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A simple principle relating growth to
lateral water transport explains the variety
of self-organized vegetation patchiness.

athematician Alan Turing deciphered the German
Enigma code during World War II and laid the founda-

tions of computer science as a new discipline. But toward

the end of his short life, he made a lesser-known yet
L groundbreaking contribution. Interested in the develop-

ment of patterns and shapes in biological systems, in 1952
Turing published a paper entitled “The chemical basis of morphogenesis.”!
In the theoretical study, he showed that a homogeneous system of chemical
substances that react with each other and diffuse in space can self-organize
into spatially periodic distributions. His work received limited attention
until four decades later, when the behavior was experimentally observed.>
The confirmation of Turing’s prediction led to a surge in the number of
studies of so-called Turing patterns, first in chemical and biological con-
texts and more recently in ecological contexts.*
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VEGETATION PATTERN FORMATION

In a time when aerial photographs, let alone satellite im-
ages, of remote regions were hardly available, Turing could not
have imagined the possible realizations of his predictions for
dryland vegetation. Those who have traveled through arid and
semiarid regions may have noticed the patchy character of the
landscape, which is made up of vegetation patches surrounded
by bare-soil areas or vice versa. Usually the patchiness appears
irregular, which has traditionally been attributed to variable
microtopography and soil heterogeneities. It came as a big sur-
prise when aerial photographs of dryland regions, first in East
Africa’ (even before Turing’s paper) and later in many regions
across the world, revealed strikingly regular vegetation pat-
terns with various morphologies that were not recognizable
from the ground.

The first morphology to receive extensive scientific atten-
tion was parallel vegetation bands on gently sloped terrains,®*
a recent example of which was observed in northwestern Aus-
tralia (see figure la). In flat terrains, additional morphologies
have been reported, including nearly hexagonal vegetation gap
patterns (figure 1b), labyrinthine stripe patterns (figures 1c and
1d), and nearly hexagonal spot patterns (figure le). As figures
1c and 1d show, the same type of pattern can appear with dif-
ferent plant species and on characteristic length scales that vary
by orders of magnitude.

Vegetation patterns are not limited to drylands.* Recently
they have also been observed in underwater seagrass maps ob-
tained using hydroacoustic techniques.’ The growing recogni-
tion of vegetation pattern formation as a fundamental phenom-
enon observed worldwide with different plant species has led
to the emergence of a vigorous new research field at the inter-
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FIGURE 1. DRYLAND VEGETATION can form a range of patterns.
(a) Banded woody vegetation on a sloped terrain in Australia (photo
courtesy of Stephan Getzin). (b) A gap pattern of herbaceous vege-
tation in Australia (from ref. 11). (c) A labyrinthine pattern of woody
vegetation in Niger (from ref. 4). (d) A labyrinthine grass pattern in
Israel (from ref. 10). (e) A spot pattern of woody vegetation in Zam-
bia (from ref. 18).

face between spatial ecology, nonlinear physics, and applied
mathematics,'” where Turing’s ideas are essential.

Positive water-hiomass feedback

The spontaneous appearance of large-scale spatial order is
often a result of a local positive feedback loop that amplifies
small perturbations throughout the whole system and thereby
induces an instability of the original state. But what positive
feedback loop could drive the formation of the observed peri-
odic vegetation patterns? Assuming that pattern formation in
water-limited ecosystems can be explained solely in terms of
vegetation growth and water availability, researchers have pro-
posed a feedback loop, illustrated in figure 2, in which water
transport toward locations of growing vegetation accelerates
vegetation growth that, in turn, enhances the water transport.*1**!

An instability driving uniform vegetation to become pat-
terned can then be understood as follows: Consider a land-
scape of almost uniform vegetation and an area with slightly
denser vegetation than its surroundings. That area draws
slightly more water than its surroundings and becomes even
denser. The amplified deviation from the originally uniform
vegetation closes the feedback loop and sets the ground for a
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FIGURE 2. A POSITIVE FEEDBACK LOOP drives vegetation pat-
tern formation in water-limited systems. Feedback mechanisms ac-
celerate vegetation growth in denser patches and inhibit growth in
adjacent sparser patches, and thereby promote vegetation pattern
formation. (Adapted from ref. 10.)

new amplification loop. While the transport of water toward
denser vegetation accelerates the growth there, it inhibits the
growth in the surrounding areas from which water is being
taken. The instability that results generates nonuniform vege-
tation growth and the formation of a pattern.*

The first part of the feedback loop (the lower arrow in
figure 2) is fairly obvious in ecosystems where the limiting
growth factor is water availability. But why should vegetation
growth enhance water transport (the upper arrow)? The an-
swer depends on the particular transport mechanism.

One possible process is overland water flow, shown in
figure 3a. Bare-soil areas in drylands are often covered by phys-
ical or biogenic crusts that reduce the infiltration rate of surface
water into the soil. As a consequence, the infiltration rates in
sparsely vegetated areas are lower than those in densely veg-
etated areas. Further contributing to that infiltration contrast
are the plants’ roots, which increase the soil porosity and thus
the infiltration rate around the plants. The higher rate that de-
velops as the vegetation grows denser in a given location en-
hances overland water flow toward that location, and that can
account for the portion of the feedback loop indicated by the
upper arrow in figure 2.

Another mechanism is conduction by laterally extended plant
roots (see figure 3b). The biomass of a plant consists of an
aboveground part, or shoot, and a belowground part, or root.
Those two entities are not independent—larger shoot means
larger root; their relationship is expressed in terms of the root-
to-shoot ratio. As the shoot grows, the lateral extension of the
root zone enhances water transport because it allows for water
uptake and conduction from a larger volume.

The root-to-shoot relationship also is essential in enhancing
water transport for laterally confined roots (see figure 3c). In
that transport mechanism, water diffuses through the soil to-
ward locations of accelerated vegetation growth. Stronger water
uptake by deeper roots depletes the water content relative to
the surrounding soil and creates soil-water gradients, which in-
duce diffusion.

The three mechanisms are each associated with a positive
feedback loop that can induce a pattern-forming instability on
its own. In general, the feedback loops can act in concert, and
their relative importance changes with environmental conditions.
The interplay between them has interesting implications for
community structures because of the different water distribu-

tions associated with each transport mechanism and the niches
those distributions provide for other species.'®!! The feedback
loop associated with overland water flow acts to increase the
soil-water content in a vegetation patch, whereas those loops
associated with water diffusion and conduction by lateral roots
act to decrease that content by their strong water uptake. In
landscapes consisting of shrubs and annual plants, dominance
of the overland water flow feedback loop can facilitate annuals
growing near or under the canopies of shrubs; dominance in-
stead of feedback loops involving strong water uptake can re-
sult in the exclusion of annuals from the vicinities of shrubs.'*?

Upscaling information from local to global

The biomass—water feedback loops describe local plant-scale
processes. But does that small-scale information translate to
large-scale collective behaviors? Specifically, can the capabil-
ities of the biomass-water feedback loops induce pattern-
forming instabilities in uniform vegetation?

One indispensable tool for addressing such questions is a
heuristic mathematical model, built so as to capture the feedback
loops associated with overland water flow, water conduction
by laterally extended roots, and water transport by diffusion.

Two types of modeling approaches are primarily used to
study plant population dynamics: discrete agent-based models,
also called individual-based models, and those based on con-
tinuum partial differential equations (PDEs). Agent-based mod-
els are stochastic computational algorithms that go down to the
level of individual plants and often describe each plant in great
detail. PDE models, on the other hand, do not address individ-
ual plants; rather, they describe deterministic processes at small
spatial scales. A plant population is then represented by a con-
tinuous biomass areal density.

The PDE approach is more heuristic but has the advantage
of lending itself to the powerful methods of pattern-formation
theory.”’ But is it a suitable approach to describe small popula-
tions of discrete entities, for which demographic noise and ex-
tinction are usually a concern? The answer is definitely posi-
tive. Unlike animals, plants are immobile organisms that cannot
migrate away from environmental stresses. Instead, they gen-
erally cope by changing their phenotype. That plasticity is re-
flected in, among other things, the ability of a single plant to
change its viable biomass by orders of magnitude; such flexi-
bility justifies embodying vegetation biomass as a continuous
variable. Another consideration that supports the continuum
modeling approach is the near irrelevance of extinction events;
even in cases of complete plant mortality, long-lived seeds have
nonvanishing probabilities of germinating whenever the biotic
and abiotic conditions allow and can revive the population.

In 2004 Erez Gilad and colleagues introduced a PDE model
that captures all three feedback loops.”? It contains a biomass
variable b(x,t) that quantifies the aboveground areal density of
the plant population, and additional biomass variables in the
case of a plant community consisting of several populations.
There are also two water variables: One describes the soil’s water
content, w(x,t); the other, the overland water height, h(x,t). Be-
cause of the nonlocal nature of water uptake, the model in-
cludes integrals over a localized root-kernel function, g(x,x’),
that captures the lateral root distribution of a plant. Thus the
term that describes biomass growth in the biomass equation
contains the integral [g(x,x")w(x")dx’, which accounts for plant
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FIGURE 3. THREE FORMS OF WATER TRANSPORT promote flow toward vegetation patches.

(a) Overland water flow is induced by differences in water infiltration, which is low in bare-soil areas
covered by soil crusts, indicated here by a thick ground-surface line, and high in vegetated areas.
(b) Laterally extended root systems allow plants to increase their water uptake by drawing from a
larger volume. (c) Water diffuses from water-rich soil in nonvegetated areas with high infiltration
rates to water-poor soil in vegetated areas. Dark-blue arrows denote water transport toward
growing vegetation. Short light-blue arrows denote low surface-water infiltration rates, and long
light-blue arrows denote high infiltration rates. Shaded blue in the soil denotes high water content.

Soil-water 7/ /)
diffusion — *

induce a nonuniform stationary in-
stability of uniform vegetation when
the precipitation rate p drops below
a critical value p;. Such an instabil-
ity is characterized by the mono-
tonic growth of a spatially periodic
mode and the formation of a peri-
odic or nearly periodic stationary
pattern."! The characteristic wave-
number k_ of the growing mode de-
pends on intrinsic ecosystem prop-
l erties such as the root-to-shoot ratio

Rainfall

and the infiltration contrast.

A convenient way to graphically
describe the model solutions and
show their existence and stability
ranges is to draw a bifurcation dia-
gram such as the one in figure 4a.
The horizontal axis represents a
control parameter—here the pre-
cipitation rate p—and the vertical
axis represents a suitable measure
of a chosen state variable, such as
the biomass spatial average (b) or
its L>norm bl « f|b?dx. A common

growth at x due to water availability w at all other locations x’
in the root zone of x. Likewise, the soil-water equation contains
the integral [g(x",x)b(x")dx’, which captures water uptake at x by
all plants whose roots extend to that point.

The positive feedback loop associated with laterally ex-
tended roots is captured by making the width of the localized
root kernel g increase monotonically with the aboveground bio-
mass b, which accounts for the root-to-shoot relation.!> Water in-
filtration variability is included in the model by making the in-
filtration rate of overland water into the soil biomass-dependent;
the infiltration rate is higher in more densely vegetated areas.*

Applications of the general model to specific ecological con-
texts often allow simplifications. For example, a model for
species with confined root zones can be simplified by using
delta-function root kernels; that assumption results in the re-
placement of the nonlocal integral terms by local algebraic
functions. A model for ecosystems with sandy soil character-
ized by high infiltration rates can be simplified by eliminating
the overland-water equation.’

PDE models of dryland ecosystems often oversimplify the
complex ecological reality and leave aside many factors, such
as the effect of transpiration on the atmosphere, soil erosion
and deposition, and various plant-physiology processes. They
should be viewed as tools that can provide deep insights into
given ecological contexts rather than make quantitative fore-
casts. The models also constitute an indispensable source of
well-grounded hypotheses for empirical studies. Such studies
are typically long running because of the time scales on which
vegetation grows; the hypotheses being tested should therefore
be carefully chosen.

Emergence of large-scale periodicity

Analytical and numerical studies of the model discussed above
have shown that all three biomass—water feedback loops can
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convention in such diagrams is to
represent stable solutions with solid lines and unstable solu-
tions with dashed lines.

Figure 4a shows a bifurcation diagram of stationary solu-
tions in one spatial dimension. The simplest solutions, shown
in orange, are constant; they represent bare soil (b = 0) and uni-
form vegetation. The bare-soil solution is stable for low pre-
cipitation, at which seeds do not germinate, but it becomes un-
stable at some threshold p,. Above that threshold a spatially
uniform mode begins to grow and drives the system toward a
uniform vegetation state. But that state is stable only at suffi-
ciently high precipitation values p > p;. If the precipitation de-
creases below that threshold, uniform vegetation becomes un-
stable. Unlike the uniform mode that grows beyond the bare-soil
instability, the mode that grows below p; is spatially periodic
(figure 4b). That drives the system toward a stable periodic pat-
tern (the green line in figure 4a).When p, < py, as is the case in
figure 4a, the destabilization of the bare-soil state above py, re-
sults in a convergence to the periodic-pattern state because the
uniform vegetation state is unstable.

In addition to the periodic solution that emerges from the
uniform vegetation solution branch at p = p;, the bifurcation di-
agram shows another periodic solution, indicated by the blue
line, that emerges from uniform vegetation at a slightly lower
precipitation threshold. Figure 4c shows an example of that pe-
riodic solution, which is characterized by a lower wavenumber.
That solution extends to the highest precipitation rate, p,;, at
which periodic solutions exist. Many additional periodic solu-
tions that are not shown in the figure also appear with decreas-
ing wavenumber as the precipitation decreases further. The last
solution is a single hump (figure 4d), indicated by the purple
line, which describes a single vegetation spot. That solution ex-
tends to the lowest precipitation value p, at which viable veg-
etation still exists. Empirical indications of periodic patterns
with different wavenumbers have recently been reported.’
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FIGURE 4. PERIODIC AND LOCALIZED PATTERNS emerge from a nonuniform instability of uniform vegetation. (a) A bifurcation diagram
of one-dimensional solutions of a two-variable model that shows the dependence of the L? norm of the biomass b on the precipitation rate
p."" Solid lines represent stable solutions and dashed lines represent unstable solutions. The orange lines denote two constant solution branches:
bare soil with b1l = 0, which is unstable for p > p;, and uniform vegetation, which is unstable for p < p;. The green line represents the periodic
solution that bifurcates from the uniform-vegetation solution at p. The blue line represents the periodic solution that extends to the highest
precipitation value p,. The purple line denotes a single-hump solution with zero wavenumber and defines the lowest precipitation value, p,,
at which spatial patterns exist. The branches of the snaking red line represent localized solutions of different sizes. (b—g) Spatial dependencies
of solutions that correspond through their colors to the various branches in panel a. Numerical values refer to dimensionless quantities. The cor-
responding dimensional quantities are P =p - (160 mm/yr), B="b - (1 kg/m?), and X = x - (1/ 10¥2 m). (Courtesy of Yuval R. Zelnik.)

The green and blue periodic-solution branches that emerge
from the uniform vegetation solution appear in subcritical bi-
furcations—that is, a precipitation range exists where both uni-
form vegetation and periodic patterns are stable states. That
range extends from the threshold p;, at which the uniform veg-
etation state loses stability, to a threshold beyond which peri-
odic solutions cease to exist (see figure 4a).

Within that range there exist a multiplicity of stable local-
ized patterns of increasing size, beginning with a gap in other-
wise uniform vegetation (figure 4e), through gap-pattern do-
mains of increasing sizes (figure 4f), to a periodic gap pattern
with a single missing gap (figure 4g). In figure 4a, those local-
ized patterns are denoted by the red curve that snakes back and
forth between the uniform and the periodic solution branches;
that behavior has been termed homoclinic snaking. The local-
ized patterns act as building blocks for many irregular but sta-
ble patterns that are hybrids of uniform vegetation and peri-
odic gap patterns. Empirical indications of such hybrid patterns
have been reported in studies of grassland gap patterns in
Namibia.”

In two-dimensional isotropic systems, nonuniform station-
ary instabilities generally result in the emergence of periodic
hexagonal patterns. Such patterns are formed by the simulta-
neous growth of three resonant modes with wavevectors of the
same magnitude k. but oriented 120° relative to each other.!
Indeed, simulations starting from a nearly uniform vegetation
state slightly below p; result in a nearly hexagonal gap pattern,
as figure 5 shows. Such dynamical behavior has been used to
explain observed hexagonal gap patterns in Australian grass-
lands, shown in figure 1b, and how they differ from apparently
similar hexagonal gap patterns in Namibian grasslands.'

Ecosystems with sloped terrains are not isotropic, and the
patterns that emerge from simulations are mostly stripes ori-
ented perpendicular to the slope. That finding is consistent
with empirical observations,® such as the stripes in figure 1a.
In fact, in sloped terrains, the instability of uniform vegetation
involves the oscillatory growth of a spatially periodic mode,"
which results in vegetation bands migrating uphill.”” That mi-
gration, which has been empirically confirmed,® can be under-
stood as a result of the better growth conditions for plants at
the top of a vegetation band, where runoff accumulates, than
at the bottom part, where runoff is lost.

A basic principle for vegetation patterning

The emergence of periodic patterns from uniform vegetation as
the rate of precipitation decreases can be viewed as a population-
level mechanism —one that involves many individual plants—
to cope with the water stress caused by reduced rainfall. Partial
plant mortality and the concomitant formation of bare-soil gaps
create an additional water source for the surrounding vegeta-
tion through the various forms of water transport illustrated in
figure 3. The water contributed by bare-soil areas to surround-
ing vegetation compensates for the reduction in direct rainfall
and allows for the survival of the remaining vegetation patches.
The utility of that principle shows up in the system’s response
to further reductions in rainfall: Less rain should result in larger
bare-soil areas capable of contributing more water to adjacent
vegetation patches. That area increase is indeed observed in
simulations, and it can be realized in different ways.

The simplest mechanism by which bare-soil areas can increase
is by a contraction of vegetation patches. In one-dimensional
patterns, such as banded vegetation on sloped terrains, that
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FIGURE 5. THE FIVE BASIC VEGETATION PATTERNS along the
rainfall gradient (green panels) and snapshots of two morphological
transitions (black-and-white panels) as obtained by model simulations
with slowly decreasing rates of precipitation. As precipitation
decreases from left to right, bare-soil areas, which contribute water
to adjacent vegetation areas, should increase in size for the vegetation
to remain viable. That increase results in two morphological transitions:
Gaps become stripes through the merging of bare-soil gaps, and as
vegetation disintegrates further, those stripes turn into spots.

contraction amounts to vegetation bands narrowing while their
number stays constant, which keeps the pattern’s wavenumber
unchanged. That response mechanism occurs along the branch
of any periodic solution, such as the green and blue lines in fig-
ure 4a. Those solution branches extend to precipitation values
lower than that of the uniform-vegetation solution (upper or-
ange line), which manifests the positive effect of vegetation pat-
terning and band thinning on the vegetation’s capacity to sur-
vive water stress. Another way in which bare-soil area can
increase in response to decreasing precipitation is through a
reduction in the number of vegetation patches. That response
is reflected in transitions to periodic solutions with lower
wavenumbers as p decreases.

Two-dimensional patterns have yet another mechanism for
increasing bare-soil area in response to decreasing rainfall: the
morphological transitions illustrated by the black-and-white
panels in figure 5. The first transition involves the merging of
adjacent bare-soil gaps in a hexagonal pattern to form bare-soil
stripes. The resulting pattern persists to lower precipitation
values until a second morphological transition takes place in
which stripes break into spots. Those two transitions, together
with the instability of uniform vegetation to hexagonal gap pat-
terns and the collapse of spots to bare soil, form a sequence of
five basic vegetation states along the rainfall gradient, shown
by the green panels in figure 5.

From patterns to function

The discussion so far has focused on understanding mecha-
nisms of vegetation pattern formation and accounting for the
variety of patterns observed in drylands. But beyond the obvi-
ous curiosity raised by those fascinating phenomena, there are
important open questions related to functional aspects of veg-
etation patterning that call for further study. The functioning
of dryland ecosystems is currently threatened by two main fac-
tors. The first is global climate change and the likely more fre-
quent extremes, such as severe droughts, that accompany it;
the second is human intervention, which often involves ex-
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tracting resources, such as livestock feeding, and imposes ad-
ditional stresses on already vulnerable ecosystems.

Climate extremes can cause abrupt and irreversible transi-
tions in vegetation that lead to alternative dysfunctional stable
states, such as bare soil. How do the many stable vegetation
pattern states affect such transitions? Can they mitigate the ef-
fects of extreme droughts by providing alternative vegetation
response pathways that culminate in functional patterned
states rather than collapse to bare soil?

Human intervention also often results in detrimental out-
comes. But whereas researchers need to understand the many
stable ecosystem states to address the effects of climate ex-
tremes, they have to study unstable ecosystem states to deal
with human intervention. Directions in which an ecosystem
departs from its unstable states can act as road signs for
judicious human interventions. Following those signs may
circumvent detrimental outcomes by directing ecosystems
toward functional states. However, identifying the relevant
unstable states for particular human interventions remains a
challenge.

Understanding the transient dynamics of dryland ecosys-
tems caused by climate extremes and human intervention
calls for interdisciplinary collaborations between physicists,
applied mathematicians, and ecologists. By working together,
they can assimilate the concepts and methodologies of pat-
tern formation into ecological theories and facilitate research
progress.
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