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INFORMATION EXTRACTION AND FUSION

Extract the maximum possible amount of information from
each sensor by using appropriate sensor and target
models.
Quantify the corresponding uncertainties.
Fuse the information from the various sources accounting
for their uncertainties.

Method of approach
Make things as simple as possible, but not simpler.

A. Einstein
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OUTLINE

The evolution of the technology of tracking targets (objects
of interest) in a cluttered environment starting from the
Kalman filter (recursive LMMSE estimator for Markovian
dynamic systems), the backbone of most current systems.
Approaches for handling target maneuvers (unpredictable
motion, including thrusting/ballistic targets) and false
measurements (clutter).
Advanced robust techniques with moderate complexity.
Tracking of multiple targets.
Tracking with multiple sensors: Fusion architectures.
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SNOOPY: ORIGINAL MOTIVATION OF MTT
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MTT IN THE ANIMAL WORLD
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TRACKING WITH UNCERTAIN MOTION MODELS AND UNCERTAIN

MEASUREMENTS

TRACKING consists of:

Estimation of the current state of a target (i.e., filtering) based on
uncertain measurements to reduce the effect of the various noises.

Calculation of the accuracy/credibility associated with the state
estimate.

TARGET MODEL UNCERTAINTIES — motion is subject to:

Random perturbations and/or

Unknown maneuvers or motion model changes.

Multiple models are needed to describe different target behavior modes.

MEASUREMENT UNCERTAINTIES:

Measured values from the target are inaccurate (noisy)

Origin of the measurements is not perfectly certain — the
measurement(s) can be from the target of interest, false alarms, clutter
or other targets — data association is necessary.
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UNCERTAINTIES
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TYPES OF DATA ASSOCIATION

MEASUREMENT-TO-MEASUREMENT association (Start-up).

MEASUREMENT-TO-TRACK association (Continuation).

Gating is done in the measurement space consisting of kinematic variables
(position, Doppler, etc.) as well as feature components (signal strength,
frequency, etc.).

TRACK-TO-TRACK association (in the decentralized multisensor case)

Given two tracks, each based on the data from a different sensor, are they
from the same target?

Common origin hypothesis test

Combination (fusion) of the estimates if common origin hypothesis is
accepted — for improved accuracy.

Gating is done in the state space with a weighted Cartesian norm and the
dependence of the state estimation errors (across independent sensors!) has
to be accounted for.
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MANEUVERING TARGETS

The true measurement of a kinematic variable can be far from the
predicted location — this can cause problems in data association.

Modeling of maneuvers:

PROCESS NOISE (assumed by the filter — “pseudo noise" —
white or from a subsystem driven by white noise)
[Q: why white?]

with a single high level (conservative)
with several discrete levels with heuristic “hard” switching
based on the norm of the innovations (not practical in
clutter)

MULTIPLE MODELS — use various models that differ in state
equation and/or process noise levels, state dimension (e.g., add
turn rate or thrust for thrusting/ballistic targets)

with hard switching (based on some logic — not practical in
clutter)
with soft (probabilistic) switching — Interacting Multiple
Model (IMM) estimator — works in clutter.
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THE MORE MODELS THE BETTER — PC on the average!
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ALGORITHMS FOR TRACKING AND DATA ASSOCIATION

The α-β Filter

Uses fixed gains and fixed association gates (with possible
simple logic of switching between several sets — gain
scheduling)

It does not yield state estimation accuracies (covariances)

This filter is actually the steady-state Kalman filter for a
kinematic model (2nd order with acceleration as white process
noise) with a given set of parameters. A similar filter (α-β-γ) is
available for a 3rd order model

Handling of measurement ambiguities
Measurement selection

“nearest neighbor" (following thresholding of the signal)

“strongest neighbor" (following gating).

This is then used in the state update as if it was the correct one.

Q: How can one improve on the α-β filter in clutter?
(outlw)
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BEYOND α-β
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THE STANDARD KALMAN FILTER

Selection of the measurement (from the gate) for state update is done
according to

A “minimum distance rule" — Nearest-Neighbor (NNSKF), or

A feature, e.g., the signal strength — Strongest Neighbor
(SNSKF).

The update is done with a time-varying gain (as opposed to the α-β
filter), which is optimal if

the assumed motion model parameters are correct and

the selected measurement is the correct one.

No accounting is made of the possibility that a clutter measurement
might have been selected — it is a “standard” filter.

A logic can be used to effect a switching between several process
noise levels (“spaghetti logic” unless the SNR is very high).

For nonlinear state or measurement models: Extended KF uses
linearization.
(KF workhrs; α− β mule)
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THE PROBABILISTIC DATA ASSOCIATION FILTER (PDAF)

This filter calculates for all the current measurements from the
gate the association probability of having originated from the
target in track based on their locations/features — time depth 1.
The state is then updated with a weighted combination of these
measurements with the weights being the above association
probabilities — “soft” association decision.
The covariance associated with the resulting state estimate
includes a term due to the measurement origin uncertainty.
This algorithm is suboptimal since it “lumps" all the
measurements in a single state estimate — it replaces a
Gaussian mixture by a single Gaussian using moment matching
It is simple (1.3× the NNSKF) and yields significantly improved
tracking performance.

Some implementations of the PDAF
Jindalee over-the-horizon radar in Australia — the only algorithm
that was capable of working in very heavy clutter
At Raytheon: Hawk SAM, ROTHR, THAAD, ASDE, GBR
At EUROCONTROL (combined with the IMM).

Yaakov Bar-Shalom TTFMOSTSvb (150424) Target tracking and data fusion 14/ 27



THE PROBABILISTIC DATA ASSOCIATION FILTER (PDAF)

This filter calculates for all the current measurements from the
gate the association probability of having originated from the
target in track based on their locations/features — time depth 1.
The state is then updated with a weighted combination of these
measurements with the weights being the above association
probabilities — “soft” association decision.
The covariance associated with the resulting state estimate
includes a term due to the measurement origin uncertainty.
This algorithm is suboptimal since it “lumps" all the
measurements in a single state estimate — it replaces a
Gaussian mixture by a single Gaussian using moment matching
It is simple (1.3× the NNSKF) and yields significantly improved
tracking performance.

Some implementations of the PDAF
Jindalee over-the-horizon radar in Australia — the only algorithm
that was capable of working in very heavy clutter
At Raytheon: Hawk SAM, ROTHR, THAAD, ASDE, GBR
At EUROCONTROL (combined with the IMM).
Yaakov Bar-Shalom TTFMOSTSvb (150424) Target tracking and data fusion 14/ 27



THE MULTIPLE HYPOTHESIS TRACKER (MHT)

This (most comprehensive) algorithm, with time depth > 1

splits the existing track (within a sliding window) whenever there
is an association ambiguity and follows each branch (sequence
of measurements) with a probability calculation

updates the tracks for each hypothesis with a KF/IMM

has built-in track initiation capability.

Disadvantages

Computational and memory requirements (NP-hard)

Very complex data management and debugging

Multitude of the output — all the hypotheses are put out and it is
very complicated to present an overall picture: one can display
the most likely hypothesis (questionable/optimistic) or composite
tracks.
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THE INTERACTING MULTIPLE MODEL (IMM) ESTIMATOR

The Interacting Multiple Model estimation algorithm is a very
efficient recursive scheme with fixed requirements for systems
with switching models (hybrid systems) — a self-adjusting
variable-BW estimator.

The IMM estimator runs Kalman filter (or EKF) modules
simultaneously based on several target models (e.g.,
non-maneuvering and maneuvering models or thrusting and
ballistic)

in an interacting manner — constantly exchanging information
yields the “current model" probability conditioned on the available
data.

The output consists of mode probabilities, combined state
estimate weighted by the mode probabilities and covariance of
the combined state estimate.

The IMM was the key that made it possible for an off-the-shelf
torpedo to intercept and attacking torpedo in a sea test.
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EXTENSIONS TO CLUTTERED ENVIRONMENT

The IMM, which has a modular architecture, has been extended
(IMMPDAF) for tracking a target in clutter by

using the PDAF as the basic filter module and

making suitable changes in the model probability calculation to
account for the target PD and the clutter.

Major advantages

simplicity of implementation
modest and fixed computational and memory requirements
effects soft switching between the models — “never totally
right, never totally wrong”

The IMMPDAF has been fielded in an active hull mounted sonar to
track low-SNR maneuvering targets.

The IMM has been successfully used in combination with assignment
— “hard” association decision — for real ATC data (800 targets, 5
radars).
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LARGE-SCALE ATC USING IMM/ASSIGNMENT ESTIMATOR
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Scenario: 5 FAA/JSS radars, 800 targets

Solution: 2-D assignment algorithm for data association in
conjunction with the IMM estimator for tracking

Real-time capability: IMM/Assignment tracker processed 5
minutes worth of data in less than one minute
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LIMITS OF PERFORMANCE

Major issue: Is there enough information in the data?

Information in the sense of Fisher: a matrix whose inverse, if it exists, yields
the lowest achievable covariance in estimation (the CRLB; in general there is
no guarantee that one can achieve this bound).

If PD < 1 and PFA > 0, one has a new situation: an information reduction
factor (IRF) has been quantified — there is less information and the CRLB in
clutter (CRLBiC) is higher than the conventional CRLB.

In real world problems

we have to understand the limits due to finite (perhaps insufficient)
information in the sensor data — the existing information

seek efficient algorithms — such that the extracted information is
equal to the existing information, or as close as possible to it, subject to
implementation constraints.

Example: The ML-PDA for TBM acquisition is efficient for LO targets down to
4dB SNR in a cell — average signal strength is 1.6 times the average noise.
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LOW OBSERVABLE TBM ACQUISITION USING ML-PDA
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Scenario: 200-250 km missile acquisition range, data for 6 s at 10 Hz

Difficulty: low SNR ⇒ high false alarm density (low observability)

Solution: ML-PDA estimator with features to initialize tracks

Efficient — meets the CRLB in clutter (CRLBiC) down to 4 dB SNR —
extracts all available information.
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LIMITS OF PERFORMANCE
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MULTISENSOR TRACKING

Prerequisites for successful data fusion:
Sensor registration (alignment)
Reliable statistical description of the uncertainties in each
sensor’s data
Reliable estimation accuracies — track error covariances.

An interesting results in fusion from distributed local trackers is
that local tracks using independent sensors have correlated
errors.
This correlation is due to the “common process noise” — the
motion uncertainty model is common, only the measurement
uncertainties are independent across local trackers — and is
quantified by “crosscovariances".
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SINGLE SENSOR TRACKING FOLLOWED BY TRACK FUSION W/O

FEEDBACK
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This fusion, even if performed optimally (with the exact cross-correlations
between the local state estimation errors), is known to be slightly inferior
(10–15%) compared to the centralized configuration.
Explanation: optimal fusion of locally optimal tracks is globally suboptimal —
because the locally optimal filter gains are not globally optimal.

It is critical that each estimate is consistent (has a covariance that is neither
optimistic nor pessimistic).
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CENTRALIZED CONFIGURATION FOR MULTISENSOR DATA FUSION

In this configuration all the associations and tracking are carried out
at a central location.

�Signal
processing� Association� Filter

update�
�
Tracks� Gate

computationSignal
processing

� Association�

�

This provides the best performance but it has high communication
bandwidth requirements.
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SUMMARY

The α-β and the NNSKF/SNSKF approaches are overly simplistic and
outdated.

At the other extreme, the MHT technique is very complex. The use of
discrete optimization (rather than enumerative hypothesis evaluation)
makes it more efficient and brings it to the stage where real-time
implementation is feasible.

For a single target, the IMMPDAF is believed to be the best available
compromise between complexity and performance. Its capabilities in a
realistic cluttered environment have been shown in a series of Navy
Benchmark problems.

The use of the IMM (combined with PDAF or MHT) has, with its built-in
auto-tuning, the potential of overcoming the problem that many filters
cannot be tuned for a wide enough range of situations.

For VLO targets the ML-PDA is the best algorithm because it can
extract all the relevant information from the data — it meets the CRLB in
clutter down to 4dB SNR.
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SUMMARY (Cont’d)

For multisensor track-to-track fusion, the cross-correlations between
local tracking errors have to be accounted for.

Optimal track-to-track fusion on demand is slightly inferior to optimal
centralized tracking but can save communication BW.

Sensor alignment (registration) hinges on observability, which is not
always guaranteed.

Sensor resolution modeling still needs work.
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SOMETHING WRONG
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