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Motivation and Difficulties of Heterogeneous T2TF

Motivation: There is need to fuse tracks from active and passive sensors.

Compared with homogeneous track-to-track fusion (T2TF) that assumes the
same system model for different local trackers, the heterogeneous case
poses two major difficulties:

The model heterogeneity problem: fuse tracks from different state
spaces (related by a certain nonlinear transformation).

The estimation errors’ dependence problem: recognized as the
“common process noise effect", which is quantified by the
crosscovariance matrix.
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Heterogeneous T2TF Problem – state-space models

Consider the following state-space models

at sensor i

x
i(k + 1) = f i[xi(k)] + v

i(k) (1)

z
i(k) = hi[xi(k)] +w

i(k) (2)

at sensor j

x
j(k + 1) = f j [xj(k)] + v

j(k) (3)

z
j(k) = hj [xj(k)] +w

j(k) (4)

where

x
i and x

j are in different state spaces (with unequal dimensions).

f∗(·) and h∗(·) are nonlinear in general

v
∗(·) denote the process noises

w
∗(·) denote measurement noises.

Note that the two heterogeneous trackers are assumed synchronized and the

time index k for sampling time tk will be omitted if there is no ambiguity.
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Heterogeneous T2TF Problem – different state vectors

Let xi be the larger dimension state (e.g., full Cartesian position and velocity
in 2-dimensional space for tracking with an active sensor)

x
i = [ x ẋ y ẏ ]′ (5)

and x
j be the smaller dimension state (e.g., angular position and velocity for

tracking with a passive sensor)

x
j = [ θ θ̇ ]′ (6)

These state vectors have the nonlinear relationship

x
j ∆
= g(xi) (7)
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Heterogeneous T2TF Problem – local tracks

From sensor i one has

the track x̂
i

the covariance matrix P i.

From sensor j one has

the track x̂
j

the covariance matrix P j .

The problem is how to carry out the fusion of the track x̂
i with P i and the

track x̂
j with P j to achieve

improved estimation performance over single sensor track quality.

comparable estimation performance to the track quality of centralized
measurement tracker/fuser (CTF).
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The LMMSE Fuser

The LMMSE fused estimate of x = x
i with “observation" z = x̂

j (using the
fundamental equations of LMMSE) is

x̂
i
LMMSE = x̂

i + PxzP
−1

zz

[

x̂
j − g

(

x̂
i
)]

(8)

with the corresponding fused covariance matrix

P
i
LMMSE = P

i − PxzP
−1

zz
P

′
xz

(9)

where

Pxz

∆
= E

[(

x
i − x̂

i
)(

x̂
j − g(x̂i)

)′]

≈ P
i(Gi)′ − P

ij (10)

Pzz

∆
= E

[(

x̂
j − g(x̂i)

)(

x̂
j − g(x̂i)

)′]

≈ P
j −G

i
P

ij − P
ji(Gi)′ +G

i
P

i(Gi)′ (11)

with Gi the Jacobian of g(xi)

G
i ∆
=
[

∇
x
ig(x

i)′
]′

x
i=x̂

i
(12)

and P ij the crosscovariance matrix.
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The ML Fuser

Under the Gaussian assumption, the heterogeneous T2TF problem can be
solved by minimizing the negative log-likelihood function

L = −ln p(x̂i
, x̂

j |xi)

∝

([

x̂
i

x̂
j

]

−

[

x
i

x
j

])
′
[

P i P ij

P ji P j

]−1 ([

x̂
i

x̂
j

]

−

[

x
i

x
j

])

(13)

Then, with x
j = g(xi), the ML fused estimate is the solution of

∇
x
iL = 0 (14)

Because of the nonlinearity of the function g(xi), we solve (14) by numerical
search.

The fusion result is denoted as x̂
i
ML with the corresponding covariance

matrix

P
i
ML =

(

[

I Gi
]

[

P i P ij

P ji P j

]−1 [

I

Gi

]

)−1

(15)

where Gi is defined in (12) and I is the identity matrix (4× 4 in our case).
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A Typical Scenario – measurement and ground truth

The measurements

an active sensor located at (xa, ya) with measurements
1 range: r =

√

(x− xa)2 + (y − ya)2 + wr

2 azimuth angle: θa = tan−1

(

y−ya
x−xa

)

+wa

a passive sensor located at (xp, yp) with measurements

1 only azimuth angle: θp = tan−1

(

y−yp

x−xp

)

+ wp

where wr, wa and wp are assumed to be mutually independent zero
mean white Gaussian noises with standard deviations (SD) σr, σa and
σp, respectively.

The ground truth

1 A target moving with a constant speed of 250m/s with initial state in
Cartesian coordinates (with position in m)

x(0) =
[

x(0) ẋ(0) y(0) ẏ(0)
]′

=
[

0 0 20000 250
]′

(16)

At k = 10 (t = 100 s) it starts a left turn of 2◦/s for 30 s, then continues
straight until k = 20, at which time it turns right with 1◦/s for 50 s, then
left with 1◦/s for 90 s, then right with 1◦/s for 50 s, then continues straight
until 50 s.
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A Typical Scenario – overview
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Figure 1: The scenario, with the target true speed 250 m/s, the active sensor located at
(

−6× 104, 2× 104
)

m with sampling interval Ta = 5 s and the passive sensor located
at

(

−5× 104, 4× 104
)

m with sampling interval Tp = 1 s.
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Local tracker Design – the active sensor IMM

The active sensor IMM estimator has two modes

mode 1 linear nearly constant acceleration (NCA) model: implemented as discretized
continuous white noise acceleration (CWNA) model .

mode 2 nonlinear nearly coordinate turn (NCT) model: implemented as discretized
continuous coordinate turn (CCT) model [Morelande&Gordon, ICASSP 2005].

The (target state-dependent) process noise covariance matrix of the NCT model is
(details in [MG2005])

Qi
a[x(k)]=





























T3
a
3

ẋ2(k)

ẋ2(k)+ẏ2(k)
qv × × × ×

× × × × ×

× × T3
a
3

ẏ2(k)

ẋ2(k)+ẏ2(k)
qv × ×

× × × × ×
× × × × TqΩ





























(17)

where qa and qΩ are the power spectral densities (PSDs). Note that the process noise
induced RMS change in the velocity and in the turn rate over sampling interval Ta are

dv
∆
=

√
qvTa
Ta

dΩ
∆
=

√
qΩTa

Ta
(18)

whose physical dimensions are linear acceleration and turn acceleration, respectively.
The CTF uses the same IMM design (CTF IMM for short) as the active sensor IMM.

T. Yuan, Y. Bar-Shalom and X. Tian Heterogeneous Track-to-Track Fusion 10/ 20



Local tracker Design – the passive sensor KF

For the passive sensor, in the scenario considered, the target maneuvering index is
very small and the target maneuvers are nearly unobservable by the passive sensor.
Consequently, a linear KF (rather than IMM estimator) is used [KB2003].

The motion model used is the discretized continuous Wiener process acceleration
(CWPA) model (with angle, angle rate and angle acceleration). The covariance matrix
of the process noise is

Qj
p(k) =









T5
p

20

T4
p
8

T3
p
6

T4
p
8

T3
p
3

T2
p
2

T3
p
6

T2
p
2

Tp









qp (19)

where qp is the process noise PSD. The process noise induced RMS change in the
angular acceleration over Tp are

dp
∆
=

√
qpTp

Tp

(20)

whose physical dimension is the angular jerk (derivative of acceleration).

Note that dp with dv and dΩ as in (18) are the design values used to select the process
noise PSDs for the local trackers.
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About the Heterogeneous T2TF

The measurement noises: the active sensor σr = 20m and σa = 5mrad; the
passive sensor σp = 1mrad.

Note An unbiased measurement conversion from polar coordinates to Cartesian
coordinates is done for the active sensor measurements for filtering.

The process noise intensities settings
Active sensor:

da (m/s2) dΩ (mrad/s2)
Mode 1 (NCA) 0.2 N/A
Mode 2 (NCT) 1 2

Passive sensor: dp = 0.04 mrad/s3 .

The IMM transition probability matrix is

π =

[

0.9 0.1
0.1 0.9

]

(21)

with initial mode probability vector [ 0.9, 0.1 ].

The estimate x̂
i(k) from the active sensor IMM with the corresponding

covariance matrix P i(k) and the estimate x̂
j(k) from the passive KF with the

corresponding covariance matrix P j(k) are used for the heterogeneous T2TF.

The fusion performance is compared with the corresponding single active sensor
IMM track and the CTF IMM track.
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The Sample Crosscorrelation – MC simulations

In view of the fact that there is no known way to evaluate the crosscovariance of the
estimation errors in the case of heterogeneous trackers, a Monte Carlo (MC)
investigation of these errors’ crosscorrelations is carried out.

The sample crosscorrelation coefficient between the lth component of xi and the hth
component of xj in M MC runs at a particular point in time is

ρ̂M
x
i
l
x
j
h

∆
=

∑M
m=1

(x̂i
l,m

− x
i
l
)(x̂j

h,m
− x

i
h
)

√

[

∑M
m=1

(x̂i
l,m

− x
i
l
)2
] [

∑M
m=1

(x̂j

h,m
− x

j

h
)2
]

(22)
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The Sample Crosscorrelation – position-to-position/velocity
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Figure 2: The sample crosscorrelation for x̃ and ỹ with θ̃ and ˜̇
θ.

(Some are positive and some are negative)
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The Sample Crosscorrelation – velocity-to-position/velocity
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Figure 3: The sample crosscorrelation for ˜̇x and ˜̇y with θ̃ and ˜̇
θ.

(Some are positive and some are negative)
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The Sample Crosscorrelation – negligible crosscorrelation

It can be seen from the MC simulations that

Some of the crosscorrelations are positive and some are negative.

The crosscorrelations depend on the relative geometry of the two
sensors and the target, as well as the target maneuvers.

For the nonlinear case, neglecting the crosscorrelations makes the
fusion sometimes optimistic and sometimes pessimistic, but the effect is
small.

This supports the approach of ignoring the dependency between the tracks

from different local sensors. Thus, since the maneuvers are unknown and

scenario dependent, we pursue the heterogeneous T2TF without considering

the crosscorrelation between the estimation errors.
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Simulation Results – LMMSE fuser (RMSE in position space)
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Figure 4: The position RMSE for LMMSE fuser.
(Heterogeneouse T2TF is superior to CTF IMM during model switching)

(ML fuser has practical the same performance as LMMSE fuser)
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Simulation Results – LMMSE fuser (RMSE in velocity space)
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Figure 5: The velocity RMSE for LMMSE fuser.
(Heterogeneouse T2TF is superior to CTF IMM during model switching)

(ML fuser has practical the same performance as LMMSE fuser)
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Simulation Results – maneuvering mode probability (NCT)
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Figure 6: Maneuvering mode probability (NCT) in the active sensor IMM and CTF IMM.
(Active sensor IMM is superior to CTF IMM!)
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Conclusions

The LMMSE and the ML approaches for heterogenous T2TF can
effectively achieve improved performance over the single sensor track
quality and comparable performance to the CTF track.

The estimation errors’ crosscorrelation has been examined by MC
simulations. The crosscorrelation of the estimation errors from
heterogeneous local sensors is too complicated to capture.

The use of the passive measurements in the CTF IMM “clouds" the
maneuvers – it is preferable to have an active sensor IMM (which does
detect the maneuvers) and a passive sensor KF (since the passive
sensor is almost “blind" to the maneuvers) and fuse the outputs of these
two local trackers.

The freedom available to each local sensor to flexibly design a more
suitable local estimator allows the heterogeneous T2TF approach to
achieve a better estimation performance than the CTF IMM in the
scenario considered.

The LMMSE T2TF has practically the same performance as the ML
T2TF and can be considered as an effective and efficient alternative for
the numerical search required by the ML approach.
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