Radar Environment RF Generation

Dr. Steffen Heuel Technology Manager Aerospace & Defense Rohde & Schwarz Munich, Germany

Ben-Gurion University of the Negev Radar Symposium 2017

Typical navigation radar scenario

Visualization on a radar screen

Echoes are displayed in so called "range cells"

Ν

- Coherent radars can also measure speed and can therefore also display an echo in a "Doppler cell"
- The larger the radar return signal, the larger the radar cross section i.e. the object, the larger the dot on the screen

Conventional Test set-up for navigation radar testing

- Test Concept for Navigation Radars
 - Mount a real radar under test on a boat
 - Deploy artificial targets at the sea
- Test Concept for airborne radars
 - Set up a flight campaign with artificial targets or use civil aircrafts
- Test concept for ground radars
 - Set-up field-test in large area to test performance

Motivation and Approach

4

Reduce Cost, complexity & test time

Improve Accuracy, reliability & repeatability

Sea clutter generation

Radar Detection Probability Density Function

- *P_{FA}* False Alarm Probability
- *P_M* Probability of Missing a Target
- *P_D* Probability of Missing Detection

ROHDE&SCHWARZ 23.01.2017

Typical Sea Clutter PPI view

How to simulate time and spatial correlated sea clutter?

Two scale model of the sea surface

- Capillary waves
 - Wavelength of centimeters or less
 - Driven by local wind gusts

\rightarrow Stochastic model

- Gravity waves
 - Wavelength of a few hundred meters down to a meter
 - Created by stable winds over a large area
 - \rightarrow Physical model

Courtesy of waterswaytravel.com

Two scale model of the sea surface

Capillary waves Stochastic model

- Following Rayleigh distribution
- I SIRP procedure can be used for generation if IQ data is available
- Otherwise uncorrelated **Rayleigh distributed noise** with mean level according to physical model

capillary waves

Rayleigh distributed noise:

11

Gravity Waves Physical Model

- Use established model to simulate sea surface
 - Parameters: average wave height and period, spreading factor, sampling frequency
- Transform height of sea surface to have a Chi-distribution
 - Transformation is performed with the help of memoryless nonlinear transformation (MLNT)
 - Shape parameter can be estimated using available formulas

gravity waves

Simulation of sea surface heights

Data verification and signal generation

IPIX data recorded on Canadian East Coast in 1993

Environment to multisegment waveform

Environment simulation using multisegment waveform (MSW)

Multisegment waveform (MSW) consists of multiple independent waveforms
Each radar "TX Pulse" triggers a segment (and the next segment...)

Radar echo generation and environment simulation

Measurement setup in the laboratory

Simulated Sea Clutter

Recorded Sea Clutter

Max range set to 12NM

- Single radar echo signal, moving target with 100m/s in 5NM range
- Recorded sea clutter

Coastline

- Sea clutter in close range
- R&S®Pulse Sequencer Software to add interference / jamming signals
- Verify interference rejection

Thank you for your attention!

