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Background and motivation

Problem
In practical direction finding of radar targets accurate parametric
models for the signals and clutter are unavailable
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Background and motivation

Goal
Estimate θ0 ∈ Rm given samples {Xn}Nn=1 from PX;θ0

Restriction
PX;θ0 belongs to unknown parametric family of probability
measures

PX;θ0 ∈ {PX;θ : θ ∈ Θ}

I The maximum likelihood estimator cannot be implemented

I Resort to methods that require partial statistical information
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Background and motivation

Gaussian QML estimator [White 1982]

I Minimize the empirical KLD between PX;θ0 and a Gaussian
measure ΦX;θ with mean µX (θ) and covariance ΣX (θ)

I Amounts to maximization of

J (θ) , −DLD

[
Σ̂X||ΣX (θ)

]
− ‖µ̂X − µX (θ)‖2

(Σx(θ))−1

I The GQMLE:
θ̂ = arg max

θ∈Θ
J (θ)

I Simple implementation, easy performance analysis

I Sensitive to model mismatch (e.g. in non-Gaussian clutter)
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Background and motivation

Proposed approach

GQMLE under a transformed probability distribution of the data

Advantages

I Resilient to outliers

I Involves higher-order statistical moments

I Significant mitigation of the model mismatch effect

I Computational advantages of the first and second-order
methods of moments
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Probability Measure Transform

Definition
Given a non-negative function u : X → R+ satisfying

0 < E [u (X) ;PX;θ] <∞.

A transform Tu : PX;θ → Q
(u)
X;θ is defined as:

Tu [PX;θ] (A) = Q
(u)
X;θ (A) ,

∫
A

ϕu (x;θ)dPX;θ (x) ,

where

ϕu (x;θ) ,
u (x)

E [u (X) ;PX;θ]
.

The function u (·) is called the MT-function.
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Probability Measure Transform

The measure transformed mean and covariance

µ
(u)
X (θ) = E [Xϕu (X;θ);PX;θ]

Σ
(u)
X (θ) = E

[
XXHϕu (X;θ);PX;θ

]
− µ(u)

X (θ)µ
(u)H
X (θ)

where

ϕu (x;θ) ,
u (x)

E [u (X) ;PX;θ]
=
dQ

(u)
X;θ

dPX;θ

Conclusion

I The mean and covariance under Q
(u)
X;θ can be estimated using

only samples from PX;θ.

I u (x) non-constant & analytic ⇒ the mean and covariance

under Q
(u)
X;θ involve higher-order statistical moments of PX;θ.
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Probability Measure Transform

Proposition (Consistent empirical MT mean and covariance)

Let Xn, n = 1, . . . , N denote a sequence of i.i.d. samples from
PX;θ, and define the empirical mean and covariance estimates:

µ̂
(u)
X ,

N∑
n=1

Xnϕ̂u (Xn)

Σ̂
(u)
X ,

N∑
n=1

XnX
H
n ϕ̂u (Xn)− µ̂(u)

x µ̂
(u)H
x

where ϕ̂u (Xn) , u(Xn)∑N
n=1 u(Xn)

. If

E
[
‖X‖2 u (X) ;PX

]
<∞,

then µ̂
(u)
X

w.p.1−−−→ µ
(u)
X (θ) and Σ̂

(u)
X

w.p.1−−−→ Σ
(u)
X (θ) as N →∞.
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Probability Measure Transform

Proposition (Robustness to outliers)

If the MT-function u(x) and u(x)‖x‖2 are bounded, then the

influence functions [Hampel, 1974] of µ̂
(u)
X and Σ̂

(u)
X are bounded.

Remark
Condition is satisfied when u (x) ∈ Gaussian family.
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Measure Transformed Gaussian QML Estimator

The MT-GQMLE

I Minimize the empirical KLD between Q
(u)
X;θ0 and a Gaussian

measure Φ
(u)
X;θ with mean µ

(u)
X (θ) and covariance Σ

(u)
X (θ).

I Amounts to maximization of

Ju (θ) , −DLD

[
Σ̂

(u)
X ||Σ

(u)
X (θ)

]
−
∥∥∥µ̂(u)

X − µ(u)
X (θ)

∥∥∥2(
Σ
(u)
x (θ)

)−1

I The MT-QMLE:

θ̂u = arg max
θ∈Θ

Ju (θ)
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Measure Transformed Gaussian QML Estimator

Theorem (Strong consistency of θ̂u)

Given a sequence of N i.i.d. samples from PX;θ0 . Assume that the
following conditions are satisfied:

1. The parameter space Θ is compact.

2. µ
(u)
X (θ0) 6= µ

(u)
X (θ) or Σ

(u)
X (θ0) 6= Σ

(u)
X (θ) ∀θ 6= θ0.

3. Σ
(u)
X (θ) is non-singular ∀θ ∈ Θ.

4. µ
(u)
X (θ) and Σ

(u)
X (θ) are continuous in Θ.

5. E
[
‖X‖2 u (X) ;PX;θ0

]
<∞.

Then,

θ̂u
w.p. 1−−−−→ θ0 as N →∞
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Measure Transformed Gaussian QML Estimator

Theorem (Asymptotic normality and unbiasedness of θ̂u)

Given a sequence of N i.i.d. samples from PX;θ0 . Assume that the
following conditions are satisfied:

1. θ̂u
P−→ θ0 as N →∞.

2. θ0 lies in the interior of Θ which is assumed to be compact.

3. µ
(u)
X (θ), Σ

(u)
X (θ) are twice continuously differentiable in Θ.

4. E
[
u2 (X) ;PX;θ0

]
<∞ and E

[
‖X‖4 u2 (X) ;PX;θ0

]
<∞.

Then,
θ̂u

a∼ N (θ0,Cu (θ0))
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Measure Transformed Gaussian QML Estimator

Asymptotic MSE

Cu (θ0) = N−1F−1
u (θ0) Gu (θ0) F−1

u (θ0)

where

Gu (θ) , E
[
u2 (X)ψu (X;θ)ψTu (X;θ);PX;θ0

]
ψu (X;θ) , ∇θ0 log φ(u) (X;θ)

Fu (θ) , −E [u (X) Γu (X;θ);PX;θ0 ]

Γu (X;θ) , ∇2
θ log φ(u) (X;θ)
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Measure Transformed Gaussian QML Estimator

Proposition (Relation to the CRLB)

Cu (θ0) � CRLB (θ0)

where equality holds if and only if

∇θ log f(X;θ)|
θ=θ0

= IFIM (θ0) F−1
u (θ0)ψu (X;θ0)u (X) w.p. 1

Remark
PX;θ0 Gaussian ⇒ Condition is satisfied only for u (x) = const

Conclusion
PX;θ0 Gaussian & u (x) 6= const ⇒ Cu (θ0) � CRLB (θ0)
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Measure Transformed Gaussian QML Estimator

Theorem (Empirical asymptotic MSE)

Define the empirical asymptotic MSE:

Ĉu(θ̂u) , N−1F̂−1
u (θ̂u)Ĝu(θ̂u)F̂−1

u (θ̂u)

where

Ĝu (θ) , N−1
∑N

n=1 u
2 (Xn)ψu (Xn;θ)ψTu (Xn;θ)

F̂u (θ) , −N−1
∑N

n=1 u (Xn) Γu (Xn;θ)

Furthermore, assume that the following conditions are satisfied:

1. θ̂u
P−→ θ0 as N →∞.

2. µ
(u)
X (θ), Σ

(u)
X (θ) are twice continuously differentiable in Θ.

3. E
[
u2 (X) ;PX;θ0

]
<∞ and E

[
‖X‖4 u2 (X) ;PX;θ0

]
<∞.

Then,

N‖Ĉu(θ̂u)−Cu(θ0)‖ P−→ 0 as N →∞.
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Measure Transformed Gaussian QML Estimator

Optimal choice of the MT-function

I Specify the MT-function within some parametric family

{u (X;ω) ,ω ∈ Ω ⊆ Cr}

I In order to gain robustness against outliers the Gaussian
family would be a good choice

I An optimal choice of the MT-function parameter ω would be
this that minimizes the empirical asymptotic MSE

ωopt , arg min
ω∈Ω

Ĉu

(
θ̂u (ω) ;ω

)
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Application

Robust direction finding in heavy-tailed clutter

Xn = Sna (θ0) + Wn, n = 1, . . . , N

I Sn: emitted signal with unknown symmetric distribution

I Wn: clutter with unknown spherically symmetric distribution

I Sn & Wn statistically independent and first-order stationary

I Gaussian MT-function: u (x;ω) , exp(−‖x‖2/ω2)

I MT-Mean: µ
(u)
X (θ;ω) = 0

I MT-Covariance: Σ
(u)
X (θ;ω) = rS (ω) a (θ) aH (θ) + rW (ω) I

I MT-GQMLE: θ̂u (ω) = arg max
θ∈Θ

aH (θ) Ĉ
(u)
X (ω) a (θ)

18 / 25



Application

Robust direction finding in heavy-tailed clutter
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Asymptotic RMSE

Empirical asymptotic RMSE

I BPSK signal, 4-element ULA, θ = 30◦

I Impulsive K-distributed clutter

I N = 3000 snapshots, GSNR = −15 [dB]
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Application

Robust direction finding in heavy-tailed clutter
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Summary

I A new estimator, called MT-GQMLE, was derived by applying
a transform to the probability distribution of the data.

I By specifying the MT-function in the Gaussian family, the
MT-GQMLE was applied to robust direction finding.

I Exploration of other MT-functions may result in additional
estimators in this class that have different useful properties.
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Application

Robust direction finding in heavy-tailed clutter
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Asymptotic RMSE

Empirical asymptotic RMSE

I BPSK signal, 4-element ULA, θ = 30◦

I Impulsive Cauchy clutter

I N = 3000 snapshots, GSNR = −5 [dB]
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Application

Robust direction finding in heavy-tailed clutter
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Application

Robust direction finding in Gaussian clutter
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Asymptotic RMSE

Empirical asymptotic RMSE

I BPSK signal, 4-element ULA, θ = 30◦

I Gaussian clutter

I N = 3000 snapshots, GSNR = −5 [dB]
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Application

Robust direction finding in Gaussian clutter
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