u1 � U (f0) =
1
2
u1 � u�12

�
2
3
u2 (0) +

1
3
u2
�
1
4

��
+ 1

2
u1 � u�12

�
1
3
u2 (0) +

1
3
u2
�
1
4

�
+ 1

3
u2 (1)

�
,

and that u1 � U (g0) =
1
2
u1 � u�12

�
2
3
u2 (0) +

1
3
u2
�
x
2

��
+ 1

2
u1 � u�12

�
2
3
u2 (x) +

1
3
u2
�
x
2

��
,
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which implies that

f0 � g0 ()
u1 � u�12

�
1
3
u2
�
1
4

��
+ u1 � u�12

�
1
3
+ 1

3
u2
�
1
4

��
=

u1 � u�12
�
1
3
u2
�
x
2

��
+ u1 � u�12

�
2
3
u2 (x) +

1
3
u2
�
x
2

��
,

and hence

x =

2664
�
1
3

�
1
4

�1��2� 1��1
1��2 +

�
1
3

�
1
4

�1��2 + 1
3

� 1��1
1��2�

1
3

�
1
2

�1��2� 1��1
1��2 +

�
2
3
+ 1

3

�
1
2

�1��2� 1��1
1��2

3775
1

1��1

.

In addition,

u1 � U (f1) = 1
2
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, and

u1U (g1) = u1 � u�12 [u2 (x)] = u1 (x) , or U (g1) = x.

We do not have an analytical characterization of the pairs (�1; �2) for which
U (f1) < x as required by CCE. However, by numerical means we derive
Figure C.1 which provides a clear picture of the regions in parameter space
where CCE is and is not satis�ed.

Figure C.1: Ranking of f1 and g1 as a function of the curvatures of isoelastic
utility indices (�1 � �2)
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D Weaker Inclusion Criteria

As noted in Section 3.2, out of 80 subjects who participated in the experi-
ment, 24 were removed from the analysis: 11 subjects were removed due to
non-monotone choices (assuming transitivity) in at least one pair of ques-
tions, 7 due to cyclic choices between fR1; Same;Diffg, 4 for disagreeing
with the symmetry over colors and urns expressed in (2.1), and two more sub-
jects in the �rst session were caught cheating and their choices were excluded
from the analysis. Seven more subjects were removed from the analysis of
CCE.39 The goal of this Appendix is to note that the tendencies and asso-
ciations highlighted in the body of the paper persist even if we weaken the
inclusion criteria used in Section 3.2.
In order to include as many subjects as possible, several relaxations of the

inclusion criteria were employed. First, the answer to the non-incentivized
question concerning symmetry was ignored. Second, in case of cyclic choices
among fR1; Same;Diffg, the direct comparison between Same and Diff
was not taken to invalidate the choices made in One vs Two (which relies
on comparing R1 to Same and R1 to Diff). Third, if a subject had non-
monotone choices in only one pair of questions (assuming transitivity), (s)he
was not removed from the analysis. Fourth, choices in other questions, to-
gether with transitivity, were used in order to extend the preferences to the
missing direct comparison.40 With all these adjustments, we were able to
retain 77 subjects.41

The tables below replicate Tables 3.1, 3.2 and 3.3 for the larger group of
subjects.

39Due to multiple switching points, extreme or missing answers, or research assistant�s
error in copying the switching point from Question 9 to Question 10.

40This applies to 5 subjects. An extreme example is provided by Subject 315: (s)he did
not agree with the suggested symmetry in colors and urns, and her/his choices in R1 vs
Same were inconsistent with monotone preferences. However, the choices in R1 vs Diff
and Diff vs Same were consistent with R1 � Diff and Diff � Same; so this subject
was classi�ed as exhibiting One � Two.

41We omitted only the two subjects who were caught cheating and another subject who
made choices inconsistent with monotone preferences in both R1 vs Same and R1 vs Diff
and who had multiple switching points in CCE.
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Ellsbergian One vs Two Total
Ambiguity One�Two One�Two One 6�Two
Averse 24 11 16 51
Neutral 4 11 2 17
Seeking 1 2 3 6
Total 29 24 21 74
Fisher exact test (excluding non-monotone in Ellsberg) p-value=0.011<0.05

Table D.1: Ellsbergian ambguity and One vs Two

CCE not CCE Total
# of subjects 36 31 67
% of subjects 53.7% 46.3% 100

Table D.2: Correlation Certainty E¤ect

Same vs Ellsberg Total
Di¤erent PS notPS
Same � Di� 14 17 31
Same � Di� 2 39 41
Total 16 56 72
p-value Fisher exact test = 0.00008

Table D.3: Ellsbergian ambiguity and Same versus Di¤erent

The marginal distributions of ambiguity attitude expressed in the stan-
dard Ellsberg experiment42 and in One vs Two are remarkably similar to
those for the smaller sample. The ambiguity attitudes in both behaviors are
signi�cantly associated but distinct. Slightly more than half of the subjects
exhibit CCE.43 As noted for the smaller sample, almost 70% of the subjects
who were not probabilistically sophisticated in the Ellsberg questions were
not indi¤erent between Same and Diff .44

423 subjects made choices inconsistent with monotone preferences in the Ellsberg ques-
tions.

4310 subjects were removed from the analysis of CCE: 5 had extreme switching points
(1, 99 or 100); 3 did not answer question 10 in which they were asked to compare f1 to
g1; 2 had the wrong �x from question 9 inserted in question 10.

44Almost 77% of them strictly preferred Same to Diff: Two subjects made choices
inconsistent with monotone preferences in Same vs Diff .
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E Experimental Instructions

This section contains the text of the instructions.45

Each of the two jars (Jar #1 and Jar #2) contains 10 marbles. Each marble
is either green or blue. The number of green (and blue) marbles in each jar is
unknown �it could be anything between 0 and 10. The two jars may contain
di¤erent numbers of green (and blue) marbles.
At the end of the experiment, one marble will be drawn from each jar.
Each of the 10 questions below o¤ers you a choice between bets on the

colors of the 2 marbles that will be drawn at the end of the experiment.
One of the questions will be selected at random according to the protocol
speci�ed in the following paragraph, and your chosen bet in that question
will determine your payment. For example, suppose that in the question
that was selected for payment you choose the bet �$100 if the marble drawn
from the Jar #1 is green, otherwise $0�. If the marble drawn from Jar #1
is indeed green �you will win $100, and if it is blue �you will win nothing
(both are in addition to the payment of $10 you received for arriving to the
experiment on time).
To select the question that will determine your payment, participants will

be divided into two groups. One participant from each group will be ran-
domly selected and will roll 3 dice for each participant in the other group: a
10-sided die that produces a number between 1 and 10, and two 10-sided dice
that produce a number between 1 and 100. They will write the two numbers
on notes that will be folded and inserted into sealed envelopes distributed
among participants in the experiment. The �rst number will be used to select
the question that will determine your payment. In case question 9 (which
includes many sub-questions) is selected by the �rst die, the second number
will be used to select the sub-question that will determine your payment.
Do not open the envelope you receive until you complete answering
all the questions and you are told to open it. Remember that the question
is chosen before you make any choices.
This protocol of determining payments suggests that you should

choose in each question as if it is the only question that determines
your payment.

Remember that the compositions of both jars are unknown, so it does not
matter if a bet is placed on a green or a blue marble. Similarly, it does not

45The original instructions were formatted in MS-Word and are available upon request.
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matter if a bet is placed on Jar #1 or #2. Below are some examples that
demonstrate this principle:

� �$100 if the marble drawn from the Jar #1 is green�and �$100 if the
marble drawn from the Jar #1 is blue�are equally good.

� �$100 if the marble drawn from the Jar #1 is green�and �$100 if the
marble drawn from Jar #2 is green�are equally good.

� �$100 if both marbles drawn are green� and �$100 if both marbles
drawn are blue�are equally good.

� �$100 if the marble drawn from the Jar #1 is green and the marble
drawn from the Jar #2 is blue�and �$100 if the marble drawn from
the Jar #1 is blue and the marble drawn from the Jar #2 is green�are
equally good.

Do you agree that the two bets in each pair are equally good? YES NO
(circle one)

Before choosing between bets please choose a �xed color (green or blue)
and a jar (#1 or #2) for which you will be paid if you choose certain bets in
the questions below. For example, in question 1 you can choose to be paid if
the marble drawn from Jar #1/#2 is green/blue. Note that you must make
the same choice for all the questions below.
Please circle and choose your set jar and color:
Your �xed jar: #1 / #2
Your �xed color: green / blue
The choice of jar and color will apply to bets 1, 3, 5, 7, 13 and 15 below.
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Question 1 (circle 1 or 2)

1. $100 if the marble drawn from the �xed jar is of the �xed color

2. $101 if the two marbles drawn are of di¤erent colors (one green and
one blue)

Question 2 (circle 3 or 4)

3. $101 if the marble drawn from the �xed jar is of the �xed color

4. $100 if the two marbles drawn are of di¤erent colors (one green and
one blue)

Note: Bets 1 and 3 pay under the same conditions but Bet 3 o¤ers more
money if you win ($101) than Bet 1 (only $100). Therefore anyone who
prefers to earn more money would view Bet 3 as better than Bet 1. Similarly,
Bets 2 and 4 pay under the same conditions but Bet 2 pays more money if
you win than Bet 4. Therefore anyone who prefers to earn more money would
view Bet 2 as better than Bet 4. If in one of the questions you choose the
bet that pays $100, it makes sense that in the other question you choose
the corresponding bet. This follows since the corresponding bet pays $101
(instead of $100), and the payment to the alternative bet decreases from $101
to $100. Please review your choices in questions 1 and 2 in light of this logic.
Notice that identical logic applies to the other questions (3-4, 5-6, 7-8).

Question 3 (circle 5 or 6)

5. $100 if the marble drawn from the �xed jar is of the �xed color

6. $101 if the two marbles drawn are of the same color (two greens or two
blues)

Question 4 (circle 7 or 8)

7. $101 if the marble drawn from the �xed jar is of the �xed color

8. $100 if the two marbles drawn are of the same color (two greens or two
blues)
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Question 5 (circle 9 or 10)

9. $101 if the two marbles drawn are of the same color (two greens or two
blues)

10. $100 if the two marbles drawn are of di¤erent colors (one green and
one blue)

Question 6 (circle 11 or 12)

11. $100 if the two marbles drawn are of the same color (two greens or two
blues)

12. $101 if the two marbles drawn are of di¤erent colors (one green and
one blue)

I will now �ll an empty third jar (#3) with 5 green and 5 blue marbles. The
following two questions ask you to choose between a bet on the color of a
marble drawn from this jar and a bet on the set jar (#1 or #2) and set color.

Question 7 (circle 13 or 14)

13. $100 if the marble drawn from the �xed jar is of the �xed color

14. $101 if the marble drawn from Jar #3 (that is known to contain 5 green
and 5 blue marbles) is green.

Question 8 (circle 15 or 16)

15. $101 if a marble drawn from the �xed jar is of the �xed color

16. $100 if a marble drawn from Jar #3 (that is known to contain 5 green
and 5 blue marbles) is green.
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Question 9

Bet A pays $100 if the marble drawn from Jar #1 is green/blue (circle one)
and the marble drawn from Jar #2 is green/blue (circle the other color).
Bet B pays $x if the two marbles drawn are of di¤erent colors.
Before you choose between the two bets above, you must know the value of x.
For example, if x=100, then you will probably choose Bet B. The rationale
behind this is that if you win with Bet A, then you will also win with Bet
B, but there are cases in which only Bet B wins. Similarly, if x=0, then you
will probably choose Bet A since it alone provides some chance of winning
money.
Below, you are asked to choose between Bet A and Bet B for each value

of x indicated in the list below (note that the list is on two pages). Note
that while Bet A does not change between the lines, the amount paid in Bet
B increases as you move down the list. Therefore, if you choose B on some
line, it makes sense to choose B in every subsequent line.
If this question is chosen to determine your payment and if the relevant

line was chosen (according to dice rolled by the two participants in the be-
ginning of the experiment), then your payment will depend on the bet you
choose. Therefore, you should make the choice in every line as if this is the
only choice that will determine your payment in the experiment.
Remember that Bet B pays the amount speci�ed on the line (between $1

and $100) if the two marbles drawn are of di¤erent color. Therefore, you will
be paid if the marbles are as you speci�ed for Bet A, but also if the colors of
the two marbles are reversed.46

Line Bet A Bet B: Chosen Bet
the value of x (circle A or B)

1 $100 $1 A B
2 $100 $2 A B
3 $100 $3 A B
...

...
...

...
...

98 $100 $98 A B
99 $100 $99 A B
100 $100 $100 A B

46The table in the experiment had 100 lines. Question 10 was not available to the
subjects when they answered Question 9.
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Question 10 (circle 17 or 18)

17. Pays according to Bet A in Question 9 or $47 if the two marbles
drawn are of the same color (either both green or both blue).

18. Pays $ for sure.

Reminder:
Bet A in Question 9 pays $100 if the marble drawn from Jar #1 is green/blue and
the marble drawn Jar #2 is green/blue
(see question 9 for your choice of colors).
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