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Abstract

The use of decentralized exchange (DEX) platforms has been growing in the

last few years. New Layer 2 (L2) blockchain alternatives provide better scal-

ability and lower fees than the Ethereum blockchain (L1), but the security of

L2 relative to L1 is unclear and difficult to identify. Using a structural model

and a novel and comprehensive data set, we estimate investors’ preferences

for blockchain security on two main L2 networks, Polygon and Optimism.

We find that traders anticipate an 0.68% (3.29%) chance of losing the trans-

action value when trading on Polygon (Optimism) compared to L1, and a

considerable amount higher than the (0.01%-0.3%) transaction fee charged

on each trade. Our work can be seen as empirical evidence of the trade-

off between scalability, security, and decentralization, which is the biggest

challenge of blockchain networks.
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1. Introduction

Liquidity pools are innovations in decentralized finance (DeFi). They

allow for the exchange of crypto assets without the traditional centralized

limit-order-book mechanism. Investors deposit tokenized assets into smart

contracts.1 They then exchange tokens from these pools according to the

terms prescribed by a mechanism that determines the swapping price of each

transaction. Uniswap is currently the largest liquidity pool protocol in DeFi,

with a daily volume of roughly $2 billion, and total liquidity of $5 billion.2

Traditionally, most liquidity pools operate on the Ethereum blockchain,

also known as the Layer 1 (L1). However, the DeFi landscape is evolving, and

liquidity pool protocols like Uniswap have expanded their support to Layer

2 (L2) blockchains, such as Polygon and Optimism. These L2 blockchains

address Ethereum’s scalability challenges by offering lower gas fees and faster

transaction processing3, making them an appealing option for traders.

Ethereum’s scalability is limited to processing 15-30 transactions per sec-

ond, resulting in high gas fees. Gas fees are paid for the validation service

made by the validators (miners). When only a small number of transactions

can be validated in a given block, this can potentially creating blockchain

congestion and generate high fees, as described by Sokolov (2021). In De-

cember 2021, the gas fees for swapping transactions in Ethereum were on

average $93.30.4 Conversely, L2 blockchains like Polygon can handle up to

1A smart contract is a self-executing contract with the terms of the agreement between

buyer and seller being directly written into lines of code on the blockchain.
2Data source: https://uniswap.org/ on March 28, 2022 (only Ethereum).
3Speed of settlement/validation of the transactions also known as Finality.
4Gas fees for swapping are determined by the gas price and the number of gas units

2



10,000 transactions per second with minimal gas fees. Traders are highly

sensitive to network fees and may postpone or abandon transactions when

fees are high, a phenomenon documented in Easley et al. (2019). Similarly,

the study by Cong et al. (2023) reveals that L2 scaling solutions offer sub-

stantial reductions in operating costs (gas fees), enhanced data accuracy, and

promote decentralization by decreasing market concentration and fostering

increased participation.

L2 blockchains offer traders an alternative blockchain network to execute

transactions with improved conditions that could incentivize them to tran-

sition exclusively to these platforms. However, the degree to which traders

migrate to L2 will depend significantly on their perceptions of the relative

security provided by L2 and the original L1. A major concern in moving

from L1 to L2 blockchain is the security of transactions and asset owner-

ship. Assessing the actual risks of trading in L2 networks compared with L1

involves many different aspects, so this is not as straightforward to identify.

We divide the risks into three main categories. First, there are smart

contract risks – there could be a bug in the code or hacking that affects the

contract, or admin key access, all of which could contribute to a centraliza-

tion problem. The second risk relates to the use of wrapped ether tokens

when trading in L2 pools. Wrapped tokens represent blockchain native to-

kens 5 issued on a non-native blockchain, and the use of warped tokens thus

the smart contract uses to execute the transaction. In December 2021, the average gas

price was 94 gwei. Data source: Etherscan data from swapping transactions on Uniswap.
5Native tokens are often used to pay gas fees or stake in DPoS systems. Ether (ETH)

on Ethereum is an example of a native token.
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includes liquidity risk. Finally, there are validation risks that depend on the

particular blockchain’s validation (consensus) technology. The main risk of

the validation process, known as a 51% attack6, occurs when someone or a

group of people takes control of more than half of the validation authority

of a blockchain network, thereby enabling them to create and manipulate

transactions. To tackle Ethereum’s scalability challenge, L2 solutions em-

ploy distinct validation mechanisms that expedite the validation process.

However, this increased speed comes with potential risks.

It is difficult to determine how much riskier L2 blockchains are compared

to L1 blockchains. One approach to estimating traders’ perception of this

risk is through surveys, but this method can be costly and may encounter

validity issues due to the anonymous nature of users within the blockchain

ecosystem. In our research, we propose an alternative approach by analyzing

trading data from liquidity pools. This method captures traders’ behavior

and decisions, offering insights into their beliefs about risk.

Our inspiration for this approach comes from previous studies that have

used market prices to reveal subjective beliefs. The core idea is that prices

convey valuable information about people’s perceptions, and by employing

economic models, we can estimate these subjective views. For instance, past

research has evaluated the value of statistical life (VSL) by comparing wages

between riskier and safer jobs as discussed in Viscusi and Aldy (2003). The

6There have been several 51% attacks on blockchain networks. For example, there was

an attack described in Garratt and van Oordt (2020), on Bitcoin Gold in May 2018. A

more detailed explanation of these attacks in different blockchain validation technologies

are provided in Sayeed and Marco-Gisbert (2019).
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wage difference between these jobs reveals workers’ beliefs about the value of

their lives and the compensation they require to undertake risks. Likewise,

prediction markets leverage prices to reveal subjective beliefs about the like-

lihood of events as seen in Wolfers and Zitzewitz (2006). This approach has

also been applied to financial inquiries, such as explaining the equity pre-

mium puzzle by incorporating agents’ subjective beliefs as Cecchetti et al.

(2000) discuss.

By adopting this approach, we have developed a model that allows us to

estimate traders’ preferences for blockchain security using trading data. Our

results shed light on how traders consider risk and adjust their behavior.

We use detailed data with more than five million transactions on L1 pools

and more than 14 million transactions on L2 pools. The total swapping value

of these transactions add up to more than $358 billion dollars. The data

includes different kinds of pools with different token types (WETH/ETH,

WBTC, UCSD, USDT, DAI) and L2 networks (Polygon and Optimism).

We collected more than one year’s worth of data with a significant variation

in gas prices. Transactions largely sort in a systematic pattern; specifically,

we observed larger transactions in L1 and smaller transactions in the L2

network. We wished to understand why traders still use L1 if the L2 has

higher scalability and lower fees. And why did transactions sort in this way?

We first checked whether these results are due to the pool size,7 and we

found that this does not fully explain the sorting pattern. With the liquidity

pools pricing mechanism, each transaction directly impacts the exchange rate

7Pool size refers to the amount of liquidity in the pool.
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based on the size of the transaction relative to the pool’s size. As the pool’s

liquidity increases, this effect decreases. However, a larger transaction leads

to greater impact. L1 pools exist longer than L2 pools; they also have higher

liquidity during this time, thus offering better exchange rates in relatively

large transactions. In relatively small transactions, the price effect is low in

both pools, and it is less expensive to trade in L2. We calculate the optimal

monetary switching point for traders to trade on the L1 network instead of

the L2 network, considering the exchange rate and gas fees. Empirical data

supports the notion that traders switch to L1 earlier than predicted.

As security considerations related to L2 could significantly influence traders’

behavior, we employ a structural model to capture these concerns. This

model helps bridge the gap between monetary predictions about traders’

transition to L2 and the empirical evidence, particularly regarding the thresh-

old for switching. We’ve determined that other explanations, such as price

accuracy, adoption costs, and the benefits of holding assets on the original

blockchain (L1), fall short in fully accounting for the observed divergence

between theoretical predictions and actual behavior.

According to our model, traders anticipate a 0.68% and 3.29% probability

of incurring a transaction value loss when trading on Polygon and Optimism,

respectively, compared to L1. This risk perception is considerable, especially

when juxtaposed with the transaction fee range of 0.01% - 0.3% levied by

Uniswap for each trade. To our best knowledge, this is the first study that

quantifies traders’ beliefs about these security considerations using trading

data from DeFi platforms. Our methodology can be expanded to estimate

trader perceptions on other DeFi or payment platforms.
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The rest of the paper is organized as follows: Section 2 introduces De-

centralized exchanges, L2 Implementations and Constant Product Market

Maker (CPMM). The proposed model is described in Section 3. Section 4 in-

troduces our data and provides summary statistics, while Section 5 provides

results. Finally, Section 6 concludes our findings.

2. Decentralized Exchanges (DEX)

Most trading markets in the financial system are based on the traditional

limit-order-book mechanism, in which buyers and sellers bid prices via a

centralized organization that matches their bids. For years, cryptocurrencies

and digital assets have mainly traded in centralized exchanges (CEX) such

as Coinbase, which works with the limit-order book. Decentralized exchange

(DEX) platforms recently entered the crypto market and have offered traders

new decentralized options; the most common DEX protocols are liquidity

pools.

Liquidity pools are contracts that enable agents to provide liquidity (to-

kens/assets) to a smart contract on the blockchain. Traders can trade to-

kens/assets from these pools using a pricing rule written in the code. Most

of these pools use a “bonding curve” pricing rule, which is a function of the

supply of tokens/assets in the pool and is also known as Constant Product

Market Maker (CPMM). These pools incentivize agents to provide liquid-

ity and become liquidity providers by giving them a swapping fee for each

swapping action from the pool. These swapping fees are around 0.01% - 1%,

depending on the protocol and tokens/assets of the pool. Most pools have

two tokens/assets that traders can swap.
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The most prominent DEX platforms are Uniswap, Sushiswap, Balancer,

and Bancor. This paper will focus on the Uniswap protocol, which is the

largest one available. Most of these protocols work on the Ethereum blockchain

(the L1 network). Recently, some liquidity-pool protocols such as Uniswap

have started to support L2 networks, such as Polygon, Optimism, Arbitrum

and Celo.8 The Uniswap protocol was initiated in November 2021 and De-

cember 2021 to support swapping on the Optimism and Polygon networks.

We use Polygon and Optimism for our analysis as the alternative L2 networks

for Ethereum (L1).

Recently, many researchers have explored DEX platforms in various direc-

tions. Some works (see, e.g., Lehar and Parlour, 2021; Barbon and Ranaldo,

2021) compare the various aspects of CEX and DEX platforms, such as liq-

uidity provision, absence of arbitrage, price efficiency, and transactions cost.

Additionally, many papers (e.g., Park (2021); Capponi and Jia (2021)) have

introduced the CPMM mechanism and discussed its properties and concep-

tual flaws. We instead explore how agents decide which network to use on

DEX platforms, as well as the security aspect of those decisions.

2.1. L2 Implementations and Security

Measuring the actual risks of trading in L2 networks compared to L1 in-

volves many different aspects and so it is difficult to identify. First, to trade in

DEX, traders need to use a smart contract that involves some risks of having

a bug in the code, hacking into the smart contract, and admin keys access,

8Due to data limitations, we could not collect data from Arbitrum network. Celo is in

its early stage, so we only show our analysis from Polygon and Optimism networks.
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which could create a centralization problem, as mentioned in Tsankov et al.

(2018); Schär (2021). Integrating Uniswap methods (codes) with different

blockchain networks and token types can create different security risks.

The second risk of trading in L2 compared with L1 is the use of wrapped

ether tokens when trading in L2 pools. Wrapped tokens represent blockchain

native tokens issued on a non-native blockchain. While using the L2 network,

traders must use the wrapped tokens of Ether (Ethereum native token) to

trade this token in L2. These wrapped tokens include liquidity risk, which

depends on the wrapped token-issuing mechanism (Caldarelli, 2021). The

recent case of the Ronin network hack, which led to the loss of more than

$600M, contributed to shedding light on these risks.9

Finally, the validation risks depend on the blockchain’s validation (con-

sensus) technology. To address the scalability problem of Ethereum (L1), L2

solutions use a different validation mechanism, which allows them to provide

higher scalability and lower gas fee. Vitalik Buterin, one of the co-founders

of Ethereum, already has identified that the biggest challenge of blockchain

networks is achieving a decentralized payments system with high scalabil-

ity and security. The main problem is that there is a trade-off between the

three (decentralized, scalability, and security), and there is no technology

that includes all the features together (known as the blockchain trilemma or

scalability trilemma10.

With that in mind, L2 implementations try to provide higher scalability

and lower fees, but this has some drawbacks. There are many different L2

9Data Source: BBC: https://www.bbc.com/news/technology-60933174
10See BIS (2022) and Makarov and Schoar (2022))
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solutions, each using a different approach. In our paper, we will focus on

Polygon and Optimism, given our data set. Polygon is a side chain network

with its native token (Matic) and validation mechanism (Proof-of-Stake),

which means that the security is separate from the L1 network. Polygon is

pegged to the Ethereum blockchain system, and users can transfer tokens

from Polygon to Ethereum and vice versa using a bridge (see Thibault et al.

(2022)).

Optimism uses a different L2 solution approach called optimistic rollups.

In a rollup system like Optimism, transaction execution is moved to L2,

and the data from these transactions are published on L1. Every Optimism

transaction has two costs: An L2 (execution) fee and an L1 (data posting) fee.

Most of the time, these fees are significantly lower than on the L1. Optimistic

rollups use an ”optimistic” validation approach in which the aggregators (who

execute transactions on L2 and post them on L1) do not ask for proof of

validity for each transaction execution. It means that the network supposes

that the aggregators’ transactions are valid. Another group of players, called

verifiers, are monitoring the data published by the aggregators to deter any

issues. A more detailed explanation of L2 implementations is provided in

Thibault et al. (2022).

The bottom line is that L2 solutions use a different validation process

than L1; therefore, it is difficult to tell how much riskier they are than L1.

This paper aims to shed some light on how trades react to the trade-off

between scalability, security, and decentralization.
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2.2. Constant Product Market Maker (CPMM)

Another difference between CEX and DEX, besides being decentralized,

is the pricing mechanism; in CEX, the asset price is determined by the bids

of the buyers and sellers, while in most DEX platforms it is determined by

the pricing formula called the constant product market maker (CPMM). The

CPMM formula works so that the product of the amount of tokens X and

Y in the pool must remain the same. Let’s consider a liquidity pool that

contains x tokens of token X and y tokens of token Y [following the notation

of Barbon and Ranaldo (2021)].11 The CPMM pricing rule means that for

any time t the product of the available tokens (X and Y) in the pool equals

a constant k, which can be expressed as

xtyt = k

The amount of both tokens in the pool at time t determines the current

pool price P t which can be expressed as

P t =
yt

xt

Let f denote the protocol swapping fee which goes for the liquidity

providers and φ = 1 − f is what left for the trader to swap. If at time

11This model and our extension are based on Uniswap V2 (Adams et al., 2020), in which

traders can trade from the pool without any liquidity restrictions. However, Uniswap V3

(Adams et al., 2021) works in different mechanisms, providing liquidity with some price

limits. Unfoutently, due to data limitations, we cannot analyze our data with the new

V3 mechanism. However, Chemaya and Liu (2023) shows that the V2 model can provide

highly accurate results for V3 data.
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t+1 a trader wants to swap ∆(x) tokens X for getting Y tokens, we can

calculate how many tokens Y ∆(y) she will get. CPMM states that

k = (xt + φ∆x)(yt −∆(y))

Solving for ∆(y):

∆(y) = yt
φ∆x

xt + φ∆x

Further we can calculate the price of this swap,

P t(∆x, yt, xt) =
∆y

∆x
=

φyt

xt + φ∆x

This formula’s convexity relation implies that once traders have more

demand for token X relative to token Y, the supply of this token in the pool

will decrease, and thus its swapping price will increase. Additionally, this

also implies that larger transactions have a larger price impact. However,

the price impact would be small when the pool size is relatively large to the

transaction size, as shown in Lehar and Parlour (2021).

These are essential properties of the liquidity pools that traders need to

know. Once a trader can trade the same tokens X and Y in different networks,

L1 or L2, the pool’s size on each network could have a different price effect,

one factor which will determine where the trader will choose to trade. The

following section provides an extended model which allows the trader to pick

which network they are willing to trade in.

3. Model

We follow the notations of Barbon and Ranaldo (2021) with an extension

where trades can choose which network (i) they are willing to trade on.
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Let i denote the blockchain network type, i = 1 is Ethereum (L1) network

and i = 2 is Polygon or Optimisim (L2) network. Let X denote token 1, and

Y denote token 2. f i = The protocol swapping fees at the network i and

φi = 1− f i is what left for the trader to swap. T it = the gas fee of swapping

in network i at time t.

Given that the gas fee is paid by native tokens (Matic for Polygon and

Ether for Ethereum and Optimisim12) for each network, we will calculate

these fees in US dollars units in our data analysis to have one unit of account.

By the CPMM, we can calculate how many tokens Y ∆yi trader will get when

she trades on network i, which can be expressed as:

∆yi = yit
φi∆x

xit + φi∆x
(1)

Let P it represents the price of making a transaction of value ∆x for

swapping token Y on network i.

P it(∆x, xit, yit) =
∆yi

∆x
=

φiyit

xit + φi∆x
(2)

To scale our model so that we have only one unit of account for each

transaction (token 1 - token 2) or (token 2 - token 1), we calculate the total

value left for the trader after the swapping in token 2 units13, which can be

expressed as,

P it(∆x, xit, yit) · (∆x)

To explain how agents behave in an environment where they can choose

12Gas fees in the Optimisim are paid by Ether tokens. For more info:

https://www.optimism.io/
13We will later convert them to US dollar values to have one unit of account.
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which network they are willing to trade, we specify a model in which agents

need to maximize their utility when choosing between swapping in the L1

network (ETH) or L2 network (POLY or Optimisim). This maximization

problem should consider two main aspects: how many token Y(X) traders

get from swapping token X(Y) on each network and how many gas fees they

pay. On top of that, we can add a behavioral parameter of traders’ beliefs

about the security of each network.

Representative agent maximization problem:

max
i=0,1

{i·π1·u(P 1t(∆x, x1t, y1t)·∆x−T 1t)+(1−i)·π2·u(P 2t(∆x, x2t, y2t)·∆x−T 2t)}

(3)

Where T it is the gas fees in each network at time t, P it(∆x, xit, yit) represents

how many token Y(X) traders get from swapping token X(Y) on each network

(a function both of the transaction size ∆x and the pool size (xit, yit) in

each network), and πi traders’ beliefs of the probability of not losing ones’

transaction wealth in network i, everything is scaled to be in US dollars

units.14

Thus, our representative agent would choose network i if and only if

πi · u(P it(∆x, xit, yit) ·∆x− T it) ≥ πj · u(P jt(∆x, xjt, yjt) ·∆x− T jt)

We assume our representative agent is risk-neutral15 and maximizes the

14Our data resource allow us to convert everything to US dollars value and have one

unit of account.
15There is strong evidence from many different researchers, as summarized in BIS (2022),

that most of the traders in the crypto markets are risk-seeking. Assuming that the repre-

sentative agent is risk neutral is a conservative assumption for our belief elicitation.
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expected payoff.

u(v) = v

There are two networks, L1 (Ethereum) and L2 (Polygon or Optimism),

agent choose L2 network if and only if

πL2·(PL2,t(∆x, xL2,t, yL2,t)·(∆x)−TL2,t) ≥ πL1·(PL1,t(∆x, xeth,t, yL1,t)·(∆x)−TL1,t)

Let w = ∆x and P i,t = P i,t(∆x, xi,t, yi,t) we can further write:

πL2 · (w · PL2,t − TL2,t) ≥ πL1 · (w · PL1,t − TL1,t)

(πL2 · PL2,t − πL1 · PL1,t)w ≥ πL2 · TL2,t − πL1 · TL1,t

w ≤ πL2 · TL2,t − πL1 · TL1,t

πL2 · PL2,t − πL1 · PL1,t

w ≤ πL1 · TL1,t − πL2 · TL2,t

πL1 · PL1,t − πL2 · PL2,t

w =
πL1 · TL1,t − πL2 · TL2,t

πL1 · PL1,t − πL2 · PL2,t
(4)

This is the representative agent’s threshold transaction size in which she

will switch from the L2 network to L1.

Consider when πi in each network are equal, meaning there’s no security

concerns of L2 relative to L1, w⋆ represents the optimal threshold at which

the representative agent should switch from trading in the L2 network to

Ethereum. At any given time t with given pools sizes and gas fees, we can

calculate the theoretical w⋆, which we will discuss this in more detail in

section 5.1.

w∗ =
TL1,t − TL2,t

PL1,t − PL2,t
(5)

15



When the representative agent’s empirical threshold, ŵ, is smaller than

w⋆, it means agents are switching to Ethereum even though it is less prof-

itable. Section 5.3 will provide a comparison between ŵ and w⋆ and a ro-

bustness test to check if ŵ is statistically significantly smaller than w⋆. This

deviation will be captured by the security parameter in our model. We can

estimate the representative agent’s beliefs on security, the chance of losing

the transaction value when trading on L2 compared to on L1, as,

SL2,L1 = 1− π̂L2

π̂L1

= 1− P 2t(ŵ, x2t, y2t) · ŵ − T 2t

P 1t(ŵ, x1t, y1t) · ŵ − T 1t
(6)

this will be discussed in section 5.3.

4. Data

This paper collects transactions from a total of 21 liquidity pools on the

Uniswap V3 protocol,16 including 8 in the L1 network (ETH) and 13 in L2

network (6 in POLY, 7 in OPT). We follow this selection process: first, we

collected trading data from all networks and pools, and we identified some

key features of the pools, like average transactions per day, tokens involved,

pool transaction fee, etc. Then we sorted pools that were only available on

both L1 and L2, shared the same liquidity pool fee, and shared the same

token types. Finally, we chose from only pools with more than 200 average

daily transactions, and with a minimum of 70 or more transactions per day.

These pools allow traders to trade the same token types in L1 and L2

16The Uniswap protocol is a peer-to-peer system designed for exchanging cryptocurren-

cies (ERC-20 Tokens).https://docs.uniswap.org/protocol/introduction
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(POLY and OPT) and have a sufficient amount of transactions per day.

These pools jointly contribute 63% of the transactions on the Uniswap when

considering pools that are available for trades to trade the same pair of tokens

on L1 and L2.17 Six different tokens are swapped in these pools (DAI, USDC,

USDT, WMATIC/MATIC, WBTC, WETH/ETH), and the pool fee ranges

from 0.01% to 0.3%.

Our main analysis will focus on three liquidity pools, with one from the

three networks (ETH, POLY, OPT). Each of the three pools have the same

pair of tokens (USDC andWETH/ETH),18 and have the same protocol swap-

ping fees f 1 = f 2 = 0.05%. Those pools are the biggest ones in our data set

and contribute more than 50% of the daily transactions. Utilizing blockchain

explorer services (Uniswap Data Extractooor),19 we are able to track each

and every Erc-20 tokens transactions that happened in the liquidity pools.20

We collected data from December 22, 2021, the launch date of the Polygon

network pool, until December 31, 2022.21

Within this 12 months period, we obtained a total of 2, 789, 976 swapping

17Many pairs of tokens are network specific and can be traded only on one of the

networks. For example, on 12/05/2022, only 53.36% of the transactions on Ethereum

pools were with tokens that were available on L2 (Data source Uniswap Data Extractooor);

there was a similar situation with L2 pools: only 55.39% (46.56%) of the transactions on

POLY(OPT) pools were with tokens that were available on L1.
18The Ether (ETH) tokens on the L2 blockchains are wrapped tokens (WETH).
19https://www.uniswap.shippooor.xyz/
20The ERC-20 introduces a standard for Fungible Tokens, in other words, they have a

property that makes each token be exactly the same (in type and value) as another token.

https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
21Optimism pool lunching day was one month before on 11/12/2021.
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transactions (exchange between USDC and WETH/ETH) from L1 ETH net-

work, 4, 991, 764 swapping transactions from L2 POLY network, and 4, 323, 672

swapping transactions from L2 OPT network.22 That is a total of more than

12 million swapping transactions, which resulted in a sum of $237 billion.

The distributions of the amount swapped in the three platforms differ during

the time of interest (Figure 1). We modified the magnitude of the values

for large numbers, so this graph is more readable. All transactions with a

value greater than 10,000 dollars are over-written to 10,000 (for this graph

only). We observe that the L2 distribution is right-skewed for most smaller

transactions (on POLY less than $923, on OPT less than $64). On the other

hand, the majority of the transactions on L1 ETH are larger than $5, 002,

five to a hundred times more than on L2.

We also calculated the daily mean gas fee for swapping in each network.23

During this time period, the average daily mean gas fee for swapping was

$22.93 on L1, $0.559 on OPT, and $0.030 on POLY.

We also collected data on the daily size of the three liquidity pools from

Uniswap. ETH’s pool had a higher pool size during our observation dates,

with an average of $277.6M, while the average size of POLY was $13.40M,

and the average size of OPT was only $4.72M. Figure 3 is the time series

presentation of the three liquidity pools’ size during this time period.

22ETH Contract address: 0x88e6a0c2ddd26feeb64f039a2c41296fcb3f5640.

POLY Contract address: 0x45dda9cb7c25131df268515131f647d726f50608.

OPT Contract address: 0x85149247691df622eaf1a8bd0cafd40bc45154a9.
23Data Source: Etherscan, Polyscan & Optimistic.etherscan.
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Figure 1: Histogram of swapping values between USDC and WETH on three platforms

Figure 2: Time series of gas fee
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Figure 3: Time series of pool size

5. Results

This massive trading data from liquidity pools capture traders’ behavior

and decisions. In this section, we will use our model to analyze that data

and estimate traders’ preferences for blockchain security. We will mainly

discuss the result from the three pools introduced in section 4, which are

the biggest ones in our data set. We will first show details of estimating

the security of the POLY (L2) network relative to ETH (L1) using POLY &

ETH, USDC/WETH 0.05% pools; then we will show results from OPT (L2)

network and other pools.

We estimate traders’ belief in security by studying behavior deviation

from monetarily optimal decisions. In section 5.1, we calculate the mone-

tarily optimal switching point W ∗, as a function of liquidity pool size and

transaction fee. Section 5.2 presents our empirical strategy for finding the
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actual switching point Ŵ from the data. Section 5.3 summarizes the security

concern from W ∗ and Ŵ based on our model. Finally, section 5.4 further

shows our model’s generalizability to other networks and pairs of tokens in

different pools.

5.1. Monetarily optimal switching point W ∗

Why do traders still use L1 if the L2 has higher scalability and lower

fees? The exchange rate of a swapping transaction in the liquidity pool

is determined by the liquidity pool size and the size of the transaction itself

(recall Equation 2 in the model section). The higher liquidity in L1 makes L1

pools have a lower price impact, offering better exchange rates for relatively

big transactions. On the other hand, if the transaction size is relatively small,

the price effect in both pools is low; considering L1 has a higher gas fee, it

would then be cheaper to trade in L2. Given pool size and gas fee at a low

swapping size, it would be cheaper to swap on L2; at some switching point,

it would be optimal to switch to swap on L1.

Take April 11th, an arbitrary day, as an example: the ETH, USDC/WETH

0.05% pool size is $322.93M, and the POLY, USDC/WETH 0.05% pool size

is $18.58M. The mean gas fee is $27.37 per swapping transaction on ETH,

and $0.02 per swapping transaction on POLY. Following Equation 2, while

also taking into consideration the gas fee, we calculate the total value left for

the trader after the swapping. As shown in Figure 4,24 it is better to swap

on Polygon at first, and then better on Ethereum once the swapping value

becomes larger (to be exact, once the swapping value is larger than $16, 442).

24Using R package ggforce (Pedersen, 2021).
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Figure 4: Total value left for the trader after swapping

We calculate this monetarily optimal switching point W ∗ for all dates in

our data, and get Figure 5.

5.2. Empirical switching point Ŵ

The monetarily optimal switching point W ∗ can explain some reasoning

behind traders trading on both platforms and separated in a certain way,

yet empirical data supports that traders are switching to L1 for much lower

transactions.

In order to find the representative agent’s empirical threshold from the

data, given that we are facing a binary classification problem, we implement

a binary logistic model.25

25A competing method is linear discriminant analysis, a linear method in classification,
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Figure 5: Monetarily optimal switching point W ∗
P,E

A binary logistic model states that the probability of outcome Y belongs

to class y given predictor W equal to a logistic function.

Pr(Y = 1|W ) =
eβ0+β1W

1 + eβ0+β1W

There are two classes, transaction is on L2 (Y = 1), and transaction is

on Ethereum (Y = 0). Our predictor W is the transaction value (in Dollar

unit). It is a linear model as the logit, or log-odds, is linear in W.

log(
Pr(Y = 1|W )

1− Pr(Y = 1|W )
) = β0 + β1W

We report the the summary of the logit regression result using 2022/4/11

see Appendix A for more discussion.
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data in Table 1.26 The coefficient for W (Transition value) is negative, mean-

ing the higher the transaction value is, the lower the log odd, that is, the

lower the probability of this transaction is on L2 (and higher probability is on

Ethereum). Both the interception and the coefficient for W are statistically

significant.

Logit Regression

(Intercept) 1.72∗∗∗

(0.02)

Transaction value −1.278e−4∗∗∗

(in Dollar) (2.822e−6)

AIC 18401.68

BIC 18417.62

Log Likelihood −9198.84

Deviance 18397.68

Num. obs. 21364

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 1: Binary Logistic Model result: 2022/4/11 data

To find the empirical threshold value Ŵ , we obtain β̂0 and β̂1 from the

regression, and the best threshold probability P̂ r(Y = 1|W ).27

Ŵ =
1

β̂1

(log(
P̂ r(Y = 1|W )

1− P̂ r(Y = 1|W )
)− β̂0)

26Using R (R Core Team, 2020), and R package texreg (Leifeld, 2013).
27See Appendix B for more details.
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Figure 6 shows a time series of the calculated Ŵ . On 2022/4/11, this

empirical threshold is $3, 469.

Figure 6: Empirical switching point ŴP−E

5.3. Estimating belief on security

Our structure model captures traders’ security concerns about L2. This

security concern can explain the gap between the switching point from the

pure monetary prediction W ∗ and empirical Ŵ . Figure 7 is a direct com-

parison of the two time series in one graph. The shaded area around the

blue line represent the area of 95% confidence interval obtained by running

bootstrap on the transaction data.28

28Using R package boot (Davison and Hinkley, 1997).
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Figure 7: Monetarily Optimal Threshold W ∗
P,E vs Empirical Threshold ŴP,E

Notice that the monetarily optimal switching point W ∗ is always above

the empirical threshold Ŵ . This is consistent with our prediction of the

model. The intuition is as follows, due to the security concerns, people

would switch from trading in Polygon network to Ethereum network earlier,

thus the gap we observe from empirical evidence and model prediction, that

is, the gap of Ŵ and W ∗.

As defined in section 3, SL2,L1, our estimator of the representative agent’s

beliefs on security, is the chance of losing the transaction value when trading

on L2 compared to on L1. SL2,L1 should be greater than 0, as the probability

of not losing ones’ transaction wealth in L1 network should always be smaller

than on L2 network, since Layer-2 network building on Layer-1 network. The

calculation confirms this as the estimator is always greater than 0.
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Here in Figure 8, the y axis is SL2,L1 = SP,E; the higher the estimator,

the more security concerns our representative agent holds on the Polygon

network. The mean of the analysis time period is 0.751%, suggesting that in

this period, on average, agents think there is 0.751% more chance of losing

transactions on Polygon compared to Ethereum. The median is 0.554%.

The ratio is significantly different from 0 (greater than 0), as its 95%

confidence interval, obtained by running bootstrap on the transaction data,

never cover 0.

Figure 8: Estimated Security Parameter

5.4. Investigating Alternative Factors to Explain the Results

In this section, we will explore alternative explanations that could account

for the observed gap between the monetary optimal switching point and the
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empirical one. Specifically, we will closely examine potential explanations

related to factors such as price accuracy, adoption cost, and the advantages

of owning assets on L1. However, we find that these explanations are less

likely to account for the observed gap, as the available data does not provide

strong support for them.

Moreover, taking into account the blockchain trilemma, as discussed in

2.1, which highlights the trade-off between scalability and security, users

who transition to more scalable networks like L2 should be mindful of this

trade-off. In light of this, we assert that security assumes a pivotal role in

explaining the observed gap and our research findings.

5.4.1. Price Accuracy

One argument suggests that the gap between the monetary optimal switch-

ing point and the empirical one may be attributed to different prices across

networks. However, our data indicates that prices across networks, particu-

larly in large pools with well-known tokens, are equal between L1 and L2.

Figure 9 plots the time series of WETH price relative to USDC in the 0.05%

fee liquidity pool for all three platforms. Prices across L1 ETH, L2 POLY-

GON, and L2 OPTIMISM are almost identical such that the time series

overlaps.

This suggests that arbitrageurs operate across layers, potentially holding

L2 and L1 accounts and periodically transferring funds between networks

to avoid incurring cross-chain costs. This concept resembles arbitrageurs

trading on both centralized exchanges (CEX) and decentralized exchanges

(DEX), where moving funds from DeFi to CeFi can be costly. The pres-

ence of arbitrageurs across networks weakens the argument that traders do
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Figure 9: WETH/USDC price in 0.05% fee liquidity pool

not monitor prices across networks, and the potential gap could be due to

monitoring costs.

However, if this were the case, we would anticipate greater price volatility

between networks, and the security parameter might exhibit more noise or

even negative values. In light of our model, when prices on L1 are more favor-

able than L2, price inaccuracy should manifest as a lower security parameter

and potentially even as negative values, signifying that L2 is more secure

than L1. Nevertheless, our data consistently demonstrates positive security

parameters, indicating the accuracy and consistency of exchange prices on

L2 in comparison to L1.
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5.4.2. Adoption Cost

The use of L2 solutions entails an adoption cost initially, which may

influence users’ transition from L1 to L2. To adopt L2 solutions, users need

to transfer funds from L1 to L2 (involving bridging mechanisms) and create

a new wallet on L2, requiring familiarity with the L2 network. Although L2

solutions aim to streamline the process by enabling the use of the same digital

wallet and wallet ID across L1 and L2 networks, the adoption cost may still

be substantial for certain users, depending on users’ level of sophistication

and familiarity with these systems.

Given that our model employs a representative agent framework, it might

overlook this adoption cost concern, and it is possible that small users find the

adoption cost relatively affordable while wealthier users face higher barriers.

To assess this argument, we conduct analyses on a subset of the data, namely,

on wallets that traded on both L1 and L2 during the period of analysis. This

allow us to examine whether users who hold funds in both L1 and L2 exhibit

the same pattern of smaller transactions on L2 and relatively larger ones on

L1, as well as whether their switching point is lower than the optimal one.

Table 2 gives an overview of the subset data. 17,246 unique wallet ad-

dresses swapped on both ETH and POLY for the USDC/WETH 0.05% pools.

Together they contribute to about 5%-7% of the total transactions we ob-

served in this period, and about 1%-6% of the total transaction value on each

platform.

We then conduct the same analysis as in 5.3 to obtain the mean (median)

estimated security parameter. Our findings not only support that individual

users follow the same patterns as our representative agent, but also highlight
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DEX # TXN

(%)

Total Volume

(%)

Mean Estimated

Security Parameter

(Median)

Full
ETH 2,789,976 $220,065,992,854

POLY 4,991,764 $12,401,731,851 0.751%

(0.554%)

Subset

ETH
142,538

(5.1%)

$2,119,468,116

(1.0%)

POLY
346,088

(6.9%)

$ 697,737,558

(5.6%)

1.672%

(1.250%)

Table 2: Subset Data for users that swap on both ETH and POLY

that the representative agent result is a lower bound of this security estimate,

thereby weakening the adoption cost argument. A similar plot to Figure8

can be found in Appendix C for this subset data, FigureC.17.

5.4.3. Benefit of Owning Assets on L1 vs. L2

In addition to the liquidity risk associated with holding tokens on L2,

which is one of the security concerns we highlight, our model assumes that

tokens on L2 and L1 are essentially the same. However, it is plausible that

tokens possess different utility values. Users may utilize their tokens on L1

in other DeFi applications that generate higher returns compared to L2,

thereby providing additional value to L1 tokens and potentially explaining

the observed gap.
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Nevertheless, it is worth noting that numerous DeFi applications are cur-

rently available on L2, including DEX platforms and lending protocols, of-

fering a diverse range of financial options that can occasionally yield higher

returns than holding tokens on L1. For example, our data reveals that provid-

ing liquidity on L2 generates higher daily returns compared to L1 (Figure 10).

Despite this, liquidity providers still exhibit a preference for providing liq-

uidity on L1. This behavior reinforces our security concern, as it suggests

that the switching cost from L1 to L2 may be relatively low compared to

the higher returns from providing liquidity on L2, yet liquidity providers still

choose L1 as their preferred option.

Figure 10: Fee collected per dollar liquidity for USDC-WETH 0.05% liquidity pool
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5.5. Generalization

The analysis conducted in the above sections can be generalized to other

L2 network, and also other liquidity pools with different tokens.

We first look at the corresponding pool in Optimism mentioned in section

4. Appendix C documented the corresponding Figure 7 and Figure 8 for

this same pair of tokens and same protocol swapping fees, but comparing

Optimism and Ethereum. Similar to our results from swapping behavior in

the Polygon pool case, again, there’s always a gap between the empirical

threshold and monetarily optimal threshold in Figure D.18. The estimated

security parameter for Optimism of this token pair (Figure D.19) has more

fluctuation, and on average, higher security concerns from the representative

agent compared to Polygon (mean is 3.53% and median is 2.64%). We will

discuss this difference between Polygon and Optimism later.

To further verify our model, we performed the same exercise to 5 other

token pairs on Polygon and 6 other token pairs on Optimism. These pools

have different tokens involved, and also have various protocol swapping fees.

Table 3 summarizes all the liquidity pools we have analyzed.

Some of these pools were not available until recently; in order for us

to compare our model result across different pools and networks, we take

the intersection of period of time for all pools, which is August 5, 2022 to

December 31, 2022, a period of 149 days. Appendix D provides the histogram

of swapping values and the estimated security parameter for these additional

11 pools. All previous analysis is replicated, as we observe the histogram of

swapping values sort in the same way as we previously introduced, with small

transactions in L2 and large transactions in L1. Moreover, the gap between
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Pool fee L2 Polygon L2 Optimism

DAI/USDC 0.01 0.01

DAI/WETH 0.05

MATIC/WETH 0.3

USDC/USDT 0.01 0.01

USDC/WETH 0.05 0.05

USDC/WETH 0.3 0.3

USDT/WETH 0.05

WBTC/WETH 0.05 0.05

Table 3: List of liquidity pool analyzed

the empirical threshold and monetarily optimal threshold are all robust, and

the estimated security parameters are also similar (within the same network).

Based on each day’s trading volume in each pool, we assign a weight to

calculate the weighted mean of the security parameter SL2,L1 for the two L2

platforms. The weighted mean for Polygon is 0.68%, and for Optimism is

3.29%, meaning that the representative agent believed that there is 0.68%

more chance of losing transactions on Polygon compared to Ethereum, while

there is 3.29% more risk on Optimism compared to Ethereum.

As one might notice from Appendix D, there’s more fluctuation and worse

security estimator for Optimism than Polygon; indeed, as shown in Figure 11,

the Optimism’s weighted mean is significantly greater from Polygon’s at 95%

level. This suggests traders believe that the Optimism network is less secure

than Polygon. Perhaps the ”optimistic” approach in the validation process

of optimistic rollups reduces the reliability from a trader’s point of view.
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Another possible explanation is that the Community of the Polygon network

is much greater than the Optimism, which generates more reliability of the

traders in the Community and less about the technology behind it. But this

is speculation and a topic for future research.

Figure 11: Weighed Mean of Estimated Security Parameter

6. Summary

The primary focus of our analysis of this novel trading environment in

DEX platforms is to quantify traders’ belief about security issues regarding

L2 compared to L1. To do so, we analyzed trading data using a structural

model. Our model calculates the monetarily-optimal switching point for

traders to trade on the L1 network instead of L2. Empirical data supports

the idea that traders use L1 for lower transactions even though it is less
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expensive to trade on L2. We argue that security concerns have a critical

role in explaining this gap.

Our model reveals that, on average, traders anticipate a 0.68% (3.29%)

chance of losing transaction value when trading on Polygon (Optimism)

compared to L1, which is a substantial risk considering the (0.01%-0.3%)

transaction fees charged per trade. Our analysis utilized a large and di-

verse dataset that incorporated various gas prices, different types of tokens,

and two L2 networks (Optimism and Polygon). Despite this variation, we

consistently obtained similar results, which highlights the robustness of our

findings. Moreover, we have rigorously established that alternative explana-

tions such as price accuracy, adoption costs, and the advantages of holding

assets on L1 are less influential in explaining the observed preference for L1

over L2.We also develop preliminary insights on the impact of L2 solutions

to the financial inclusion of DEX. L2 solutions, allow traders with low stakes

to enter a market with a low-gas-fee environment. The number of swapping

transactions on L2 is much higher than on L1, and these are mostly small-size

transactions. The high gas fees in L1 do not allow traders with a small bud-

get to trade when gas fees are high relative to their small transactions. Our

work can be seen as empirical evidence of the trade-off between scalability,

security, and decentralization, which is the biggest challenge of blockchain

networks.

Looking forward, our novel methodology can be applied to other L2 net-

works, allowing researchers to estimate traders’ security concerns across dif-

ferent networks in DEX platforms. The long-term effect of the introduction

of the L2 networks is yet to be explored. Will concerns about security be
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reduced when L2 has been in existence longer? DeFi markets should be ex-

plored further, and we invite more researchers to study this new environment.
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Appendix A. Linear Discriminant Analysis

A competing method of binary logistic regression is linear discriminant

analysis, a linear method in classification. While the relative efficiency of

linear discriminant analysis (LDA) is superior to binary logistic regression

(BLR) if the LDA’s assumptions are met (Efron, 1975), the assumption of

normality is hard to meet with our data. In one predictor (W ) case, the LDA

assumes that W |Y = k ∼ N(µk, σ
2), that is, the predictor given a different

class, follows a normal distribution with different mean and variance. We

test this assumption and found the predictor is far from normal distributed

through Skewness-kurtosis graph (Cullen et al., 1999).29

Appendix B. Threshold the predicted probability

After obtaining the logit regression, we can predict the class (transac-

tion is on L2 or Ethereum) by thresholding the predicted probability. For

example, one might predict Y = 1 (on L2) for any transaction value whose

predicted probability is greater than 0.5. Or, if we are being conservative in

predicting transaction value to be in Ethereum, we could predict Y = 1 (on

L2) for any transaction value whose predicted probability is greater than 0.1.

To evaluate the classification performance under different threshold prob-

ability, one can construct confusion matrix and pin down the threshold prob-

ability that obtain a low false positive rate (FPR, the fraction of negative

examples that are classified as positive, which in our study is the portion of

transaction on Ethereum that are classified as on L2) while also maintain-

29Using R package fitdistrplus (Venables and Ripley, 2002).
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ing a low false negative rate (FNR, the portion of transaction on L2 that are

classified as on Ethereum). We want to choose the probability threshold that

is closest to (FPR, FNR) = (0, 0). There are many ways to determine which

threshold probability corresponds to the smallest distance, but we calculate

the euclidean distance between each point of (FPR, FNR) and (0, 0). Figure

Figure B.15 and Figure B.16 show the ROC curve and optimal threshold se-

lection for 2022/4/11 data.30 The optimal threshold for that day is 77.91%,

meaning when predicting platform, only when the Pr(Y = 1|W ) > 77.91%,

we category the transaction to be on L2.

30Using R package ROCR (Sing et al., 2005).
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Figure A.12: Skewness-kurtosis graph, for Ethereum transactions

Figure A.13: Skewness-kurtosis graph, for Optimism transactions

Figure A.14: Skewness-kurtosis graph, for Polygon transactions
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Figure B.15: Example ROC curve (2022/4/11 data)

Figure B.16: Example FPR, FNR graph (2022/4/11 data)
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Appendix C. Wallets that swap on both ETH and POLY

Figure C.17: Estimated Security Parameter for subset data
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Appendix D. Generalization Optimism

Figure D.18: Monetarily Optimal Threshold W ∗
O,E vs Empirical Threshold ŴO−E

Figure D.19: Estimated Security Parameter, O,E
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Appendix E. Generalization all other pairs

Figure E.20: Histogram of 5 other pairs from Polygon and Ethereum

Figure E.21: Histogram of 6 other pairs from Optimism and Ethereum
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Figure E.22: Estimated Security parameter S for 5 other pairs from Polygon and Ethereum

Figure E.23: Estimated Security parameter S for 6 other pairs from Optimism and

Ethereum
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