

Integrated manufacturing technologies laboratory

Sigal Berman and Lior Fink Ben Gurion University, Israel

ICPR-**21**, Stuttgart, Germany, August 2011

Motivation

- Fundamental transformations are emerging in production management and organization. Work at all levels is being re-shaped by e-work. (Nof, 2007; Bracht & Masurat, 2005; Zuehlke, 2010).
- The digital future factory is becoming a reality for which future engineers must be prepared.
- Agenda today:
 - IMT fundamentals
 - Courses in IMT

History – CIM-NEGEV

Collaboration and team work

- Managment support + seed funds
- Survey
 - Other facilities
 - Academia
 - Industry
- IMT team
 - Academia (Intelligent systems and production, HF, IS)
 - Technical support
 - Students
- Advisory commitee
 - Dr. Jochen Rode, SAP AG
 - Dipl.-Ing. Eckhard Hohwieler, Fraunhofer-Institute for Production Systems and Design Technology (IPK)
 - Prof. Shimon Nof, Purdue University

IMT MOTTO

• Future factory facility producing real life products

- Integration of
 - Shop floor activities and information systems
 - Human factors and human modeling and shop floor control
 - Autonomous and semi autonomous processes
- Implementation of concepts from
 - Intelligent system control
 - Information systems
 - Human factors
 - Green manufacturing

Product line (3D toys)

Integrated manufacturing kinetic technologies

Information infrastructure

Robotic and intelligent automation

- Two MH5 Motoman robots
- Advanced sensing
 - Image processing
 - 3D vision
 - Active sensing
 - Force and tactile sensing
- Process simulation and optimization

Human Machine Interfaces (HMI)

- Ecological interfaces
- Gesture recognition
- Devices
 - Video wall
 - Touch screens
 - Hand held devices
 - Lights and sounds

- Supplier entrance door
- Fitted rack storage station
- Work stations
- Floor tags

 Studies regarding the value of RFID in the retail sector have already shown it can facilitate considerable savings (Hardgrave et al., 2008)

Courses

2011 2012

Level Activity Course Semester HMI В Graduate Laboratory meeting Mini project В Graduate Computer integrated Laboratory meeting Hands-on homework assignment manufacturing systems *Foundations of robotics Graduate Laboratory meeting Α in production systems Advanced topics in data Α Undergraduate Laboratory meeting System based homework processing (elective) assignment **Automation** A & B Undergraduate Laboratory tour (mandatory) Introduction to A & B Undergraduate Laboratory tour (mandatory) System based class example information systems

- Part of INTRO EU international education project.
- More courses in 2nd stage

HMI (Dr. Tal Oron-Gilad)

- The course deals with human factors issues in human machine system design.
 - Graduate elective
 - 30 students
- The aim of the collaboration with the laboratory is to give a physical grounding to the course project.
- Laboratory experience
 - Mini project Design an interface for a station
 - Laboratory meeting (3 hour)
 - A short lecture about the laboratory.
 - Hands on work
 - Tour
 - Documentation
 - Technician interview

Advanced topics in data processing (Dr. Adir Even)

- This course deals with the implementation of data warehouses and their use for BI and other decision support applications.
 - Graduate elective
 - 30 students
- The aim of the collaboration with the laboratory is to demonstrate the implementation of BI solutions in industrial environments
- Laboratory experience
 - Homework exercise based on simulated data
 - Laboratory meeting (3 hour)
 - A short lecture about the laboratory.
 - Hands on work
 - Tour
 - Documentation

Additional functionalities

- Platform for graduate and undergraduate projects
 - 4th year undergraduate projects (~5 per year)
 - M.Sc. and Ph.D. theses
- Major attractor for guests to Ben-Gurion University
- Demonstrations for Engineering faculty courses
- Demonstrations for community/youth education programs

Quantifying laboratory activity

• Courses - The IMT lab has started partial operation in the last spring semester (2011).

Activity	Туре	# participants
Automation	Undergraduate – mandatory course (demo)	137
Man-machine interfaces	Graduate course (Lab meeting and mini project)	14
4 th year projects	Undergraduate	7 (4 projects)

- Extra curricular activity Delegations currently hear a short explanation of the lab future plans.
- Publications Two abstracts related to the IMT lab were accepted to the 21st International Conference on Production Research (ICPR).

Acknowledgments

- This research has been partially supported by the Paul Ivanier Center for Robotics Research and Production Management. The IMT laboratory is supported in part by Intel (Israel); (Intel mentor: Dr. Adar Kalir).
- The authors wish to thank
 - IMT advisory committee members Prof. Shimon Nof, Dr. Jochen Rode, and Dr. Eckhard Hohwieler.
 - IMT team members Dr. Tal Oron-Gilad, Dr. Adir Even, Dr. Raziel Riemer, Dr. Roie Zivan, Prof. Yael Edan, Jonathan Korpel, Noam Peles, Gil Baron, Nissim Abu-Hazera, Jossi Zahavi, and Anat Polachek.

Thank you!