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Detection Problem Formulation

H0 :

{
Xn = Wn, n = 1, . . . , N

Ym = W
(s)
m , m = 1, . . . ,M

H1 :

{
Xn = Sna + Wn, n = 1, . . . , N

Ym = W
(s)
m , m = 1, . . . ,M,

I {Xn ∈ Cp}, {Ym ∈ Cp}: Primary and secondary data

I {Sn ∈ C}: i.i.d. zero-mean signal with unknown distribution

I a ∈ Cp: Known steering vector

I {Wn}, {W(s)
m }: i.i.d. zero-mean symmetrically distributed

homogeneous noise processes with unknown distribution

I {Sn}, {Wn} and {W(s)
m } are mutually independent
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Existing detectors

Gauss-Gauss detector [Jin & Friedlander 2005]

I GLRT-based detector

I Assumes normally distributed signal and noise

I Simple implementation and tractable performance analysis

I Sensitive to deviation from normality (e.g., in the case of
heavy-tailed noise that produces outliers)
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Existing detectors

CG-GLRT [Gerlach 1999, Shuai et. al. 2010]

I Assumes elliptical compound-Gaussian noise

I Resilient against heavy-tailed noise outliers

I Iterative ML-estimation of the noise scatter matrix

I Converges under some regularity conditions

I Each iteration involves matrix inversion

I Does not reject large norm outliers

I Can be sensitive to non-elliptical noise
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Proposed Detector

General operation principle

Selects a Gaussian model that best empirically fits a transformed
probability distribution of the data

Advantages

I Resilient to outliers (rejects large-norm outliers)

I Involves higher-order statistical moments

I Significant mitigation of the model mismatch effect

I Computational and implementation simplicity
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Probability Measure Transform

Definition
Given a non-negative function u : X → R+ satisfying

0 < E [u (X) ;PX;H ] <∞.

A transform Tu : PX;H → Q
(u)
X;H is defined as:

Tu [PX;H ] (A) = Q
(u)
X;H (A) ,

∫
A

ϕu (x;H)dPX;H (x) ,

where

ϕu (x;H) ,
u (x)

E [u (X) ;PX;H ]
.

The function u (·) is called the MT-function.
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Probability Measure Transform

The measure transformed mean and covariance

µ
(u)
X;H = E [Xϕu (X;H);PX;H ]

Σ
(u)
X;H = E

[
XXHϕu (X;H);PX;H

]
− µ

(u)
X;Hµ

(u)H
X;H

where

ϕu (x;H) ,
u (x)

E [u (X) ;PX;H ]
=
dQ

(u)
X;H

dPX;H

Conclusion

I The mean and covariance under Q
(u)
X;H can be estimated using

only samples from PX;H .

I u (x) non-constant & analytic ⇒ the mean and covariance

under Q
(u)
X;H involve higher-order statistical moments of PX;H .
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Probability Measure Transform

Proposition (Consistent empirical MT mean and covariance)

Let Xn, n = 1, . . . , N denote a sequence of i.i.d. samples from
PX;H , and define the empirical mean and covariance estimates:

µ̂
(u)
X ,

N∑
n=1

Xnϕ̂u (Xn)

Σ̂
(u)
X ,

N∑
n=1

XnX
H
n ϕ̂u (Xn)− µ̂

(u)
x µ̂

(u)H
x

where ϕ̂u (Xn) , u(Xn)∑N
n=1 u(Xn)

. If

E
[
‖X‖2 u (X) ;PX;H

]
<∞,

then µ̂
(u)
X

w.p.1−−−→ µ
(u)
X;H and Σ̂

(u)
X

w.p.1−−−→ Σ
(u)
X;H as N →∞.
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Probability Measure Transform

Proposition (Robustness to outliers)

If the MT-function u(x) and u(x)‖x‖2 are bounded, then the

influence functions [Hampel, 1974] of µ̂
(u)
X and Σ̂

(u)
X are bounded.

Remark
Condition is satisfied when u (x) ∈ Gaussian family.
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Measure Transformed Gaussian Quasi LRT

MT-GQLRT [Todros & Hero, 2016 ]

Compares the empirical KLDs between Q
(u)
X;H and two Gaussian

measures Φ(µ
(u)
X;H0

,Σ
(u)
X;H0

) and Φ(µ
(u)
X;H1

,Σ
(u)
X;H1

)

Tu = DLD

[
Σ̂

(u)
X ||Σ

(u)
X;H0

]
+
∥∥∥µ̂(u)

X − µ
(u)
X;H0

∥∥∥2(
Σ
(u)
x;H0

)−1

− DLD

[
Σ̂

(u)
X ||Σ

(u)
X;H1

]
−
∥∥∥µ̂(u)

X − µ
(u)
X;H1

∥∥∥2(
Σ
(u)
x;H1

)−1

H1

R
H0

τ,
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Measure Transformed Gaussian Quasi LRT

MT-GQLRT for the considered detection problem

I Class of MT-functions:{
u (x) = v

(
P⊥a x

)
, v : Cp → R+, v(x) = v(−x)

}
I MT-mean and MT-covariance under H0 and H1:

µ
(u)
X;Hk

= 0, k = 0, 1

Σ
(u)
X;H0

= Σ
(u)
W and Σ

(u)
X;H1

= σ2SaaH + Σ
(u)
W

I Equivalent test statistic:

T ′u = aH
(
Σ

(u)
W

)−1
Ĉ

(u)
X

(
Σ

(u)
W

)−1
a
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Plug-in Measure Transformed Gaussian Quasi LRT

Plug-in MT-GQLRT

Plug-in the empirical MT-covariance of the noise obtained from
noise-only secondary data {Ym}

T ′′u , aH
(
Σ̂

(u)
Y

)−1
Ĉ

(u)
X

(
Σ̂

(u)
Y

)−1
a
H1

R
H0

t,

Theorem (Asymptotic normality)

Assume that

1. σ2S > 0, Σ
(u)
W is non-singular

2. E
[
u2 (X) ;PX;H

]
, E
[
‖X‖4 u2 (X) ;PX;H

]
are finite

Then

√
N
(
T ′′u − η

(u)
H

)
D−−−−→

N→∞
N
(

0, λ
(u)
H

)
for H = H0, H1
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Plug-in Measure Transformed Gaussian Quasi LRT

Threshold determination

t = η̂
(u)
H0

+Q−1 (α)

√
λ̂
(u)
H0
,

I Guarantees asymptotic CFAR= α

I η̂
(u)
H0

, aH
(
Σ̂

(u)
Y

)−1
a

I λ̂
(u)
H0

, M
N

M∑
m=1

ϕ̂2
u (Ym)

(∣∣∣∣aH (Σ̂
(u)
Y

)−1
Ym

∣∣∣∣2 − η̂(u)H0

)2
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Plug-in Measure Transformed Gaussian Quasi LRT

Selection of the MT-function to induce outlier resilience

I Gaussian MT-function:

uG (x;ω) = exp
(
−‖P⊥a x‖2/ω2

)
I Define the Asymptotic Relative Local Power Sensitivity to

change in σ2S (under nominal Gaussian distribution):

R (ω,ΣW) ,
∂βuG
∂σ2S

/
∂βLRT
∂σ2S

∣∣∣∣
σ2
S=0

=

√
NG (ω,ΣW) +Q−1 (α)√

N +Q−1 (α)

I Select the lowest ω such that R (ω,ΣW) ≥ r, 0 << r < 1

I In practice ΣW is replaced by:

Σ̂W (ω) =
(
Σ̂

(uG)
Y (ω)−P⊥a /ω

2
)−1
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Simulation Studies

Setup

I BPSK signal with variance σ2S

I Steering vector: a , 1√
p

[
1, e−iπ sin(θ), . . . , e−iπ(p−1) sin(θ)

]T
,

p = 8, θ = 60◦

I Sample size in primary and secondary data: N = 1000,
M = 5000

I False alarm rate α = 0.05

I Asymptotic Relative Local Power Sensitivity: r = 0.9
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Simulation Studies

Detection in Gaussian noise
Zero-mean Gaussian noise with Toeplitz structured covariance Σ:

[Σ]i,j ,

{
σ2

Wbj−i, i ≤ j
σ2

W

(
bi−j

)∗
, i > j

, |b| < 1,
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Simulation Studies

Detection in elliptical CG noise

Elliptical t-distributed noise with λ = 0.2 degrees of freedom and
dispersion matrix Σ

SNR [dB]
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Simulation Studies

Detection in non-elliptical noise
Elliptical t-distributed noise + BPSK interference (SIR = −5 [dB])

SNR [dB]
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Conclusions

I Plug-in MT-GQLRT for detection of a random signal that lies
on a known rank-one subspace

I Simple implementation and tractable performance analysis

I Less sensitive to model mismatch as compared to other model
based detectors

I Extension to non-homogeneous noise environment
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