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Many biological channels perform highly selective transport without direct input of metabolic energy

and without transitions from a ‘‘closed’’ to an ‘‘open’’ state during transport. Mechanisms of selectivity of

such channels serve as an inspiration for creation of artificial nanomolecular sorting devices and

biosensors. To elucidate the transport mechanisms, it is important to understand the transport on the

single molecule level in the experimentally relevant regime when multiple particles are crowded in the

channel. In this Letter we analyze the effects of interparticle crowding on the nonequilibrium transport

times through a finite-length channel by means of analytical theory and computer simulations.
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The functioning of living cells depends critically on
molecular transport through various transport channels
[1]. Many of them function without a direct input of
metabolic energy and without a movable ‘‘gate’’ that
would involve transitions from an ‘‘open’’ to a ‘‘closed’’
state during transport. Nevertheless, such channels are
selective, efficient, and fast. Examples include porins,
nuclear pore complex, and others [2,3]. The functioning
of such channels has served as an inspiration for the
creation of artificial biosensors and nanomolecular filters
[4–8] that promise to play an ever increasing role in nano-
technological and nanomedical applications, such as
single-mismatch DNA detection [7], enantiomer separa-
tion [8], pathogen detection [9], and design of antibiotic
drugs optimized for penetrating the cell [10]. Such man-
made channels also serve as test beds for examining mod-
els of biological transport [5,6].

Biological and artificial transport channels, such as
those mentioned above, usually contain a passageway
through which the molecules translocate by diffusion.
From recent experimental and theoretical work, it has
become increasingly clear that in many cases the transport
selectivity of such channels is not dictated merely by
molecule size, but is controlled by transient binding of
the transported molecules inside the passageway [2–18].
The crucial insight into understanding the transport selec-
tivity of such channels is that even in the absence of any
physical barrier for the entrance to the channel, the proba-
bility of a particle to translocate through it is low (of an
order of the aspect ratio of the channel) [13]. Transient
trapping (due to binding) inside the channel overcomes this
‘‘dimensionality barrier’’ [13,14]. However, if the mole-
cules are trapped in the channel for too long, the channel
becomes crowded and transport is diminished. The inter-
play of these two effects provides a basis for selective
transport, whereby only the molecules that are trapped in
the channel for an optimal time transit through the channel
with a high flux [12–16]. Related mechanisms have been

known in the context of carrier-assisted membrane trans-
port as ‘‘facilitated diffusion’’ [11]. Theoretical models
that include the transient trapping combined with the ef-
fects of confinement [11–15] provide a good explanation of
the behavior of the mean flux through nanochannels and
show a good agreement with the experimental data [12].
However, from a biological perspective, transport of a

single molecule can constitute a significant signalling ef-
fect [1]. Thus, it is important to understand the transport
through such channels on the single molecule level.
Advances in fluorescent microscopy and other methods
allow one to follow the transport of individual molecules
through a channel [7,16]. Single molecule tracking experi-
ments provide a wealth of information about the transport
mechanisms, which is not accessible from the measure-
ments of the bulk flux through the channel. The kinetics of
transport of a single particle through the channel in the
absence of other particles is well understood [13,14,17]. In
this Letter, we analyze the effects of crowding of the
particles inside the channel on the transport times of indi-
vidual particles in the experimentally relevant regimewhen
a nonequilibrium steady state flux passes through the
channel.
Single particle.—Here, we briefly review the kinetics of

a single particle passing through the channel in order to
explain the methods employed herein. The channel is
represented as a sequence of ‘‘sites’’ 1; . . . ; N. Inside, the
particle performs diffusionlike random walk starting at the
‘‘entrance’’ site 1 and hopping between the internal sites
1 � i � N at an average rate r (for simplicity, we assume
that the channel is uniform). The particle can leave the
channel from the terminal sites 1 and N with an aver-
age rate ro. Transient trapping in the channel is described
by choosing ro < r. This hopping process is illustrated
in Fig. 1. At any time t, the position of the particle in
the channel is described by the vector of probabilities
piðtÞ to be at a particular site i: jpðtÞi ¼ ððp1ðtÞ; . . . ;
piðtÞ; . . . ; pNðtÞÞ. We also define the vector jii as a vector
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with the ith element equal to 1 and all other elements equal
to 0, so that hijpðtÞi ¼ piðtÞ (where hxjyi is the scalar
product of the vectors jxi and jyi). The master equation
for the probability vector, describing the hopping through

and out of the channel ends, can be written as d
dt jpðtÞi ¼

M̂ � jpðtÞi [18]. The formal solution of the master equation

can be written as jpðtÞi ¼ eM̂tjpð0Þi, where jpð0Þi is the
initial condition [17]; for a particle starting at site 1,
jpð0Þi ¼ j1i ¼ ð1; 0; . . . ; 0Þ. The instantaneous probability
flux to the right out of the channel is ropNðtÞ, and the
probability that the particle had exited the channel from the
right side by time t is Pt! ¼

R
t
0 ropNðt0Þdt0 [14(d),17].

The total probability to exit to the right P! � P1! is

P! ¼
Z 1
0

rohNjeM̂tj1idt0 ¼ �rohNjM̂�1j1i; (1)

where hijX̂jji � X̂ij. After some algebra [18], Eq. (1)

gives for the total probability to exit from the channel on
the right (the translocation probability): P! ¼ 1

2þðN�1Þro=r ,
in accord with previous works [12,14]. Note that P!
increases as ro diminishes. That is, trapping of the particle
in the channel increases the translocation probability
[11,14].

We now calculate the directional mean exit times. The
probability distribution of the exit times to the right f!ðtÞ
is f!ðtÞ¼� 1

P!
d
dtð1�Pt!Þ¼ ropNðtÞ=P! [14(d),17].

Thus, the mean time to exit the right is

�T ! ¼
Z 1
0

t0f!ðt0Þdt0 ¼ rohNjðM̂�1Þ2j1i=P!: (2)

Similarly, the mean first passage time to the left is �T ¼R1
0 t0f ðt0Þ ¼ roh1jðM̂�1Þ2j1i=P . The mean time to exit

from any of the ends is

�T ¼ ro
Z 1
0

tðpNðtÞ þ p1ðtÞÞdt ¼ �T P þ �T!P!: (3)

Using the equations above, we obtain explicit expressions
for the mean times:

�T! ¼N½6P þP!ðNðN�3Þþ2Þðro=rÞ2�
6ro

; �T¼ N

2ro
;

�T ¼N½6P P!þP2!ðNð2N�3Þþ1Þðro=rÞ2�
6roP 

; (4)

in agreement with previous results obtained in the contin-
uum limit [14(d)]. Note that the mean trapping time �T is
linearly proportional to the channel length N. Surprisingly,
the mean time for the particle to exit to the left �T also
scales like N for N � 1, due to the possibility of large
excursions into the channel before it returns to the left end.
By contrast, the mean exit time to the right has two distinct
regimes. For short channels, or strong trapping (Nro=r�
1), �T! � N

2ro
, while for long channels, or weak trapping,

(Nro=r� 1), �T! � N2

2r (see also Fig. 3). Physically, for

strong trapping, the bottleneck for the exit to the right is the
release from the channel end, while for long channels and
weak trapping the exit time is dominated by the time it
takes to diffuse through the channel from left to right.
Single particle on the background of the steady-state

flux.—When a finite flux J impinges onto the channel
entrance, at any moment there can be many particles in
the channel that might interfere with each other’s passage
and prevent the entrance of new ones. The particles in the
channel obey the same kinetics as the single particles, with
a condition that a site can contain up to a maximal number
of particles m. For constant J, a nonequilibrium
steady state is established and the system can be described
in terms of site occupancies ni ¼ jnissi . The steady-state

profile of a uniform channel can be solved exactly: nssi ¼
JP!ð1þðN�iÞro=rÞ

roþJP =m [12,18–20].

We now turn to the main results of this Letter—how does
the crowding, when many particles are present in the
channel, affect the transport times of individual particles
within the nonequilibrium steady-state flux. To the best of
our knowledge, no exact analytical solution exists in this
case. The transport of an individual particle can be viewed
as occurring on the background of the steady-state density
profile jniss. In the mean-field approximation, the proba-
bility piðtÞ of a particle to be present at a given site is
described by the following equations [18–21]:

dpi

dt
¼ rpi�1

�
1� nssi

m

�
þ rpiþ1

�
1� nssi

m

�

� rpi

�
1� nssi�1

m

�
� rpi

�
1� nssiþ1

m

�
; (5)

with the appropriate boundary conditions [18]. Using ma-

trix notations: d
dt jpðtÞi ¼ M̂ss � jpðtÞi. Explicit matrix ele-

ments of M̂ss are given in [18]. As in the single-particle
case above, these linear equations can be solved
analytically.
To test the feasibility of the mean-field approximation,

we compared the probability of a particle to exit to the
right, computed using the exact solution for the steady-
state density with the mean-field result (see below). First,

i-1 Ni+1  i  2 N-1
r

r

J
r

r

r

r

r

r
  1

rro o

Steady state density profile nss

FIG. 1. The channel is represented by a sequence of sites
1; . . . ; N between which the particles can hop with rate r. The
rate of hopping out of the channel from its ends is ro. In the
single-particle case, a particle starts at site 1 and hops inside the
channel until it exits from either end. In the multiparticle case,
the particles enter at site 1 with rate Jð1� n1=mÞ where m is the
maximal occupancy allowed. The line shows the steady-state
concentration profile.
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the average exit flux to the right is J! ¼ ron
ss
N , which

yields for the probability of an individual particle within
this steady-state flux to exit to the right [12,18]:

Pss! ¼ J!
Jð1� n1=mÞ ¼

1

2þ ðN � 1Þro=r : (6)

On the other hand, from the mean-field approximation of

Eq. (5) Pss! ¼ �rohNjðM̂ssÞ�1j1i [see Eq. (1)]. Using the
expressions for nssi , after some algebra we get the same
result as the exact expression, Eq. (6). Thus, the mean-field
approximation yields an exact result: the probability of an
individual particle to exit to the right is not affected by
crowding and is the same as in the single-particle case (at
least for uniform channels) [19,20]. The directional mean
exit times can be calculated by repeating the same algebra
as for the case of a single particle, but with Mss instead of
M. We find that the mean trapping time is �Tss ¼ N

2ro
—

surprisingly, like the translocation probability, the mean
trapping time is also not affected by the crowding. By
contrast, the directional times to exit to the right and to
the left, �Tss!, �Tss respectively, do change due to interpar-
ticle interactions, compared to the single-particle case.
After some algebra [18], one gets for the mean time to
exit to the left, �Tss ¼ roh1jðMssÞ�2j1i=P ,
�Tss ¼ � Nm

J2P 

�
mro þ JP þ J

2

�
þ rmðJP þmroÞ2

J3roP P!

	
�
c

�
N þ rm

JP!

�
� c

�
rm

JP!

��
; (7)

where c ðxÞ ¼ d
dx�ðxÞ; �ðxÞ is a � function. The mean exit

time to the right can be obtained in a similar fashion. The
dependence of the exit times on the impinging flux J is
illustrated in Fig. 2. Unlike the exit probabilities, crowding
increases the mean time to exit to the right �T!, and de-
creases the mean time to exit to the left �T . Interestingly,
however, the qualitative dependence on the channel length
N is similar to the single-particle case (J ¼ 0), as shown in
Fig. 3. Importantly, the transport times remain finite even in
the fully jammed regime (J ! 1), when the flux through
the channel saturates to its maximal value. In particular, the

mean time to exit to the right tends to N�2P2 
2P!ro

, while the

mean time to exit to the left tends to P 
ro

[18].

In order to corroborate the results of the mean-field
approximation and to investigate the limits of its validity,
we performed computer simulations of the transport
through the channel using a variant of the Kinetic
Monte Carlo algorithm [22]. Both the simulations and
the mean-field results show that the forward times are
increased due to the jamming while the backward times
are decreased. The increase in forward exit times is easily
understood considering the reduction in hopping rates in-
side the channel due to crowding. The origin of the de-
crease in the backward exit time is more subtle: the
crowding increases the number of particles which hop
backwards out of the channel immediately after their en-

trance. For wide channels that can accommodate more than
one particle at each site, the mean-field results for the
directional transport times Tss! and Tss agree closely with
the simulations. For strictly single file channels (m ¼ 1),
the mean field approximation underestimates the actual
value of the exit time to the right Tss! and overestimates
the exit time to the left Tss , but still reproduces the right
qualitative dependence of the times on the flux J and other
parameters. The reason for the underestimation of the time
to exit to the right is that the mean-field approximation
neglects the correlation between successive jumps (a par-
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FIG. 2 (color online). Ratios of the mean exit times in the
jammed regime to the single-particle times. Upper lines—
�Tss!= �T!. Lower lines— �Tss = �T . Solid red lines—analytical so-
lution, dotted lines—simulations; N ¼ 6, r ¼ 1, ro ¼ 0:1, m ¼
3 for all lines. Inset: Same for single-file transport (m ¼ 1).
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FIG. 3 (color online). Dependence of the transport time in the
crowded regime on the channel length N. Dashed red lines—-
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pendence) regimes (logarithmic scale); r¼1, ro¼0:01, J ¼ 0:1.
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ticle hopping to one of its neighbor sites leaves behind it a
vacancy and thus has a higher probability to hop back to
the same site in the next jump). Interestingly, the simula-
tions show that the mean field result for the mean trapping
time Tss is exact (at least for a uniform channel). Correc-
tions to the mean-field diffusion rate of a tracer particle in
equilibrium conditions were calculated in [21] using effec-
tive medium theory. Such corrections improve the approxi-
mation also in our case; however, their systematic analysis
lies outside the scope of the present Letter.

Discussion.—To summarize, we have analyzed the ef-
fects of crowding and interparticle competition for space
on the transport times through narrow channels of finite
length under a nonequilibrium steady-state condition. The
results of the mean-field analysis are corroborated by
computer simulations. We have shown that in uniform
channels the jamming increases the forward exit time,
while decreasing the backward exit time. Surprisingly,
jamming does not affect the mean dwelling time in uniform
channels. The situation might be different in nonuniform
channels; however, the mean-field approximation should
provide a qualitatively correct picture even in this case
[19,20], full discussion of which lies beyond the scope of
the present work. The model provides a theoretical frame-
work for analysis of single molecule transport through
biological and artificial nanochannels. The parameters of
the model, the rates ro and r, can be related to the experi-
mentally controlled factors such as diffusion coefficients
inside and outside the channel and the binding affinity of
the molecule in the channel. We emphasize the difference
between the results of this Letter and the well-studied case
of tracer diffusion in infinite single-file channels [23].
Finally, we note that the methods of this Letter can be
extended to treat arbitrary molecular signalling pathways
and other systems [24].
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