Ben-Gurion University of the Negev Blaustein Institutes for Desert Research The Swiss Institute for Dryland Environmental and Energy Research Alexandre Yersin Department of Solar Energy and Environmental Physics

Ratchet flows in forced liquid films

Alexander Oron Technion, Israel Institute of Technology

Abstract:

A possibility of saturating Rayleigh-Taylor instability in a thin liquid film on the underside of a substrate in the gravity field by harmonic vibration of the substrate was recently investigated [E. Sterman-Cohen, M. Bestehorn, and A. Oron, Phys. Fluids 29, 052105 (2017); Erratum, Phys. Fluids 29, 109901 (2017)]. In the present work, we investigate the feasibility of creating a directional flow of the fluid in a film in the Rayleigh-Taylor configuration and controlling its flow rate by applying a two-frequency tangential forcing to the substrate. It is shown that in this situation, a ratchet flow develops, and the dependence of its flow rate on the vibration frequency, amplitude, its periodicity, and asymmetry level is investigated for water and silicone-oil films. A cause for the emergence of symmetry-breaking and an ensuing flow in a preferred direction is discussed. Some aspects of a ratchet flow in a liquid film placed on top of the substrate are discussed as well. A comparison with the case of a neglected fluid inertia is made, and the differences are elucidated.

A different mode for the emergence of ratchet flow in a liquid film under twofrequency excitation is found, this time it is typical for left-right symmetric excitations. A crucial importance of interaction between capillarity, gravity and forcing is discussed. It is found that in the long-time limit, the averaged flow rate along the system tends to a constant value under asymmetric forcing whereas under symmetric excitation, the flow rate remains pulsating.

Date & Location:

Tuesday, May 21st, 2019, 11:00 Lecture room, Physics Building (ground floor)