

Automotive Radar and Radar Based

Perception for Driverless Cars

Radar Symposium February 13, 2017 Auditorium, Ben-Gurion University of the Negev Dr. Juergen Dickmann, DAIMLER AG, Ulm, Germany

Radar Team DNA

More than 15 years of field (Product) experience, and now "Radar is <u>in all platforms at DAIMLER</u>"

Radar 4 drvless driving Team-DNA

First automotive ESR

Autonomous BUS Active Safety EvoBus

360°-76GHz Radar-Net

Autonomous Tuck

Sites of the drvless-activities

Introduction

Driver less driving: A Trend at Hype peak?

Drvless driving - How we approached it

How do we see the drvless future,

... that's how our future began in 2013

Mercedes-Benz⁸

Bertha-Tour 2013: Bertha-vehicle appears like a normal S-Class

Mercedes-Benz⁹

Bertha-Tour-2013: ... and Radar had been intensively used as backbone and innovation enabler

Mercedes-Benz¹⁰⁰

Performance Status

Truck Active Brake Assist – Radar-Based Function

Mercedes-Benz¹²

COLLISION PREVENTION ASSIST PLUS

COLLISION PREVENTION ASSIST uses radar to constantly monitor closing speeds between your Mercedes-Benz and the moving vehicles around it. If the system determines that a collision is likely, it can help you apply the ideal level of braking.

Mercedes-Benz¹³

The new E-Class 2016

Active Brake Assist with cross-traffic function: The system can detect crossing traffic at junctions and, if the driver fails to respond, applies the brakes autonomously. It is possible to completely avoid accidents at speeds up to 100 km/h or substantially reduce the severity of accidents at speeds above this level.

The new E-Class 2016

Radarsensorik hilft, Fahrzeuginsassen bereits vor unvermeidlichen Frontal- und Heckunfällen in die bestmögliche Position zu bringen. Im kommenden Jahr bietet Mercedes nun auch ein System für den Seitenaufprall an.

PRE-SAFE® impulse side: The system inflates an air chamber in the side bolster of the front seat backrest nearest the side of the imminent impact in a fraction of a second, thus increasing the distance between occupant and door and, at the same time, reducing the forces acting on the occupants.

Mercedes-Benz¹⁵

Present E-Class: Drive Pilot

Following a lane with only occasional driver input Changing lanes at the push of the indicator lever

Mercedes-Benz¹⁶

Industrialization Challenges

Radar enables Style Icon like designs Hence, Radar vehicle-integration is science for sake of artworks

Mercedes-Benz¹⁸⁸

Typical construction of a bumper

Cross-section of a standard multi-layer painting structure

For each layer we need the characteristic RF-parameters:

- Thickness
- Permittivity ε_R
- Dielectric loss angle tan(δ)

Mercedes-Benz¹⁹¹⁹

Radar- und Microwave-Measurement set-up

Drvless Challenges to Perception

Urban City - Next Radar Challenge

Mercedes-Benz²²

Traffic Challenges

Complexity, sudden appearance and diversity of Urban Scenarios

Large area crossings Crossing traffic

Non cooperative weather conditions

Unpredictable, surprising obstacle positions and object movement

> Manifold object types Hooded or partly covered objects

The Automation Dilemma

Wish for dissipation, relaxing and opportunity of parallel activities Expected extremely high safety level to autonomous systems

Present automatisation practice	Future autmatization expectation	
Accidents cased by limitations of human driver	Humans perform more right than wrong if driving	
Reduce some accidents caused by human drivers	Additional task: Automating tasks that humans do right	
Know your neighbour	Know your neighbourhood	
Know the relevant object	Know what is what Motion Prediction as future estimate	
	Mercedes-Benz	

Radar Perception Paradigm

Radar perception paradigm Transvision-Use the physical nature of mmWaves

Radar perception paradigm Full 360° FoV coverage and global representation

You can only react on what You can see and what You can properly assess

Mercedes-Benz²⁷

Radar development directions

Radar paradigm Use ultra high resolution in space and time

Represent and classify dynamic objects comprehensively

Radar perception plan

Represent the static world comprehensively

Radar-perception plan

Bring both worlds into context to each other

Radar paradigm Adopt machine learning and AI to radar

Achievements on our way

High resolution Radar

360° Global Object Map

Mercedes-Benz ³⁵

Occupancy and other Radar-Grid Maps

Mercedes-Benz ³⁶

High Definition Radar enables all weather capability

Mercedes-Benz ³⁷

Instantenous motion prediction

azimuthal doppler distribution

Mercedes-Benz ³⁸⁸

High Definition Radar perception and classification for moving objects

Mercedes-Benz ³⁹⁹

Localization support from Radar

CRR: Characteristic-Radar-Regions

Mercedes-Benz⁴⁰

Localization: Radar may help with landmarks

DGPS Particle-Filter-Result CRR-Points, CRR-Lines

Simultaniously representation of static and dynamic world

Interpretation of the environment Machine learning helps

Mercedes-Benz⁴³

Automotive Radar Future Deep Learning for Cognitive Radar Grid-Maps

Classification (connected components) in Radargrids as input in CNN

	Classified as vehicle	Classified as non-vehicle
True vehicle	94.2% ±0.3%	5.1% ±0.2%

A lot of staff to do...

car

Deep Learning for Cognitive Radar Grid-Maps

Mercedes-Benz⁴⁶

Localisation with Radars (SLAM) and understand your detections

Mercedes-Benz⁴⁷

