

Cognitive MIMO Radar

Joseph Tabrikian

Signal Processing Laboratory Department of Electrical and Computer Engineering Ben-Gurion University of the Negev

Involved collaborators and Research Assistants: Prof. R. Shavit, Prof. H. Messer, Dr. I. Bilik, I. Bekkerman, W. Huleihel, M. Teitel, N. Sharaga, O. Isaacs

BGU Radar Symposium 2016

Outline

□ MIMO radar at a glance

- Cognitive radar introduction
- □ Cognitive MIMO radar for beamforming and detection

□ Conclusion

MIMO Radar at a Glance

Data model: $\mathbf{X} = \mathbf{H}(\mathbf{\Theta})\mathbf{S} + \mathbf{W}$

 $[\mathbf{X}]_{m,n}$ - Rx signal at sensor *m* and time index *n*

 $[\mathbf{S}]_{in}$ - Tx signal by element *i* and time index *n*

 $H(\Theta)$ - Tx-Rx channel matrix

 $\boldsymbol{\Theta}$ - Unknown targets' parameters

Phased array - rank(\mathbf{R}_{s})=1

Rx elements

MIMO Radar at a Glance

Orthogonal Tx signals can be decomposed at the receiver, allowing adaptive beamforming of the Tx signals \rightarrow Virtual receiving elements:

MIMO Radar at a Glance

Virtual receiving elements: Orthogonal Tx signals can be decomposed at the receiver, allowing adaptive beamforming of the Tx signals.

Colocated (mono-static) MIMO radar: Bekkerman-Tabrikian 2004 Distributed (multi-static) MIMO radar: Fishler et al. 2004

MIMO Radar Properties

Array aperture extension:

MIMO Radar Properties

Array aperture extension:

MIMO Radar Advantages

- □ More degrees of freedom due to the *virtual sensors*:
 - Higher angular resolution.
 - Higher number of targets/clutter in a given range-Doppler cell, which can be detected and localized.
 - Lower sidelobes by virtual spatial windowing.
 - Digital beamforming of the Tx beams in addition to the Rx beams, and therefore avoid beam shape loss in cases that the target is not in the center of the beam.
- Decrease the spatial power density of the Tx signal spatial spread spectrum (SSS) which is critical for low probability of intercept radars (LPIR).

MIMO Radar Disadvantage

- □ Implementation
- □ Gain loss (omni-directional transmission)
 - Not a real problem in **search mode**: omnidirectional coverage allows large time-on-target (requires quasi-stationarity or track-before-detect).
 - A real problem in track/acquisition modes:
 If the target direction is known with a given degree of accuracy, then MIMO radar "wastes" its energy towards undesired directions.
 - **Solution: Cognitive MIMO Radar**

Cognitive Radar

Proposed by Simon Haykin 2006.

A cognitive radar employs *adaptive Tx-Rx* based on *history observation* and *environmental information*.

Cognitive Radar

Why the term cognitive is used?

NIH definition:

"Cognition: conscious mental activity that informs a person about his or her environment. Cognitive actions include perceiving, thinking, reasoning, judging, problem solving and remembering."

Biological Cognitive Properties versus Cognitive Radars	
Cognitive Property	Cognitive Radar Equivalent
Perceiving	Sensing
Thinking, Reasoning, Judging, Problem Solving	Expert Systems, Adaptive Algorithms, and Computation
Remembering	Memory, Environmental Database

[Guerci 2011]

Cognitive MIMO Radar

Data model at the k^{th} step: $\mathbf{X}_k = \mathbf{H}_k(\mathbf{\Theta})\mathbf{S}_k + \mathbf{W}_k$

 $\mathbf{H}_{k}(\mathbf{\Theta})$ - MIMO channel matrix, $\mathbf{\Theta}$ - Target parameters

Optimal processor: Detect/localize/track/classify the target(s) based on available measurements, $\mathbf{X}^{(k)} = [\mathbf{X}_1, \dots, \mathbf{X}_k]$.

Optimal adaptive waveform design: Design the transmit signal at the k^{th} pulse, \mathbf{S}_k , based on the measurements during the previous pulses, $\mathbf{X}^{(k-1)} = [\mathbf{X}_1, \dots, \mathbf{X}_{k-1}]$ to optimize a given criterion.

Cognitive MIMO Radar

Data model at the k^{th} step: $\mathbf{X}_k = \mathbf{H}_k(\mathbf{\Theta})\mathbf{S}_k + \mathbf{W}_k$

 $\mathbf{H}_{k}(\mathbf{\Theta})$ - MIMO channel matrix, $\mathbf{\Theta}$ - Target parameters

Cognitive Beamforming

Criterion for estimation accuracy: performance bound on the mean-squared-error (MSE):

- Bayesian Cramér-Rao bound (BCRB): Simple, but not tight.
- Bobrovski-Zakai, Reuven-Messer, or Weiss-Weinstein bounds: High computational complexity, but tighter.

It can be shown that with Gaussian noise, the bounds depend on

the Tx auto-correlation matrix: $\mathbf{R}_{\mathbf{S}_k} = \frac{1}{N} \mathbf{S}_k \mathbf{S}_k^H$

Power constraint: $\|\mathbf{S}_k\|_F^2 = \operatorname{tr}(\mathbf{R}_{\mathbf{S}_k}) \leq P$

or
$$\left[\mathbf{R}_{\mathbf{S}_{k}}\right]_{n,n} = P / N_{T}, \quad n = 1, \dots, N_{T}$$

Cognitive Beamforming

For single unknown parameter, θ , with total Tx power constraint, and zero-mean Gaussian noise with cov. \mathbf{R}_{v} :

$$\mathbf{R}_{\mathbf{S}_{k}}^{(opt)} = P\mathbf{u}_{k}\mathbf{u}_{k}^{H}$$

 \mathbf{u}_k - eigenvector corresponding to the maximum eigenvalue of

$$\boldsymbol{\Gamma}_{k}(\mathbf{X}^{(k-1)}) = \mathbf{E}\left(\dot{\mathbf{H}}_{k}^{H}(\theta)\mathbf{R}_{\mathbf{v}}^{-1}\dot{\mathbf{H}}_{k}(\theta)\left|\mathbf{X}^{(k-1)}\right.\right)$$

Vector parameter case, $\Theta \in \mathbb{R}^{Q}$ - weighted BCRB:

Convex optimization problems, and thus can be solved efficiently (Boyd and Vandenberghe (2004)).

Scenario :

- Uniform linear array of transceivers $N_R = N_T = 7$ elements with $\lambda/2$ inter-element spacing.
- AWGN with covariance $\mathbf{R} = \sigma^2 \mathbf{I}_{N_R}$.
- ASNR = $|\alpha|^2 NPN_R / \sigma^2 = -6$ dB.

Posterior pdf's versus transmit beampatterns $P_k(\varphi) = \mathbf{a}_T^T(\varphi) \mathbf{R}_{\mathbf{S}_k}^* \mathbf{a}_T(\varphi)$.

Auto-focusing effect: Automatic beamforming before detection/estimation.

Probability of resolution compared to space-reversal method. Two targets - SNR=-2 dB, k=10, 7 transceivers.

Cognitive Detection

Sequential Hypothesis Testing (SHT):

 $\begin{cases} H_1: & \mathbf{x}_{k,l} = \mathbf{H}_{k,l}(\mathbf{\Theta})\mathbf{s}_{k,l} + \mathbf{w}_{k,l} \\ H_0: & \mathbf{x}_{k,l} = \mathbf{w}_{k,l} \end{cases}, \quad k = 1, 2, \dots, l = 1, \dots, L,$

200 Goal: Minimize Average 150 Sample Number (ASN) to Thresholds 100 achieve given error **Detector** value 50 probabilities: $1-P_D$, P_{FA} . Stopping time 0 Decide H_1 if: $\log \frac{f_{\mathbf{X}^{(k)}}(\mathbf{X}^{(k)} | H_1)}{f_{-(k)}(\mathbf{X}^{(k)} | H_0)} > \frac{P_D}{1 - P_D}$ -50 -100 Stopping time Decide H_0 if: $\log \frac{f_{\mathbf{X}^{(k)}}(\mathbf{X}^{(k)} | H_1)}{f_{(k)}(\mathbf{X}^{(k)} | H_0)} < -\frac{1 - P_{FA}}{P_{FA}} -\frac{1 - 150}{100}$ 10 20 30 4N 50 60 70 80 90 100 snapshot

Cognitive Detection

Two hypotheses:

$$ASN \ge \max\left\{\frac{-\log(1-P_D)}{KLD_k(H_1 \parallel H_0)}, \frac{-\log P_{FA}}{KLD_k(H_0 \parallel H_1)}\right\}$$
$$C(\mathbf{s}_k, \mathbf{x}^{(k-1)})$$

Optimal signal design:

$$\mathbf{S}_{k,opt} = \arg\min_{\mathbf{S}_{k}} \max\left\{\frac{-\log(1-P_{D})}{KLD_{k}(H_{1} || H_{0})}, \frac{-\log P_{FA}}{KLD_{k}(H_{0} || H_{1})}\right\}.$$

 $KLD_k(H_m || H_n)$ - conditional Kullback-Leibler Divergence given $\mathbf{X}^{(k-1)}$.

Cognitive Detection

Criterion:

$$\mathbf{S}_{k,opt} = \arg\min_{\mathbf{S}_{k}} \sum_{l=1}^{L} \mathbf{s}_{k,l}^{H} \mathbf{E} \left(\mathbf{H}_{k,l}^{H}(\boldsymbol{\Theta}) \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{H}_{k,l}(\boldsymbol{\Theta}) \middle| \mathbf{X}^{(k-1)} \right) \mathbf{s}_{k,l}$$

s.t. $\sum_{l=1}^{L} \left\| \mathbf{s}_{k,l} \right\|^{2} \le P$

$$\mathbf{H}_{k,l}(\mathbf{\Theta}) = \alpha e^{-j\omega_D T k} \mathbf{a}_R(\theta) \mathbf{a}_T^T(\theta) e^{-j\frac{2\pi}{T}l\tau}, \quad k = 1, 2, \dots, \ l = 1, \dots L,$$
$$\mathbf{R}_{\mathbf{s}_k, opt} = P \mathbf{u}_{\max} \mathbf{u}_{\max}^H$$

 \mathbf{u}_{\max} - Eigenvector corresponding to the maximal eigenvalue of the matrix $E\left(\mathbf{a}_{T}^{*}(\theta)\mathbf{a}_{T}^{T}(\theta) | \mathbf{X}^{(k-1)}\right).$

Example - Cognitive Detection

150

210

240

180

4Tx, 16 Rx $\lambda/2$ inter-element spacing NF = 7dB RCS = 1m² Range=50m Azimuth=30°

0.8

0.6

0.4

0.2

270

30

330

300

0

30

330

0

Example - Cognitive Detection

4Tx, 16 Rx, NF = 7dB, RCS = $1m^2$, range=50m, azimuth=30°

Conclusions and Future Research

- □ MIMO radar offers great advantages but needs to be used with care.
- □ In cognitive MIMO radar, Tx signal auto-correlation matrix is adaptively optimized. The optimized signal is not necessarily orthogonal (MIMO) or fully correlated (phased array).
- Two new cognitive Tx beamforming approaches were presented to optimize: localization accuracy and detection performance
 This approach provides an automatic focusing array: beamforming before detectionquestimation.
- □ Future research:

Considering other criteria, such as probability of resolution, or target classification performance.

Thank you!