BGUSAT as a remote sensing research platform

Dan Blumberg, Shimrit Maman

Aviran Sadon, Colin Price

IAI MBT Space division

THE EARTH AND PLANETARY IMAGE FACILITY

Satellite Remote sensing

Imaging from space is very common

TIROS-1,

US meteorological satellite, first satellite to be launched for the declared purpose of earth observations.

Spacecraft miniaturization trends

PCBSat	c ↓	ubeSat ↓	PICOSat ↓	
1-100g	0.1–1kg	1-10kg	10-100kg	100-500kg
£100-1000	£10-100K	£1-2M	£1-10M	£10-50M
Femtosatellite	Picosatellite	Nanosatellite	Microsatellite	Minisatellite
ChipSat	PalmSat	Snap-1		ик-дмс 💓

Objectives

Technology capability demonstration

(ESA's PROBA program, NASA's Edison and Franklin programs)

Education

(MIT Spheres, Stanford Gravity Probes): Used in universities to teach their students the **fundamentals of satellite engineering** and project management using **hands-on experience**.

Cubesats are designed, built, tested, and launched by universities at a price between \$50,000 and \$200,000 (Bouwmeester & Guo, 2010).

Science in a box

- Education and\or capability demonstration is the primary objective in most missions.
- Researchers understood the potential quality of the science that could be achieved using constellations of Cubesats.
- Science started as a secondary objective in most Cubesat programs! (might explain the lack of publication)

SpaceWorks Enterprises forecast

Remote sensing the next generation?

בשנים האחרונות ישנם פרויקטים בתחום הננו לוויינים בעלי מטע״דים לחישה מרחוק של כדור הארץ

סקר מקיף המעריך את היכולות האפשריות של:

Earth observation from CubeSats

(Selva and Krejci, 2012)

Remote sensing the next generation?

THE EARTH AND PLANETARY IMAGE FACILITY

"Missions with highest performance"

Table 1

List of Earth observation Cubesat missions in chronological order.

Cubesat	Institution	Payload	Measurements	Launch date and status	Reference
QuakeSat	Stanford University and Quakesat LLC	AC magnetometer	Ultra low frequency (ULF) magnetic signals from large (Richter > 6) earthquakes	2003 (success)	[26]
ION	University of Illinois at Urbana-Champaign	Photometer (Photomultiplier Tube) and 640×480 pixel CMOS color camera	$0.76\mu m$ oxygen emission band in the 100 km upper atmosphere	2006 (launch failure)	[27]
CanX-2	University of Toronto	Atmospheric spectrometer, and GNSS receiver in occultation geometry	1-km horizontal resolution tropospheric CO ₂ total column Atmospheric humidity and total electron content	2008 (success)	[4]
SwissCube-1	Polytechnic School of Lausanne	Passive optical telescope, with 188 × 120 pixel camera	0.76 µm oxygen emission band in the 100 km upper atmosphere	2009 (success)	[28]
Micromas	Massachusetts Institute of Technology	mm-wave multi-channel radiometer	Hyperspectral microwave atmospheric sounding (vertical profiles of atmospheric temperature and humidity)	In development	[5]
Cloud Cubesat	NASA Goddard Space Flight Center (GSFC)	VIS camera NIR camera Polarimeter	Aerosol and cloud properties	In development	[6]
M-Cubed (Michigan Multipurpose minisatellite)	University of Michigan	25.4 mm aperture, 17.6 mm focal length telescope, with 1628 × 1236 pixel CCD	Medium resolution optical imaging (200 m)	In development	[29]
Aalto-1	Aalto University	5–10 nm, 6–20 channel imaging VNIR Fabry–Perot interferometer spectrometer	Aerosol and cloud properties, vegetation measurements, fire monitoring, water monitoring, land use, atmospheric chemistry	In development (launch targeted 2013)	[30]
FireFly	NASA GSFC	VLF receiver, photometer	Lightning detection	In development	[31]

RS from cubesats

- Cubesats with **some** Earth observation capability have been developed in the last years
- most of them carry space weather sensors, or modest resolution optical cameras
- Some technologies are more appropriate than others for use in Cubesats, arguably because they are more prone to miniaturization

BGUSAT

Mission type	Earth observation Technology		
Operator	ISA/Ben-Gurion University of the Negev		
Spacecraft properties			
Manufacturer	IAI Ben-Gurion University of the Negev		
Launch mass	5 kilograms (11 lb) ^[1]		
Dimensions	30 x 10 x 10 cm (3U cubesat)		

Start of mission

Launch date	15 February 2017 3:58 UTC ^[2]	
Rocket	PSLV-C37	
Launch site	Sriharikota Launching Range	
Contractor	ISRO	
Entered service	15 february 2017 3:58 UTC ^[2]	

Orbital parameters

Reference system	Geocentric	
Regime	LEO	
Perigee	505 km	
Apogee	505 km	

BGUSAT

- In the past four years, BGUSat has progressed from a student and researchers educational tool to a research platform demonstrating technology and scientific instrumentation!
- 15.2.2017!
- During this period many interdisciplinary projects were conducted and a firm knowledge infrastructure was established

PSLV C-37

- 104 satellites
- Cartosat being the main spacecraft

Cartosat

Panchromatic 0.60m

NRSC / ISRO

Imaging in Short-Wave InfraRed (SWIR)

- snow, ice and cloud discrimination
- Sensitivity to CO2
- Sensitivity to Earth Glow

Images courtesy: http://www.sensorsinc.com/gallery/images

BGUsat Imaging in Short-Wave InfraRed (SWIR)

Visible Wavelengths (400-700 nm)

SWIR Wavelengths (1500-2500nm)

Strong Ability to See Through Scattering Media (Haze, Smoke)

Technical characteristics

	Satellite Name	Band	Bands in SWIR	Swath Width	SPATIAL RES'(m)
	BGUsat		1.55-1.7 μm	224km	600
	NOAA AVHRR/3	3A	1.64 - 1.58	2900km	1000
	WorldView 3	2-3	1.546µm - 1.686 µm (40nm for band)	13.1km	3.7
	Landsat 4-5	5	1.55-1.75	185km	30
	Landsat 7	5	1.55-1.75	185km	30
	Landsat 8	6	1.651 - 1.566	185km	30
	Hyperion	B141-B161	1.558 - 1.790 μm	7.5km	30
	Sentinel-2MSI	11	1.61	290km	20
	EO-1 ALI	5	1.55 - 1.75 μm	37km	30
	EO-LAC	1	0.89-1.6 μm	185km	250
	Aster	4	1.600 - 1.700 μm	60km	30
R	Modis	6	1.628 - 1.652μm	2330 km	500
	THE EARTH AND PLANETARY IMAGE FACILITY				

May images of BGUSAT vs NOAA

BGUSAT images 😳

Ongoing Research

Earth's airglow layer

Photographed from the ISS

Combining LEO & GEO

CubeSats for RS missions promise to combine:

J. Bouwmeester, J. Guo / Acta Astronautica 67 (2010) 854-862

Fig. 3. Geographical distribution of pico- and nanosatellite developers.

Thank you!

Concluding remarks

