Dec. 22, 2020
13:00
-14:00

​​​​​​Zoom Link​

Speaker: Prof. Aryeh Kontorovich

Title: Learning discrete distributions with infinite support

We present a novel approach to estimating discrete distributions with (potentially) infinite support in the total variation metric. In a departure from the established paradigm, we make no structural assumptions whatsoever on the sampling distribution. In such a setting, distribution-free risk bounds are impossible, and the best one could hope for is a fully empirical data-dependent bound. We derive precisely such bounds, and demonstrate that these are, in a well-defined sense, the best possible. Our main discovery is that the half-norm of the empirical distribution provides tight upper and lower estimates on the empirical risk. Furthermore, this quantity decays at a nearly optimal rate as a function of the true distribution. The optimality follows from a minimax result, of possible independent interest. Additional structural results are provided, including an exact Rademacher complexity calculation and apparently a first connection between the total variation risk and the missing mass.

Joint work with Doron Cohen and Geoffrey Wolfer.
Aryeh-Kontorovich.jpg


Bio:

Aryeh Kontorovich received his undergraduate degree in mathematics with a certificate in applied mathematics from Princeton University in 2001. His M.Sc. and Ph.D. are from Carnegie Mellon University, where he graduated in 2007. After a postdoctoral fellowship at the Weizmann Institute of Science, he joined the Computer Science department at Ben-Gurion University of the Negev in 2009, where he is currently a full professor. His research interests are mainly in machine learning, with a focus on probability, statistics, Markov chains and metric spaces.